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Abstract—In this work, we report the preliminary analysis of
the electrophysiological behavior of in vitro neuronal networks
to identify when the networks are in a critical state based on
the size distribution of network-wide avalanches of activity. The
results presented here demonstrate the importance of selecting
appropriate parameters in the evaluation of the size distribution
and indicate that it is possible to perturb networks showing
highly synchronized—or supercritical—behavior into the critical
state by increasing the level of inhibition in the network. The
classification of critical versus non-critical networks is valuable
in identifying networks that can be expected to perform well
on computational tasks, as criticality is widely considered to be
the state in which a system is best suited for computation. In
addition to enabling the identification of networks that are well-
suited for computation, this analysis is expected to aid in the
classification of networks as perturbed or healthy. This study is
part of a larger research project, the overarching aim of which
is to develop computational models that are able to reproduce
target behaviors observed in in vitro neuronal networks. These
models will ultimately be used to aid in the realization of these
behaviors in nanomagnet arrays to be used in novel computing
hardwares.

Index Terms—Neuronal avalanches, self-organized criticality,
unconventional computing

I. INTRODUCTION

Current computing technology is based on the von Neu-
mann architecture, in which tasks are performed sequentially
and control, processing, and memory are each allocated to
structurally distinct components. With this architecture, con-
ventional computers struggle to cope with the rising demand
for data processing and storage. Furthermore, although recent
advancements in machine learning technology have conferred
great advantages to our data handling capabilities, processing
continues to be performed on conventional hardware that
has no inherent learning capabilities and thus requires huge
amounts of training data, computational time, and computing
power.

To continue to fulfill the rapidly growing computing de-
mands of the modern day, it will be necessary to develop novel

physical computing architectures that are scalable, capable of
learning, energy-efficient, and fault-tolerant. The use of self-
organizing substrates showing an inherent capacity for infor-
mation transmission, storage, and modification [1] would bring
computation into the physical domain, enabling improved
efficiency through the direct exploitation of material and
physical processes for computation [2–4]. Some key properties
of self-organizing systems that make them well-suited for
computational tasks include their lack of centralized control
and their adaptive response to changes in their environment
[5]. Such systems are composed of many autonomous units
that interact with each other and the environment through a
set of local rules to give rise to organized emergent behaviors
at a macroscopic scale. This type of spontaneous pattern
formation is fairly common in nature, and there has been
recent interest in determining how to develop interaction rules
to generate various desired emergent behaviors [6], including
those geared toward computation. In addition, it has been
demonstrated that self-organizing substrates, such as magnetic
arrays and self-assembling molecules, can be used as com-
putational reservoirs—untrained dynamical systems composed
of a collection of recurrently connected units—by training a
readout layer to map the output of the physical system to a
target problem [7].

The brain is an excellent example of a self-organizing
system; it shows a remarkable capacity for computation with
very little energy consumption and no centralized control, and
scientists and engineers have long looked to the structure and
behavior of the brain for inspiration. Neurons grown in vitro
self-organize into networks that show complex patterns of
spiking activity, which can be analyzed to gain insight into the
network’s capacity for information storage and transmission.
This behavior indicates that in vitro neuronal networks may
serve as a suitable computational reservoir [8], and previous
studies indicate that it is possible to use networks cultured on
top of microelectrode arrays (MEAs) as reservoirs to perform
computational tasks, such as controlling a robot or simulated
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artificial animal (animat) [9]. Further study of neuronal dy-
namics in this context could also provide insights into the
characteristics desired for more engineerable substrates.

The aim of the present research project is to construct
computational models that are able to reproduce desired
electrophysiological behaviors observed in in vitro neuronal
networks. These models will provide insight into the behavior
of the neurons and enable us to reproduce it in other substrates.
This work is part of a project entitled Self-Organizing Compu-
tational substRATES (SOCRATES) [10], which aims to take
inspiration from the behavior of in vitro neuronal networks
toward the development of novel self-organizing computing
hardwares based in nanomagnetic substrates.

In the present study, the focus was on the classification of
neuronal networks as critical or not critical at different time
points during the course of their maturation in vitro. This was
performed by evaluating the scaling behavior of network-wide
cascades of activity called neuronal avalanches, as will be
described in more detail in Sections II and III. Criticality is an
important feature in dynamical systems from the standpoint
of computation, as it is widely acknowledged that systems
at criticality are best suited for computation [1]. It was also
preliminarily demonstrated in this study that it may be possible
to manipulate a supercritical network into the critical state by
increasing inhibition in the network, which would be a useful
strategy to employ in reservoir computational applications.

The remainder of this paper is organized as follows. Section
II gives some background on the analysis method used in this
work to assess the criticality of in vitro neuronal networks
toward identifying networks that may be considered well-
suited for computation. Section III describes the methods of
preparing the dissociated neuronal networks evaluated in this
study and the analysis methods applied to the electrophysi-
ological data recorded from the networks. The results from
the preliminary analysis of the recorded data are presented
in Section IV, and their implications are discussed in Section
V. A brief overview of the long-term plan for this research
project is then given in Section VI, and section VII concludes
the paper.

II. BACKGROUND: NEURONAL AVALANCHES

It has been theorized that the brain self-organizes into
a critical state to optimize its computational properties; the
foundations and theorized functional benefits of this behavior
have been reviewed in recent works [11, 12]. A system in
the critical state rests at the boundary between two qualita-
tively different types of behavior. In the subcritical phase, a
system shows highly ordered behavior characterized as static
or oscillating between very few distinct states, whereas in
the supercritical or chaotic phase, the system shows highly
unpredictable, essentially random behavior. Near the transition
point between these two regimes, the system is poised to
effectively respond to a wide range of inputs as well as store
and transmit information, making it ideal in terms of the
capacity a system has for computation [1].

To determine whether a neuronal network is in the crit-
ical state, we turn to the scaling behavior of network-wide
avalanches of activity. As first defined by Beggs and Plenz
[13], a neuronal avalanche is any number of consecutive time
bins containing at least one spike, bounded before and after by
time bins containing no activity, as shown in Fig. 1b. In their
study, Beggs and Plenz [13] demonstrated that the probability
distributions of the size and duration of neuronal avalanches
follow a power law, indicating that the propagation of activity
in the cortex is in the critical state [14]. Studies on the sponta-
neous activity of dissociated cortical networks have indicated
that dissociated cortical networks tend to self-organize into the
critical state over the course of their maturation, though not
all networks settle into this state and there is disagreement on
when the networks reach criticality [15–17].

It has been further demonstrated that criticality is estab-
lished by a balance between excitation and inhibition and that
cortical networks at criticality show a larger dynamic range
(sensitivity to a wider range of inputs), higher information
capacity (number of output patterns generated in response to
different inputs), and greater information transmission (infor-
mation shared between two recording sites) than networks
functioning outside of criticality [18, 19]. Network connec-
tivity is considered to play an important role in shaping
the critical dynamics observed in many neuronal networks,
and network simulations have indicated that small-world and
scale-free features are necessary to achieve the power-law
scaling behaviors seen in critical neuronal networks [20]; this
is also consistent with other studies observing the functional
connectivity of in vitro neuronal networks (e.g., [21]), which
have reported networks evolving from a random to small-
world topology as they mature. A more in-depth study of the
relationship between the criticality and functional connectivity
of in vitro networks remains a task for future work.

In the present study, an analysis method based on the size
distribution of neuronal avalanches was applied to the analysis
of in vitro primary cortical neuronal networks (Fig. 1a). This
method is based on previous analysis performed on cortical
networks (e.g., [15]). The aim of this method is to determine
whether a given neuronal network is in the critical state, which
is presumed to be beneficial for the network in terms of its
capacity to store information and perform computation.

As a long-term goal of the present research project,
avalanche size distribution analysis is being applied to record-
ings obtained from different types of in vitro neuronal net-
works (e.g., human induced pluripotent stem cell (iPSC)-
derived dopaminergic networks, see [22]) to assess the criti-
cality of the networks. Emerging network dynamics in healthy
and perturbed conditions will be studied, characterized, and
classified. On the basis of the preliminary results obtained in
this work, we report the development of two cortical networks
from day in vitro (DIV) 7 to DIV 51 and their response to
chemical perturbation on DIV 51.

To the authors’ knowledge, this work represents the first
time a network has been manipulated into the critical state
through chemical perturbation. Furthermore, this type of anal-
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Fig. 1: (a) Microscope images of the primary cortical networks
analyzed in this study. Network A (shown here at DIV 49)
showed activity on all electrodes, whereas Network B (shown
here at DIV 51) partially detached from the electrode area of
the MEA chip, resulting in approximately 12–15 electrodes
of the 60 showing the vast majority of the recorded network
activity. (b) Definition of a neuronal avalanche. Each dot
represents a spike recorded by one of the electrodes (Ch.
1–4). A time bin is active when it contains at least one
spike and empty when there are no spikes. An avalanche is
defined as a sequence of consecutive active time bins preceded
and followed by empty bins, and the size is the number of
electrodes active during the avalanche.

ysis has also not yet been applied to the characterization of the
neuronal network dynamics in in vitro disease models, which
is the focus of ongoing and future work.

III. METHODS

Neuronal networks were prepared using primary cortical
neurons. This section presents the methods for preparing and
recording from the neuronal networks, as well as the data
analysis methods applied to the recorded data.

A. Preparation and electrophysiology of neuronal networks

The neuronal networks assessed here were prepared as
follows. Primary rat cortical neurons (Thermo Fisher) were
seeded on a feeder layer of human astrocytes (Gibco, Thermo
Fisher) at a density of approximately 1 × 105 neurons per
MEA. The networks were left to mature for 7 DIV prior
to recording. The spontaneous electrophysiological activity of
the network was recorded using a 60-electrode MEA together
with the corresponding in vitro recording system (MEA2100-
System, Multi Channel Systems) and software (Multi Channel
Experimenter, Multi Channel Systems). Recordings were taken
every second day for 15 min. Culture feedings occurred at the
start of each week immediately after recording.

At DIV 51, γ-Aminobutyric acid (GABA, Sigma Aldrich)
was added to the cortical networks at rising concentrations to
disrupt the excitation-to-inhibition ratio by increasing network
inhibition. Prior to perturbation, a recording was taken to
establish a baseline. GABA was then added directly to the
culture media in microliter volumes, and recordings were taken
immediately after this perturbation. Different concentrations
(10 and 50 µM for Network A and 5, 10, and 25 µM for
Network B) were chosen to provide increasing degrees of per-
turbation; lower concentrations were used for Network B be-
cause it showed lower levels of activity. The 15-min recordings
were performed in succession with increasing concentrations.
Following the final perturbation, 90% of the culture media was
replaced to return the cultures to the baseline state.

B. Avalanche analysis

Avalanches were detected according to the method de-
scribed by Beggs and Plenz [13]. All analysis of the elec-
trophysiological data was performed using MATLAB 2018b
(The MathWorks, Inc.). Spikes were detected using a simple
thresholding method based on the standard deviation of the
noise of the signal after applying a bandpass filter with a
pass band of 300 Hz to 3 kHz1. The spike detection threshold
was set to 6, 7, and 8 standard deviations below the median
of the signal for the cortical networks, and the results were
compared to assess the effect of the detection threshold on the
classification results.

The spikes were binned into time bins of 600 µs, and
avalanches were detected as any number of consecutive active
time bins (bins containing at least one spike) bounded before
and after by empty time bins (Fig. 1b). The size of an

1Code for spike detection is available at https://github.com/SocratesNFR/
MCSspikedetection.
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avalanche is defined as the number of electrodes that were
active during the avalanche.

A power law was then fitted to the avalanche size distribu-
tion data. This power law takes the form

P (s) ∝ s−α, (1)

where s is the avalanche size, P (s) is the probability of an
avalanche having size s, and α is the exponent of the fitted
power law. The exponent has been reported to take a value of
α = 1.5 for in vitro neuronal networks [13, 15]. The fitting
was performed using two different fitting methods, nonlinear
regression (NLR) and maximum likelihood estimation (MLE),
and the results were compared. The NLR coefficients were
estimated using iterative least squares estimation. The fit was
applied over the size range of smin = 2 to the maximum
detected avalanche size smax, with a cap at smax = 59
electrodes. The goodness of fit was computed following
Clauset et al. [23]. Synthetic datasets were generated from
the fitted distribution, and their Kolmogorov–Smirnov (KS)
distances from the theoretical distribution were compared to
the empirical KS distance. The fitting was rejected if the
fraction p of synthetic KS distances that were greater than
the empirical KS distance was less than 0.1 (p < 0.1)2.

IV. RESULTS

The avalanche size distributions of different in vitro neu-
ronal networks were observed as the networks matured, and
the networks were classified as being critical or not critical
at each recording time point based on the fitting results. In
this preliminary work, no rigorous analysis was yet applied
to classify networks as sub- or supercritical; rather, only
the goodness of fit of the size distribution to a power law
was evaluated to assess whether or not the network was in
a critical state during each analyzed recording. Preliminary
classification of non-critical cases as sub- or supercritical was
performed by visual inspection alone, where subcritical be-
havior is characterized by exponential decay and supercritical
by a bimodal distribution.

The primary cortical networks evaluated here (Networks A
and B; see Fig. 1a) were observed as they matured from DIV
7 to DIV 51, and then the change in the activity in response
to chemical perturbation by GABA on DIV 51 was evaluated.
These networks showed a large amount of activity with high-
amplitude spikes, providing richer results than iPSC-derived
dopaminergic networks investigated in a previous work [22]
and allowing for the comparison of the results across multiple
detection thresholds (6, 7, and 8 standard deviations below the
median) and fitting techniques (NLR and MLE), as described
in Section III-B.

This section will first present the observed course of matu-
ration for the two cortical networks based on their avalanche
size distributions and then discuss how the addition of GABA
affected the criticality of the networks. In both cases, the

2Code for avalanche detection and goodness of fit evaluation is available
at https://github.com/SocratesNFR/avalanche.

avalanche size distributions and fitting results will be com-
pared for the different detection thresholds and fitting methods
considered in this work.

A. Spontaneous activity during maturation

Both networks showed an initial low-activity phase from
DIV 7 to DIV 12, in which the mean firing rate averaged
across all active electrodes was less than 0.1 s−1 and fewer
than approximately 1000 neuronal avalanches were detected
within the size range (2–59 electrodes) considered for the
power law fitting. In this time period, there were considered
to be too few avalanches for the fitting results to be reliable.
In all subsequent recordings of spontaneous activity (DIVs
14–51), both the NLR and MLE fitting methods produced fits
that did not meet the criterion (p > 0.1) for the networks to
be classified as critical, indicating that neither of the networks
entered the critical state during the observation period. All
subsequent discussion on classifying the networks as sub-
or supercritical over the course of their maturation is thus
based solely on visual inspection; as stated previously, the
implementation of a rigorous classification method in this
regard remains as a task for future work.

Figure 2 shows a selection of raster plots and avalanche
size probability distributions for Network A at three different
time points (DIVs 21, 44, and 37). The raster plots and size
distributions are shown for detection thresholds of 6 and 8
standard deviations at each time point. The raster plots show
the first three network bursts in each recording with the periods
of relative silence between the bursts removed for the sake of
visualization.

The first time point shown (DIV 21; Fig. 2a and 2b) is
representative of the type of activity seen from DIV 14 to 21.
During this period, the networks appeared to be in a subcritical
state, which is characterized by an exponential size distribution
showing a rapid drop in probability as the avalanche size
increases. As shown in the raster plots, this corresponds to
loose synchrony and relatively low levels of activity. The
second time point (DIV 44; Fig. 2c and 2d) is representative
of the type of activity seen from DIV 23 to 51. During
this period, the networks appeared to be in a supercritical
state, which is characterized by a bimodal size distribution
showing many very large avalanches and few avalanches of
intermediate size. The raster plots demonstrate that this type
of activity corresponds to tight synchronicity across most of
the electrodes and high activity levels.

The final time point shown in Fig. 2 (DIV 37; Fig. 2e
and 2f) is shown to demonstrate the robustness of the clas-
sification method based on the goodness of fit measure p
against false positives. The size distribution obtained for a
detection threshold of 8 standard deviations visually seems
to follow a power law, showing high linearity in log–log
space with a slope corresponding to the expected value of
α = 1.5 (MLE: α = 1.62, NLR: α = 1.53). However, in both
cases, the criterion p > 0.1 was not met (MLE: p = 0.005,
NLR: p = 0.0). The analysis results at a threshold of 6
standard deviations more clearly show the deviation of the
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(a) DIV 21 (b) DIV 21

(c) DIV 44 (d) DIV 44

(e) DIV 37 (f) DIV 37

Fig. 2: Raster plots and size distributions for Network A.
(a) DIV 21. Raster plots for detection thresholds of 6 (top)
and 8 (bottom) standard deviations. The raster plots show 0.5-
s intervals of high network activity with the intervening silent
periods eliminated for the sake of visualization. (b) DIV 21.
Size distributions for detection thresholds of 6 and 8 standard
deviations. A power law function with an exponent of α = 1.5
is plotted for reference. (c,d) Same as (a,b) for DIV 44. (e,f)
Same as (a,b) for DIV 37.

size distribution from the linear fit, displaying the same type
of bimodal distribution seen at DIV 44 (Fig. 2d). This supports
the reliability of the goodness of fit measure.

B. Perturbation to increase inhibition

On DIV 51, both networks showed highly synchronized
activity and avalanche size distributions with peaks at large
avalanche sizes, behavior indicative of a supercritical state.
Figure 3a and 3e shows raster plots of the activity of Networks

A and B, respectively,3 on DIV 51 before chemical pertur-
bation, illustrating their high level of synchronicity. These
plots were obtained with a detection threshold of 6 standard
deviations. The corresponding avalanche size distributions are
shown in Fig. 3c and 3g, respectively. As stated previously,
Network B detached from some of the electrodes (see Fig. 1a),
causing approximately 12–15 of the electrodes to show the
vast majority of the activity, especially during later recordings.
This is apparent in both the raster plot (Fig. 3e) and the size
distribution (Fig. 3g); there is a small peak in the probability
of avalanches of size 12, followed by a very sharp drop off
toward larger avalanches.

Figure 3b and 3f shows the raster plots of Networks A
and B, respectively, after the addition of GABA to increase
inhibition. After the addition of GABA, the amount of activity
decreased, and the high level of synchronicity was broken. In
contrast to the behavior prior to perturbation, the perturbed
networks showed much less periodicity in their activity, with
different groupings of electrodes firing within close temporal
proximity. This is reflected in the avalanche size distributions
for the two networks shown in Fig. 3d, which both appear to
follow a power law. The fitting results obtained using the two
fitting methods are also given in the size distribution plots.
For Network A, NLR yielded a good power-law fit, whereas
MLE did not; for Network B, the converse was true.

The effect of the detection threshold and fitting method
was further evaluated by assessing the agreement among the
fitting results for the same recording under different evaluation
parameters. The fitting results for the two networks after per-
turbation on DIV 51 are given in Table I, with cases yielding a
good fit (indicating the network is in the critical state) reported
in bold. In cases where the number N of detected avalanches
was insufficient to produce a reliable fitting (N . 1000), the
results are shown in italics. For Network A, the NLR fitting
results indicate the network is in the critical state, with reliable
results produced for thresholds of 6 and 7 standard deviations.
For Network B, only a threshold of 6 standard deviations
yielded enough activity for a reliable fitting, and the MLE
results indicate the network is in the critical state.

V. DISCUSSION

The two cortical networks observed in this study never self-
organized into the critical state; rather, they appeared to enter
into a subcritical state after an initial low-activity phase and
then settled into a stable highly synchronized supercritical
state. Pasquale et al. [15] have demonstrated that not all
dissociated cortical networks will reach the critical state during
their normal course of maturation. They also reported that
cultures tend to fall into a single preferred state (subcritical,
supercritical, or critical) by around DIV 21 and tend not
to diverge from that state. However, other previous studies
have demonstrated different courses of maturation for cortical

3Note that the raster plot for Network A shows 1 min of activity, whereas
that for Network B shows 2 min. Because Network B showed much less
activity than Network A both before and after perturbation, the type of activity
is better captured by showing a larger time window.
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(a) Network A before perturbation

(b) Network A after perturbation

(c) Network A before perturbation (d) Network A after perturbation

(e) Network B before perturbation

(f) Network B after perturbation

(g) Network B before perturbation (h) Network B after perturbation

Fig. 3: Raster plots and avalanche size distributions before and
after chemical perturbation by GABA (DIV 51, threshold of
6 standard deviations). (a) Raster plot of Network A before
perturbation. (b) Raster plot of Network A after perturbation.
(c) Probability distribution of avalanche sizes for Network
A before perturbation. A power law with an exponent of
α = 1.5 is plotted for reference. (d) Probability distribution of
avalanches sizes for Network A after perturbation. The fitting
results obtained by NLR and MLE are plotted along with their
α and p values. (e–h) Same as (a–d) for Network B.

TABLE I: Power law fitting results for the two networks after
chemical perturbation on DIV 51. Bold text indicates a good
fit (p > 0.1). Italics indicate that the number of avalanches N
was insufficient for reliable fitting results (N . 1000).

Network Threshold Fitting method α p

A
(50 µM

GABA)

8 st. dev. NLR 1.32 0.28
MLE 1.54 0.02

7 st. dev. NLR 1.42 0.72
MLE 1.54 0.00

6 st. dev. NLR 1.40 0.14
MLE 1.54 0.00

B
(25 µM

GABA)

8 st. dev. NLR 1.95 0.54
MLE 1.67 0.48

7 st. dev. NLR 1.72 0.16
MLE 1.69 0.06

6 st. dev. NLR 1.60 0.05
MLE 1.64 0.31

networks. For example, Yada et al. [17] have indicated that
cortical networks undergo early development from subcritical
to supercritical before finally reaching a critical state after
DIV 10. In contrast to this, Tetzlaff et al. [16] have described
activity traversing from supercritical to subcritical and finally
reaching criticality around DIV 58 (± 20 days). It is possible
that the present networks may have reached criticality if left to
mature further; however, it seems more likely that they would
have remained in the supercritical state, as would be predicted
by the type of trends observed by Pasquale et al. [15]. It will
be necessary to perform more rigorous fittings of exponential
curves to the size distribution to definitively demonstrate that
the cultures showed subcritical behavior.

An important achievement in this work was the successful
perturbation of the in vitro networks from supercritical to crit-
ical. The networks showed increasingly synchronized activity
accompanied by heightened activity levels as they matured
from DIV 23 onward. A balanced excitation-to-inhibition ratio
is widely considered to play an important role in enabling
the emergence of critical behaviors, and previous studies have
demonstrated the importance of this balance both through
modeling (e.g., [15, 20]) and experimentally (e.g., [18, 19]).

On the basis of this evidence, the networks were perturbed at
DIV 51, when they showed highly synchronized supercritical
behavior, by adding GABA; the aim of this perturbation was to
artificially balance the excitation-to-inhibition ratio by increas-
ing inhibition, thereby pushing the networks into the critical
regime. GABA was selected to perturb the network because
it is the main inhibitory neurotransmitter in the mammalian
central nervous system. GABA acts by binding to specific re-
ceptors in the neuronal membrane that allow either negatively
charged chloride ions to enter the cell or positively charged
potassium ions to exit the cell, thereby reducing the membrane
potential and hyperpolarizing the neuron. Its addition to the
culture medium does not directly affect the connectivity of
the network but can be considered to increase the activation
threshold in a network-wide but nonhomogeneous manner,
which essentially means that the neurons require more or
larger inputs to activate.
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The results indicate that the addition of GABA (50 µM to
Network A and 25 µM to Network B) successfully broke the
high level of synchronicity seen in the networks and brought
them into the critical state (see Fig. 3). As stated in Section
III, the GABA concentration was incrementally raised for each
network (10 and 50 µM for Network A; 5, 10, and 25 µM for
Network B). In both cases, the network only reached criticality
at the highest considered molarity; however, in future work,
smaller increments will be considered, as GABA also has the
undesirable effect of reducing activity.

The analysis of both the spontaneous and perturbed activity
also demonstrated that it is important to consider different
spike detection thresholds and fitting methods when conduct-
ing the analysis. The preliminary results reported here show
that the goodness of fit measure [23] was able to robustly
identify non-critical behavior even when the size distribution
showed apparent linearity in log–log space and that lowering
the threshold in this case supported the identification of
supercritical activity (see Fig. 2f). When GABA was added,
there was insufficient activity at certain thresholds to achieve
a reliable fitting (see Table I), indicating the importance of an
appropriate threshold. Furthermore, although the results appear
to demonstrate critical behavior in Network B with a threshold
of 6 standard deviations, it is possible that this threshold was
too low and may have yielded false positives, as it is unlikely
that there was actual activity on the electrodes where neurons
had not adhered (see Fig. 1a). In the current experimental
setup, a threshold of 7 standard deviations seems to have been
most appropriate to balance these considerations. The results
also indicate that more work is needed to determine whether
NLR or MLE is best suited to yielding a good power law fit,
as the two fittings did not produce consistent values of α or
classification results.

VI. PLAN FOR FUTURE RESEARCH

This work represents a preliminary step in a larger research
project, which will be described briefly here. The plan for this
research project is divided into four stages. In the first stage, a
data analysis framework will be developed, with the avalanche
analysis method described here constituting a crucial part of
this framework. The framework involves methods of extracting
meaningful features from electrophysiological data recorded
from in vitro neuronal networks. Such features include con-
ventional parameters considered in electrophysiological data
analysis, such as the mean firing rate, as well as more complex
measures, such as entropy and measures of connectivity. The
connectivity of the engineered networks will also be modeled
using graph theory approaches. The avalanche method pre-
sented here represents a useful tool for classifying networks
as critical or non-critical. Other methods of classification and
clustering of networks will also be explored.

The second stage of the project involves the construction of
computing models, such as cellular automata (CAs), random
Boolean networks (RBNs), and recurrent neural networks
(RNNs), that show behavior similar to that of the neuronal
networks [24]. The data analysis framework developed in the

first phase will be used as a method of capturing the target
behavior to be reproduced in the models, and this framework
will be continually refined as we improve our understanding
of the aspects of neuronal behavior that contribute to their
computational capabilities. Important features of the models,
such as their input and output mappings and number of states,
will be explored, and the dynamics of the models will be
characterized.

The third phase involves the use of the developed models
and the in vitro neuronal networks as reservoirs to perform
computational and classification tasks as a proof-of-concept
using reservoir computing. The models from the second stage
will be refined based on their performance as computing
reservoirs. The final stage consists of the exploration of the
application of the models developed in the second stage to
the study of engineered neuronal networks under perturbed
conditions mimicking pathologies related to the central ner-
vous system (CNS). Networks that have had their synaptic
function perturbed will be modeled and analyzed using the
developed methods to characterize how their behavior differs
from that of unperturbed networks. Methods of interfacing
with the perturbed networks to restore their dynamics to the
unperturbed state will then be explored.

VII. CONCLUSION

The aim of this research project is to extract meaningful
behaviors and features from electrophysiological data recorded
from in vitro neuronal networks and construct models that
reproduce these behaviors toward the eventual realization of
novel computing substrates based in nanomagnetic materials.
This paper reported the application of an avalanche size
distribution analysis to electrophysiological data, representing
a first step in the development of an analytical framework to
extract target behaviors from such data. The results indicate
that the avalanche analysis method applied here is able to
successfully classify networks as critical or not critical and
that chemical perturbation is a feasible method of inducing
criticality when a network is in the supercritical state. In
future work, more networks will be analyzed with the hopes
of achieving self-organized criticality in some networks, and
further investigations of the effects of chemical perturbation
on both critical and supercritical networks will be conducted.

With this type of analysis, it can be determined if a
network is in a critical state, which gives an indication of
its suitability for use in computational tasks. Furthermore,
the results presented here indicate that it is possible to bring
cortical networks from the supercritical state to criticality by
increasing inhibition in the networks. This would be a useful
approach to manipulating networks to make them viable for
performing computational tasks. In addition to the computa-
tional applications of this analysis, it is also expected to be
useful in distinguishing healthy and perturbed networks and
to provide insight into how different diseases affect neuronal
connectivity and communication, which will be the target of
future work.
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