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Abstract

This work deals specifically with the use of a neural network for ozone modelling in the lower atmosphere. The development
of a neural network model is presented to predict the tropospheric (surface or ground) ozone concentrations as a function of
meteorological conditions and various air quality parameters. The development of the model was based on the realization that the
prediction of ozone from a theoretical basis (i.e. detailed atmospheric diffusion model) is difficult. In contrast, neural networks are
useful for modelling because of their ability to be trained using historical data and because of their capability for modelling highly
non-linear relationships. The network was trained using summer meteorological and air quality data when the ozone concentrations
are the highest. The data were collected from an urban atmosphere. The site was selected to represent a typical residential area
with high traffic influences. Three neural network models were developed. The main emphasis of the first model has been placed
on studying the factors that control the ozone concentrations during a 24-hour period (daylight and night hours were included).
The second model was developed to study the factors that regulate the ozone concentrations during daylight hours at which higher
concentrations of ozone were recorded. The third model was developed to predict daily maximum ozone levels. The predictions
of the models were found to be consistent with observations. A partitioning method of the connection weights of the network was
used to study the relative percent contribution of each of the input variables. The contribution of meteorology on the ozone concen-
tration variation was found to fall within the range 33.15–40.64%. It was also found that nitrogen oxide, sulfur dioxide, relative
humidity, non-methane hydrocarbon and nitrogen dioxide have the most effect on the predicted ozone concentrations. In addition,
temperature played an important role while solar radiation had a lower effect than expected. The results of this study indicate
that the artificial neural network (ANN) is a promising method for air pollution modelling. 2002 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Ozone (tropospheric ozone) can have a negative
impact on the environment and public health when
present in the lower atmosphere in sufficient quantities.
In establishing ambient air quality standards, regulations
have been introduced to set limits on the emissions of
pollutants in such a way that they cannot exceed pre-
scribed maximum values (Maynard, 1984; EPA, 1999).
To achieve these limits, consideration was given to
mathematical and computer modelling of air pollution.

* Corresponding author. Tel.:+968-515-350; fax:+968-513-416.
E-mail address: sabah1@squ.edu.om (S.A. Abdul-Wahab).

1364-8152/02/$ - see front matter 2002 Elsevier Science Ltd. All rights reserved.
PII: S1364-8152 (01)00077-9

Ozone, however, is unique among pollutants because it
is not emitted directly into the air. It is a secondary pol-
lutant that results from complex chemical reactions in
the atmosphere. It results when the primary pollutants
nitrogen oxides (NOx) and non-methane hydrocarbons
(NMHC) interact under the action of sunlight. Therefore,
the primary pollutants NOx and NMHC are referred to
as ozone precursors. There are thousands of sources of
NMHC and NOx. To track and predict ozone, one must
create an understanding of not only ozone itself but also
the conditions that contribute to its formation. In
addition, ozone concentrations are strongly linked to
meteorological conditions. Land–sea breezes also influ-
ence ozone concentrations at coastal sites. To predict
ozone concentrations, it is necessary to apply a model
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that describes and understands the complex relationships
between ozone concentrations and the many variables
that cause or hinder ozone production.

From 1978 to 1997, forecasts were based on the one-
hour National Ambient Air Quality Standard (NAAQS)
for ozone, which was 0.12 parts per million (ppm) (EPA,
1999). In 1997, the US Environmental Protection
Agency (EPA) revised the NAAQS to reflect more
recent health-effects studies that suggest that respiratory
damage can occur at lower ozone concentrations. Under
the revised standard, regions exceed the NAAQS when
the three-year average of the annual fourth highest eight-
hour average ozone concentration is above 0.08 ppm.
More regions will have daily maximum eight-hour ozone
concentrations that exceed the level of the revised
NAAQS than the old standard, and more agencies may
need to model ozone (EPA, 1999). Accordingly, both
deterministic and statistical models have been developed
to better understand ozone production (Topcu et al.,
1993).

Deterministic models (i.e. theoretical or detailed
atmospheric diffusion models) are based on a fundamen-
tal mathematical description of atmospheric processes in
which effects are generated by causes (Zannetti 1983,
1994). Such models aim to resolve the underlying
chemical and physical equations that control pollutant
concentrations and therefore require detailed emission
data and meteorological conditions for the region of
interest. An excellent example is the urban airshed
model (UAM) (Zannetti 1983, 1994; Johnson, 1991).
This model can be used to obtain an accurate picture of
the factors involved in ozone production. However, the
model is highly sophisticated because it requires a high
level of human resources and intense data input
(Johnson, 1991; Azzi et al., 1995). There are generally
severe limitations in both spatial and temporal accuracy
of the data. In addition, some input data are not easily
acquired by environmental protection agencies or local
industries. This means that if these inputs are unknown,
then the application of the UAM is problematic. There-
fore, it is much more practical to rely on statistical mod-
els.

Statistical models are based on semi-empirical statisti-
cal relations among available data and measurements.
They do not necessarily reveal any relation between
cause and effect. They attempt to determine the underly-
ing relationship between sets of input data (predictors)
and targets (predictands). Examples of statistical models
are correlation analysis (Abdul-Wahab et al., 1996) and
time series analysis (Hsu, 1992). However, the complex
and sometimes non-linear relationships of multiple vari-
ables can make statistical models awkward and compli-
cated (Comrie, 1997). Therefore, it is expected that they
will under-perform when used to model the relationship
between ozone and the other variables that are extremely
non-linear.

Other statistical approaches frequently used include
several artificial neural network implementations
(Boznar et al., 1993; Ruiz-Suárez et al., 1995; Elkamel
et al., 2001). The use of these artificial intelligence-based
networks has been shown to give acceptable results for
atmospheric pollution forecasting of pollutants such as
SO2, ozone and benzopyrene. Ozone in the lower atmos-
phere is a complex non-linear process. Therefore, the
neural network is a well-suited method for modelling
this process since it allows for non-linear relationships
between variables. Neural networks, by their unique
structure, possess the ability to learn non-linear relation-
ships with limited prior knowledge about the process
structure. They are therefore useful for evaluating the
ozone problem at a particular location. In this paper,
neural network modelling was used to predict ozone con-
centration levels.

2. Artificial neural network concepts

Artificial neural network (ANN) models are computer
programs that are designed to emulate human infor-
mation processing capabilities such as knowledge pro-
cessing, speech, prediction, classifications, and control.
The ability of ANN systems to spontaneously learn from
examples, “ reason” over inexact and fuzzy data, and to
provide adequate and rapid responses to new information
not previously stored in memory has generated increas-
ing acceptance for this technology in various engineering
fields and, when applied, has demonstrated remarkable
success (Simpson, 1990; Elkamel et al., 2001).

The major building block for any ANN architecture
is the processing element or neuron. These neurons are
located in one of three types of layers: the input layer,
the hidden layer, or the output layer (Fig. 1). The input
neurons receive data from the outside environment, the
hidden neurons receive signals from all of the neurons
in the preceding layer, and the output neurons send infor-
mation back to the external environment. These neurons
are connected together by a line of communication called
connection. Stanley (1990) indicated that the way in
which the neurons are connected to each other in a net-
work typology has a great effect on the operation and
performance of the network. ANN models come in a
variety of typologies or paradigms. Simpson (1990) pro-
vides a coherent description of 27 different popular ANN
paradigms and presents comparative analyses, appli-
cations, and implementations of these paradigms. Of
these, the most frequently used is the backpropagation
paradigm (Rumelhart and McClelland, 1986). Detailed
descriptions on the use of ANNs in environmental mod-
elling can be found in Maier and Dandy (2000).
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Fig. 1. A typical feedforward architecture.

3. Artificial neural networks and ozone modelling

Neural network models have the potential to describe
highly non-linear relationships such as those controlling
ozone production. Therefore, the application of artificial
neural networks to ozone modelling has recently become
available to capture those non-linear features of the
relationship that a conventional statistical technique (e.g.
regression models) might overlook (Comrie, 1997).
Although they are relatively new and not yet widely used
for this purpose, neural network models have proved to
be a useful and cost-effective means for studying the
relationship between ozone and other variables.

Gardner (1996) used the neural network to investigate
the importance of local meteorology in determining the
surface ozone concentration on an hourly basis. The
purely meteorological input data were taken from
Weybourne, a coastal site in north Norfolk. The data
included hourly observations of temperature, humidity,
irradiance, wind speed, direction and ozone concen-
trations for an entire year. Interestingly, Gardner’s model
did not involve any chemical data as input to the model.
The model showed that over a period of a year, 48% of
the ozone variation can be attributed to changing
meteorological conditions. Any remaining variability
was attributed to other causes such as chemical interac-
tion between hydrocarbons and oxides of nitrogen.

Crowe and DeFries (1996) applied neural networks
to predict ozone concentrations in southeast Texas, near
Houston. The input data consisted of hourly meteoro-
logical parameters, nitrogen oxides and seven hydro-
carbon species based on carbon bond four chemistry.
Three neural network models were developed. The pre-
dictor variables for the first model consisted of five
meteorological parameters for the same hour as the
ozone measurement and also for six time delays to
account for possible effects of transport and chemical
reactions. The second model consisted of the same
meteorological variables but included the species NO

and NOx. The third model dropped the time-lagged vari-
ables but added seven hydrocarbon species based on car-
bon bond four chemistry. The models showed progress-
ively better predictive capability as evidenced by
increasing R2-values from 0.7 (first model) to 0.8
(second model) to 0.91 (third model). The authors
reported that selected hydrocarbon species are more
sensitive predictors of hourly ozone. They found that
increasing olefins were associated with decreasing ozone
and that increasing paraffin concentrations were associa-
ted with sharply increasing ozone levels.

Capone (1996) applied neural network technology to
predict downwind hourly ozone data in the Baton Rouge
area in the USA by using a more complicated network
in which data from two downwind sites were employed
as predictors. The model, which consisted of hourly
meteorological and NOx measurements at each site, was
successful at predicting hourly ozone patterns. The
Capone model did not involve any hydrocarbon species.

A study by the University of Arizona (Comrie, 1997)
used data from eight cities around the United States to
compare regression models and neural networks under a
variety of climate and ozone regimes. The ozone data
used were the daily maximum one-hour concentrations
for the months of May through September over a five-
year period. A comparison between the two methods
indicated that neural network techniques are somewhat
(but not dramatically) better than regression models for
daily ozone prediction.

Elkamel et al. (2001) illustrated the successful use of
a neural network to predict ozone concentrations using
both meteorological and chemical data. The network was
trained using data collected near an industrial area in
Kuwait for a period of 60 days. The performance of the
neural network model was compared against linear and
non-linear regression models. The study indicated that
neural network models consistently gave better predic-
tions.

Hence, neural network models have the potential to
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describe highly non-linear relationships such as those
controlling ozone production. Therefore, the application
of artificial neural networks to ozone modelling is
recently becoming available to capture those non-linear
features of the relationship that a conventional statistical
technique might overlook. The work reported in this
paper deals with the use of the neural network as a
method for ozone modelling and for predicting ozone
concentrations as a function of meteorological conditions
and other primary pollutants. The study focused specifi-
cally on identification of the factors that regulate the
ozone levels during daylight hours and during periods
of high ozone concentration. We examined the relative
percent contribution of each input variable. Furthermore,
the percentage of ozone variation due to meteorological
factors and other pollutants was also investigated. The
purpose of this work was to come up with intelligent
evaluation of the ozone situation without many available
data. This will help to provide the decision makers with a
rapid tool to make an initial judgement of environmental
situations using the limited data available.

4. Materials and methods

4.1. Area description

The state of Kuwait covers an area of approximately
17,818 km2. It is situated at the head of the Arabian
Gulf between latitudes 28° and 30° north and between
longitudes 46° and 48° east (Fig. 2). Iraq lies towards
the northern and western boundaries of Kuwait, Saudi
Arabia lies to the south, while the Arabian Gulf marks
the eastern boundary. The terrain is a flat to slightly
undulating desert plain. Much of the country is desert.
Thus the climate is typically arid with very hot summers
and relatively cold and dry winters. The summer season

Fig. 2. Map of Kuwait State.

in Kuwait falls between May and September and the
winter season between November and March. Summer
temperatures may exceed 50 °C, and in January, the col-
dest month, temperatures range between �2.8 and 28.3
°C. Kuwait has very little rainfall, most of it occurring
as light winter showers brought by westerly depressions,
especially in January (Gulf Union Company, 1993). The
annual rainfall varies from 10 to 370 mm. Dust and
sandstorms are common throughout the year. They are
more frequent in the winter months and in midsummer
(Gulf Union Company, 1993).

Relatively heavy traffic movement surrounds the area
of study at Khaldiya residential area (Figs. 3 and 4) and
therefore it is mainly affected by the pollutants that are
discharged from the traffic load in view of the proximity
of major highways. The wind rose over a one-year per-
iod (1997) is shown in Fig. 3. Most of the prevailing
wind is from the west and the northwest. The monitoring
site was situated downwind from the Shuwaikh indus-
trial area and the Shuwaikh power plant in case the levels
of pollution released from them were significant.

4.2. Data collection

Kuwait University’s mobile air pollution laboratory
was used in the study. The location of the mobile labora-
tory at Khaldiya was selected as the sampling site on the
basis of the availability of power and security and the
topography of the area. Care was taken that no high
buildings or trees were present within 500 metres of the
site. The mobile laboratory was fitted with chemical
monitors and meteorological sensors. All the sensors
were operated automatically. Measurements were

Fig. 3. Location of Khaldiya residential area in relation to Kuwait
City and other areas of Kuwait. A wind rose is superimposed on the
figure.
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Fig. 4. The site of the mobile air pollution monitoring laboratory and
structures in the immediate vicinity of Khaldiya residential area.

recorded every five minutes. Pollutants measured include
CH4, NMHC, CO, CO2, NO, NO2, SO2 and O3. Meteoro-
logical parameters monitored simultaneously included
wind speed and direction, air temperature, relative
humidity and solar radiation.

Methane and non-methane hydrocarbons were meas-
ured by gas chromatography using a flame ionization
detector (Model MAS-1030A, Mine Safety Appliances
Company) which had a detection limit of 0.05 ppm. Car-
bon monoxide and carbon dioxide concentrations were
measured based on non-dispersive infrared absorption
(Model 48 and Model 41/41H of Thermo Environmental
Instruments, respectively). The detection limits for car-
bon monoxide and carbon dioxide were 0.1 ppmv and 5
ppb, respectively. The NOx concentrations were meas-
ured with a detection limit of 0.5 ppb (Thermo Environ-
mental Instrument, Model 42). SO2 concentrations were
measured by using Model 43A with a detection limit of
1 ppb (Thermo Environmental Instruments, Pulsed
fluorescent). The ozone concentrations were measured
by using a non-dispersive UV photometer (Monitors
Labs, Model ML 9812) with a detection limit of 1.0
ppbv. Suspended dust was measured gravimetrically
(TEOM Series 1400a). This was a real-time device used
for assessing particulate concentration for sizes smaller
than 10 µm in diameter. It was a filter-based mass moni-
tor which was composed of a TEOM sensor and a
TEOM control unit. It had a detection limit of 5 µg/m3.
Details of the mobile laboratory’s meteorological sen-
sors were given in previous studies (Abdul-Wahab et al.
1996, 2000; Bouhamra and Abdul-Wahab, 1999; Elka-
mel et al., 2001).

In terms of its operation, the mobile laboratory is
characterized by the following: sampling inlets were

located on top of the laboratory 10 metres above the
ground; all the monitors were controlled by an intelligent
data logger; automatic zero and span calibrations were
performed using a calibration gas once every 23 hours;
the Envicom software was used to record the data and
then the Envaid software was used for editing and pro-
cessing. A quality check was performed by examining
the data in graphical form.

5. Results and discussion

A detailed analysis of ozone real-time monitoring data
collected by the mobile laboratory indicated that the
Khaldiya residential area was occasionally subjected to
ambient ozone concentrations exceeding the NAAQS of
80 ppb. The results confirmed that high ozone events
occur mainly in summer, which is in line with the results
of other investigators (Salop et al., 1983; Bower et al.,
1989; Poulid et al., 1991; Varshney and Aggarwal, 1992;
Lorenzini et al., 1994).

On the basis of these findings, only the air quality data
that were collected in June (i.e. summer) was selected
for neural network evaluation. Table 1 shows the vari-
ables measured by the mobile laboratory and their mini-
mum, maximum and mean values recorded. It can be
seen that the monthly mean ozone concentration in June
was 22.66 ppb. The level ranged from 0.0 to 108.5 ppb.
The maximum ozone concentration observed during the
study period was 108.5 ppb.

It was decided that three ANN models would be
developed for this work. Thirteen variables were selected
as inputs; CH4, NMHC, CO, CO2, NO, NO2, SO2, tem-
perature (TEMP), relative humidity (RH), wind speed
(WS), wind direction (WD), solar radiation (SOLAR)
and dust. The selected output for these models was the
ozone (O3) concentration. Hence, for the development
of the ANN architecture of these models, 13 neurons
were used for input and one neuron for the output as

Table 1
Variables measured in the Khaldiya residential area during June 1997

Variable Minimum Maximum Average

CH4 (ppm) 1.6 3.12 1.74
NMHC (ppm) 0.04 6.19 0.619
CO (ppm) 0.0 18.6 2.76
CO2 (ppm) 344 475 362.99
NO (ppb) 4 921 105.29
NO2 (ppb) 1 154 44.44
SO2 (ppb) 1 290 12.296
O3 (ppb) 0 108.5 22.66
Wind speed (m/s) 0.4382 5.169 2.097
Temperature (°C) 28.85 48.05 38.03
Relative humidity (%) 7.8 69.1 21.61
Solar energy (kW/m2) 0.018 0.9657 0.304
Suspended dust (µg/m3) 0 1293 99.83



224 S.A. Abdul-Wahab, S.M. Al-Alawi / Environmental Modelling & Software 17 (2002) 219–228

Fig. 5. The ANN architecture for the environmental models.

shown in Fig. 5. Data for the above variables were then
examined for error outliers and missing values using the
NeuroShell software utilities, and these records were
removed from the data set.

The first model assessed the factors affecting the
ozone concentration during a 24-hour period. Due to
equipment calibration or maintenance, one or more of
the variables may not have been measured at a given
time. In other words, the matrix of data collected has
missing entries. In such cases, the entire row was elimin-
ated so that rows containing partial data were not con-
sidered in the data analysis. The number of complete
data points recorded was 4797 records.

The diurnal profile of ozone given in Fig. 6 shows
that the mean level of ozone was quite high during the
daylight hours and quite low in the absence of sun. With
this in mind, the second ANN model was developed in
such a way that it focused only on the observations
recorded during daylight hours at which higher concen-
trations of ozone were recorded. The number of com-
plete data points included in this model was 1630 rec-
ords.

Regulations have been introduced to set limits on the
ozone concentrations in such a way that they cannot
exceed the NAAQS of 80 ppb. Therefore, the third ANN
model was developed for predicting daily maximum

Fig. 6. Mean distribution of ozone concentration (ppb) in Khaldiya
residential area as a function of time of day.

ozone levels. The prime objective of this model was to
determine the conditions that favour the production of
high ozone concentrations. The number of total records
included in this model was 19. However, the limitations
of the limited number of data should be also recognized.

5.1. Network development

Prior to conducting the network training operation for
model I using the backpropagation paradigm (BP), a
training set consisting of 4797 cases was obtained from
the preprocessed environmental data. They were then
divided into two distinct sets, a training set and a testing
set, using a random process. The training set consisted
of 85% of the data sets collected, or 4078 cases, that
were then used for training the model. The remaining
15%, or 719 cases, were excluded from the training set
and used later, once the model was developed, to test the
model’s performance. Typical examples of the different
training patterns used as part of the training data set are
shown in Table 2. The training process of this ANN
model was performed using a NeuroShell simulator
developed by Ward Systems Group. The simulator iterat-
ively adjusts the weights until the error between the out-
put data and the actual data (observed) is minimized.
Several network factors such as momentum, learning
rate, number of hidden nodes, and thresholds were tried
during the training process to improve network gen-
eralization and prediction accuracy. The best results
were obtained (Table 3) when the network completed
13,427 epochs in 9:30:01 hours of continuous training
(i.e. the error is minimized). As shown by Fig. 7, there
was a close fit between actual values and the model’s
prediction. The R2-value for the trained model was
0.9812. This result indicates that approximately 98% of
the variability in the ozone concentration levels (the
dependent variable) could be explained by the selected
independent variables and the data used for model devel-
opment. Having trained the network successfully, the
next step was to test the network to judge its perform-
ance and to determine how well the predicted results
agree with the observed results.

The same procedures used in model I was then used
in the development of models II and III. The training
and testing sets, however, consisted of 1386 cases (85%)
and 244 cases (15%) for model II, and 16 cases (85%)
and 3 cases (15%) for model III, respectively. The best
results for model II were obtained when the network
completed 19,384 epochs in 8:30:05 hours of continuous
training, while for model III, the best result was obtained
in 1:22:33 hours after completing 1,054,327 epochs
(Table 3). The R2-values for models II and III were
0.9622 and 0.9067, respectively, as shown in Fig. 7.
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Table 2
Typical training patterns used for model development

Input Output

CH4 NMHC CO CO2 NO NO2 SO2 WS WD TEMP RH SOLAR DUST O3

(ppm) (ppm) (ppm) (ppm) (ppb) (ppb) (ppb) (m/s) (deg) (°C) (%) (kW/m2) (µg/m3) (ppb)

1.64 0.2 0.75 352 9 15.5 6 1.39 214 41.95 13.5 0.338 90 42
1.76 0.83 2.03 363 95 77.5 16 0.97 312.1 41.86 13.1 0.651 142.5 14.5
1.66 0.51 1.96 359 78 51 9 3.53 97.2 44.29 14.2 0.493 67.5 11
1.66 0.12 0.56 357 9.5 23.5 3 2.16 279.5 41.68 13.8 0.865 40 61
1.69 0.09 1.31 359 12 33 7 2.27 302.6 41.81 16.4 0.1391 132.5 48.5
1.62 0.33 1.74 361 19 29.5 5 1.28 281.2 43.23 13.3 0.8561 507.5 38
1.67 0.44 1.83 358 66 64.5 6 2.88 88.2 42.79 14.5 0.7761 47.5 29

Table 3
Developed environmental model results

Description Model I Model II Model III

Number of training sets 4078 1386 16
Number of testing sets 719 244 3
Elapsed time for model development 9:30:01 8:30:05 1:22:33
Number of epochs 13427 19384 1054327
R-squared 0.9812 0.9622 0.9067
Mean squared error 6.619 14.030 20.998
Mean absolute error 1.829 2.66 2.049
Correlation coefficient, r 0.9906 0.9811 0.9563

Fig. 7. Example of the results for the training for ozone (ppb)
together with their actual values in the three trained models.

5.2. Model testing and validation

To validate the model’s prediction capability, the test
set data for each model were used to test the developed
models. The resulting predictions were then compared
with actual results, and statistical numerical measures
were then calculated. The R2-values for the test set in
models I, II, and III were 0.9366, 0.9617, and 0.9321,
respectively. The results (Fig. 8) show that the neural
network model performed extremely well and therefore
it was able to produce reasonably accurate predictions.

6. Interpreting variable importance

Neural network modelling can also assess the impor-
tance of each of the input variables by using the network
weights. With this in mind, the method proposed by Gar-
son (1991) for partitioning the connection weights was
used. The technique involves partitioning the hidden–
output connection weights of each neuron into compo-
nents associated with each input neuron (Goh, 1995).
The results of the calculations are shown in Fig. 9 and
Table 4. The results shown in Fig. 9 are displayed as
columns representing the relative importance of the vari-
ous input variables while Table 4 displays the ranking
of these variables.
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Fig. 8. Example of the results for the testing for ozone (ppb) together
with their actual values in the three trained models.

It can be seen for the first model that NO, SO2, relative
humidity, NMHC and NO2 make major contributions.
The appearance of NO, NMHC and NO2 is expected
since they have been identified by many investigators as
being key chemical precursors that produce ozone in the
presence of sunlight. Moreover, controlled studies using
environmental smog chambers have shown that ozone
formation is dependent on the concentrations of its pre-
cursors as well as light intensity. Of considerable interest

Fig. 9. The relative importance of the various input variables in the overall prediction of ozone to the ANN models.

is the fact that solar energy appears to have a lower con-
tribution than expected. This was found with all three
models.

The significance of SO2 on ozone concentration was
also highlighted. The results of model I indicate the
dependence of ozone on SO2. However, this dependency
decreased when focusing only on the results from day-
light hours (models II and III). It should be noted that
the importance of SO2 and its share in the variations of
ozone levels was expected because recent studies
showed that they were physically and chemically
coupled. It has been reported that in the presence of
H2O2 and wet aerosols, SO2 does participate in the
chemistry of ozone. However, during day hours, SO2

becomes a non-reactive pollutant and it participates very
little in the chemistry of urban ozone (Ruiz-Suárez et al.,
1995). Therefore, many studies now are directed towards
modelling the impact of reduced SO2 emissions on pho-
tochemical ozone production.

Looking at models I and II (Table 4), it can also be
seen that the meteorological parameters with a high cor-
relation to ozone concentrations include relative
humidity and temperature. The relationship between
ozone concentration and temperature can be explained
on theoretical grounds. Temperature plays an enhancing
role in the propagation rate of the radical chain, and has
an opposite effect on the termination rate of these chains
(Ruiz-Suárez et al., 1995). Relative humidity is also
important because this variable may play a role in the
overall reactivity of the system, either by affecting chain
termination reactions or the production of wet aerosols
which in turn affect the ultraviolet actinic flux. Looking
at model III, it can be seen that temperature is one of
the most important meteorological factors influencing
the variation in ozone levels. The results of model III
offer insights into the dependence of ozone on wind
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Table 4
Percentage contribution of the various input variables to the ANN models

Factor Model I Rank Model II Rank Model III Rank

NO (ppb) 10.20 1 11.67 1 8.06 8
SO2 (ppb) 10.10 2 7.9 6 7.2 12
NMHC (ppm) 9.10 4 8.23 3 9.66 1
NO2 (ppb) 8.70 5 8.12 4 9.44 2
CH4 (ppm) 8.20 6 7.66 7 8.73 5
CO2 (ppm) 7.50 8 6.24 11 8.76 4
CO (ppm) 5.70 10 6.25 10 7.54 10
Dust (µg/m3) 7.40 9 7.21 9 0 13
Relative humidity (%) 9.40 3 9.45 2 7.77 9
Temperature (°C) 7.90 7 8.04 5 8.84 3
Solar energy (kW/m2) 5.69 11 7.25 8 7.47 11
Wind speed 5.66 12 6.16 12 8.32 6
Wind direction (degree) 4.50 13 5.77 13 8.24 7
Total 100 100 100
Ozone variation due to meteorology 33.15 36.69 40.64
Ozone variation due to the other pollutants 66.85 63.313 59.36

speed and wind direction. However, wind speed and
wind direction are less sensitive predictors based on the
results of models I and II.

Of considerable interest is the fact that CO2 is a major
variable for model III. This is not the case for models I
and II. CO and dust are not important variables for ozone
forecasting in any of the three models. For CO, this is
expected because it participates very little in the chemis-
try of urban ozone (Ruiz-Suárez et al., 1995). It has been
reported in previous studies that CO is the least reactive
pollutant measured. It may be transported in the atmos-
phere for long distances without reacting with other
species. CO can therefore be used for indirect quantifi-
cation of wind drift.

The results shown in Table 4 also indicate ozone con-
centration variability as a result of meteorological con-
ditions and other pollutants. For model I, the meteoro-
logical conditions describe 33.15% of the variation in
ozone concentration. The remaining variability could
then be attributed to chemical data. However, in the
second model 36.69% of the variation in ozone levels
was explained by the influence of meteorological con-
ditions, while for model III, the contribution of meteoro-
logical conditions was even higher, at 40.64%.

7. Conclusion

A neural network approach was used to explore the
complex relationship between ozone and other variables
based on ambient air monitoring measurements. The
results offer an insight into the dependence of ozone
concentrations on other primary pollutant concentrations
and meteorological conditions.

It was found that the models’ predictions and the real
observations were consistent. The relative importance of

the various input variables was also investigated. The
results indicated the dependence of ozone concentrations
on the other pollutants and on meteorological conditions.
The contribution of meteorology on the ozone concen-
tration variations was found to fall within the range
33.15–40.64%. The remaining variability was attributed
to chemical pollutants. It was determined that relative
humidity is the meteorological parameter with the high-
est contribution to ozone variations. It was also found
that nitrogen oxide, sulfur dioxide, relative humidity,
non-methane hydrocarbon and nitrogen dioxide have the
most effect on the predicted ozone concentrations. In
addition, temperature played an important role while
solar energy played a less important role than expected.

We can conclude that the neural network can be used
in modelling and predicting the ground level concen-
trations of ozone. Clearly, this study has indicated the
potential of the neural network approach for capturing
the non-linear interactions between ozone and other fac-
tors and for the identification of the relative importance
of these factors. Neural network modelling, therefore,
provides a simple means of modelling and analysis of
air pollutants and could be used in conjunction with
other methods.

Finally, it is important to note that the rate of forma-
tion of ozone is a function of the nature of the hydro-
carbon molecule. Hydrocarbons differ in their rate of
interaction with the NO2 photolytic cycle. Therefore, the
training and testing sets used for the independent input
parameters could, in principle, be substantially improved
by specific hydrocarbon measurements. It would also be
particularly interesting to observe the ranking of the vari-
ables and to determine whether the ranking of the vari-
ables remains constant when the selected hydrocarbon
species are included as independent input parameters for
the neural network approach. Therefore, it is rec-
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ommended that the effect of selected hydrocarbon spec-
ies should be examined in future studies. Research
should also be directed towards elaborating on the effect
of other meteorological data when they are added as
input to the model. For example, what is the dependence
of ozone concentration when the inversion layer is used
as an input to the model?
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