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Abstract

Typical data in a microbiome study consist of the operational taxonomic unit (OTU) counts

that have the characteristic of excess zeros, which are often ignored by investigators. In this

paper, we compare the performance of different competing methods to model data with

zero inflated features through extensive simulations and application to a microbiome study.

These methods include standard parametric and non-parametric models, hurdle models,

and zero inflated models. We examine varying degrees of zero inflation, with or without dis-

persion in the count component, as well as different magnitude and direction of the covari-

ate effect on structural zeros and the count components. We focus on the assessment of

type I error, power to detect the overall covariate effect, measures of model fit, and bias and

effectiveness of parameter estimations. We also evaluate the abilities of model selection

strategies using Akaike information criterion (AIC) or Vuong test to identify the correct

model. The simulation studies show that hurdle and zero inflated models have well con-

trolled type I errors, higher power, better goodness of fit measures, and are more accurate

and efficient in the parameter estimation. Besides that, the hurdle models have similar

goodness of fit and parameter estimation for the count component as their corresponding

zero inflated models. However, the estimation and interpretation of the parameters for the

zero components differs, and hurdle models are more stable when structural zeros are

absent. We then discuss the model selection strategy for zero inflated data and implement it

in a gut microbiome study of > 400 independent subjects.

Introduction

The human microbiome plays an important role in human disease and health. The advent of

next-generation sequencing (NGS) technology enables researchers to quantify the organisms

present in the community using direct DNA sequencing without the need for laborious cultiva-

tion [1, 2]. The process starts with the collection of human associated samples and successful

extraction of the bacterial DNA. The hypervariable regions of bacterial 16S rRNA gene are
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then PCR-amplified and sequenced. The processed sequences are clustered into operational

taxonomic units (OTUs) at a certain similarity level in a taxonomic independent way. Typical

data in a microbiome study consist of the OTU counts that have the complexity of non-nega-

tive, over-dispersed, and having a large number of zeros. The zero inflation of the microbiota

abundance is due to the fact that the OTUs are subject dependent, i.e. their composition is

unique in each subject. As a result, only a few major bacterial taxa of the microbiota are shared

across samples and the rest are detected only in a small percentage of the samples. The zero

counts in the sample could be due to either simply being absent (structural zeros), or present

with low frequency but not observed because of sampling variation (sampling zeros).

It is often of interest to determine whether the abundance of one or more OTUs is associ-

ated with some environmental or genetic factors. For example, several studies have revealed

the relationships between microbial composition and obesity [3, 4] and type 2 diabetes [5, 6].

So far there is no standard statistical method to evaluate such relationships. Most of the current

methods are based on classical linear regression or logistic regression models [7–12]. To adjust

for variation in the number of total sequence reads across samples, relative abundance is usu-

ally used as the outcomes in the model. It is well known that classical linear models using either

non-transformed or logarithmic transformed counts are inappropriate for zero inflated count

data due to the violation of normality and constant variance assumptions [13]. The normality

and homogeneity of variance assumptions are not relevant for relative abundance either. For

example, relative abundances are bounded by zero and one and the variance is often mean

dependent. Furthermore, no data transformation can satisfy the assumptions if excess zeros are

present. Logistic regression treating all the zero counts as non-events is commonly used to han-

dle zero inflated OTU count data. However it will result in the loss of valuable information and

lower power to detect a covariate effect. Although non-parametric models such as Wilcoxon

rank sum (WRS) test are used as alternative ways to avoid the normality assumption [14–16],

they have the limitation of being unable to incorporate covariates, as well as the potential loss

of power because of the large number of ties caused by many zeros [17]. Generalized linear

models such as Poisson or negative binomial (NB) model can be applied on sequence counts

and the logarithm of total sequence reads can be set as an offset. However, they cannot account

for the excess zeros either, because a basic requirement of these models is that the proportion

of zeros must be necessarily linked to the distribution of the positive values [18].

One way to deal with many zeros is to use a zero inflated (ZI) model [19], which is essen-

tially a mixture of a Poisson or NB model with a point mass at zero to allow for the inclusion of

structural zeros. Another approach is to use a hurdle model [20], also called a two-part model,

with the first part being a binomial probability model to determine whether a zero or non-zero

outcome occurs; and the second being count data truncated-at-zero to analyze the positive

counts. Unlike ZI models, hurdle models do not make the distinction between structural and

sampling zeros and handle them identically. Both hurdle and ZI models have been used in a

variety of areas such as psychology [13], ecology [18, 21], manufacturing [19], and public

health [22–24]. However, they are rarely used in human microbiome studies.

It is desired to have a comprehensive comparison of different model performance for zero

inflated data, focusing on the pattern of superiority using hurdle/ZI models and limitations of

one part models. Some simulation studies in the literature compared different model perfor-

mance for data with excess zeros [25–27]. However, the comparisons in these studies are lim-

ited. For example, Min and Agresti [25] focused on comparing the parameter estimations of

Poisson hurdle (PH) with zero inflated Poisson (ZIP); Miller [26] compared the goodness of fit

for Poisson, PH and ZIP; and Desjardins [27] compared the model performance of zero
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inflated negative binomial (ZINB) with negative binomial hurdle (NBH). In addition, although

Desjardins [27] evaluated type I error rate separately for the structural zero and count compo-

nent, no evaluations have been conducted on the overall Type I error rate and statistical power

in these studies.

In this paper, we conduct a comprehensive comparison of the performance of different pos-

sible competing models through simulations for zero inflated count data from different per-

spectives such as type I error, power of the test, the precision and efficiency of parameter

estimations of the covariate effect on both the counts and the (structural) zeros, the goodness

of fit, and the relative bias of prediction for zeros. Two sets of simulations are conducted under

the ZIP and ZINB distributions. The model fit is based on a regression framework, with one

binary covariate in the model for illustration. We first briefly outline the existing approaches to

model count data with excess zeros (Section Summary of competing methods used for model

comparison), we then discuss how to select the most appropriate models for a specific study

(Section Model selection). The simulation settings are introduced in Section Simulation set-

tings. Results of model fitting are compared for type I error and the power to detect a signifi-

cant effect (Section Hypothesis testing of the covariate effect). The performances of parametric

approaches on the accuracy, efficiency and goodness of fit of statistical inference are also

inspected (Section Estimation of the covariate effects and AIC values). Additionally, we evalu-

ate the abilities of model selection strategies using Akaike information criterion (AIC) or

Vuong test [28] to identify the correct model (Section Evaluation of model selection proce-

dure). We then apply different methods to a gut microbiota study and discuss the selection of

appropriate models for three bacteria abundance data at the genus level of phylogenetic bacte-

rial classification (Section Application to human microbiome study).

Methodology

Summary of competing methods used for model comparison

We classify the possible competing methods into three categories according to how the excess

zeros are treated: one-part, zero inflated and hurdle (or two-part) models.

One part models. The one-part models refer to the models that ignore the existence of the

excess zeros and model the data using either standard distributions or based on ranks. They

include Poisson model, NB model, ordinary least squares on logarithmic transformed data

(LOLS), and the non-parametric WRS test.

Both Poisson and NB model are classical generalized linear models (GLM) for count data,

with NB addressing over-dispersion in the data. In practice, LOLS is also commonly used for

abundance count data in order to transform it to be more normally distributed [2, 29]. To deal

with zero observations, a constant a should be first added to the original data before taking the

log transformation. In this paper, we set a = 1. When normality assumption is still violated

after transformation, the Wilcoxon rank-based approaches are usually recommended.

Zero inflated models. The zero inflated models include ZIP and ZINB and assume that

for each observation, there are two possible data generation processes with the result of a Ber-

noulli trial determining which process is used. The first process generates only zero counts

(structural zeros, denoted as {0} hereafter.), while the second generates counts from either a

Poisson or NB model. If the probability of structural zeros is denoted as f, the probability func-

tion of Y can be written compactly as: f(y) = fd(y) + (1 − f)g(y), where d(y) = 1 −min(y,1) and

g(y) is a regular count data probability function such as the Poisson or the NB probability func-

tion. To examine the effects of risk factors on the response variable, Lambert [19] proposed the

ZIP regression model to allow both f and the Poisson mean λ to depend on some covariates
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through canonical link GLMs as logðliÞ ¼ γ
0
þ X

T

i
γ and logitðfiÞ ¼ logðfi=ð1� fiÞÞ ¼

b0 þW
T
i
β for the ith subject, where Xi andWi denote the vector of covariates for λi and fi,

respectively. Similarly, the ZINB regression model allows both f and the mean of the count

component to depend on some covariates through a binomial logistic regression and a NB log

linear regression, respectively.

Notice that a covariate can have effects on both structural zeros and the count component.

A covariate is said to have “consonant effects” if higher values are associated with a lower pro-

portion of structural zeros and higher count component means, or vice versa, i.e., if its corre-

sponding regression coefficients β and γ have opposite signs [17]. It is “consonant” because it

works in the same direction on the two ZI parts in increasing or decreasing the outcome overall

mean. Covariates with this feature are commonly observed in health studies. When the signs of

β and γ are the same, the covariate is said to have “dissonant effects” as it works in an opposite

direction on the two ZI parts in affecting the overall mean. An example of this case is an antibi-

otic treatment that may be effective in reducing the risk of carrying some specific bacteria, but

may result in the growth of these bacteria once they survive due to antibiotic resistance. If a

covariate only has an effect on the count component, we follow Lachenbruch0s terminology

[17] and say that it has “neutral effects” on the outcome.

Hurdle models. The hurdle models refer to those that divide the modeling stage into two

parts to correct for excess zeros. The first part determines whether the response outcome is

positive via a binary model for the dichotomous event of having zero or positive values and

logistic regression is usually used to allow for the investigation of the effects (denoted as ~β) of

covariatesW on the probability of an observation being zero (denoted as π0). Then condition-

ing on it being positive, the second stage models the level of the outcome which is a truncated-

at-zero count outcome. Typical choices for the truncated-at-zero count model are truncated

Poisson for PH model [20], or truncated negative binomial model for NBH model. Log-linear

models are then used to investigate the effects (denoted as ~γ) of covariates X on the mean

(denoted as λ) of the un-truncated Poisson or NB distribution. In practice, the 2P-LOLS model

[30] which assumes that the positive data follow a log-normal distribution, is also used to

model the count data especially when the data are highly skewed [31, 32]. If no parametric

assumption is made on the distribution of the positive counts, the non-parametric two-part

WRS test (2P-WRS) can be used [33, 34].

Notice that if f is constant across the samples, the PH (NBH) can be considered as a re-

parameterization of ZIP (ZINB) although in general this is not the case. In fact, when covari-

ates are included in the regression model of the zero part, their effects (~β) on π0 in a hurdle

model and effects (β) on f in a ZI model are not equivalent as they refer to entirely different

parameters (i.e., ~β refer to the covariate effects on the log-odds of a zero response, while β refer

to the covariate effects on the log-odds of structural zeros.), However, in our simulation set-

tings with a single binary predictor for both the count and zero components, there is an equiva-

lence relationship between ~β in PH and β in ZIP through

exp ð~b0Þ ¼
ð1þ exp ðb0ÞÞ

½1� exp ð� exp ðg0ÞÞ�
� 1

exp ð ~b0 þ
~b1Þ ¼

½1þ exp ðb0 þ b1Þ�

½1� exp ð� exp ðg0 þ g1ÞÞ�
� 1:

ð1Þ
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For ~β in NBH and β in ZINB, the equivalence relationship is through

exp ð~b0Þ ¼
ð1þ exp ðb0ÞÞ

1�
1

1þ k exp ðg0Þ

� �k�1
" #� 1

exp ð~b0 þ
~b1Þ ¼

ð1þ exp ðb0 þ b1ÞÞ

1�
1

1þ k exp ðg0 þ g1Þ

� �k�1
" #� 1;

ð2Þ

where κ is the over-dispersion parameter for the count component in ZINB model. The count

part of a PH (NBH) has the same parameters as the count component of the corresponding

ZIP (ZINB) model.

Model selection

A critical question in data analysis is how to choose the appropriate models for a specific study.

Model selection should be based on quantitative assessment, qualitative information (e.g. clini-

cal relevance of parameter estimates), and the study purpose. Several criteria can be used to

compare and select among considered models.

To see whether the dispersion parameter is necessary, likelihood ratio and/or score tests can

be used to compare nested models: Poisson vs. NB; ZIP vs. ZINB; and PH vs. NBH. To test

whether excess zeros exist in the data, we can compare ZIP (or PH) vs. Poisson, ZINB (or

NBH) vs. NB. Notice that likelihood ratio or score tests are not applicable since the models

compared are not nested. One common way to test non-nested models is to use Vuong test

[28]. The information criterion such as AIC or Bayesian information criterion (BIC) provides

another way to compare both non-nested and nested models. The AIC is computed using the

formula AIC = −2log(L) + 2q, where L is the likelihood and q is the number of parameters in

the model. In general, the best fitting model has the lowest AIC value.

It should be noted that for LOLS and 2P-LOLS, continuous distributions are being fitted to

discrete data, but the log-likelihood of discrete and continuous distributions are not compara-

ble. To compare their AICs with the models based on discrete distributions, we discretized the

Gaussian distribution for AIC calculations [29]. For example, the log-likelihood of LOLS is cal-

culated using:

lðg0; g; s
2; yÞ

¼
X

N

i¼1

log F
logðyi þ aþ 0:5Þ � ĝ0 � XT

i ĝ

ŝ

� �

� F
logðyi þ a� 0:5Þ � ĝ0 � XT

i ĝ

ŝ

� �� �

;

whereF is the cumulative distribution function of the standard normal distribution. The calcu-

lation of AIC for 2P-LOLS can be done in a similar way.

Simulation settings

The simulation studies focus on the scenarios that structural zeros are present in the data, and

there is only one binary covariate in both the structural zero part and the count component.

The binary covariate xi is defined as an indicator of the exposed group and the probability of

an individual coming from the exposed group is set as 50%. 1000 subjects are generated in each

simulation.

Data are simulated under ZIP and ZINB distribution. To generate the simulation data, for

each subject i, first we simulate Zi from a binomial distribution where logit(p(Zi = 1)) = logit

Model Assessment and Selection for Zero-Inflated Microbiome Data
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(fi) = β0 + β1xi. Then, if Zi = 1, we set the outcome Yi to be zero; and if Zi = 0, we simulate Yi

from either a Poisson distribution with Yi * Poisson(exp(γ0 + γ1xi)) for ZIP distributed data

or a NB distribution with Yi * NB(exp(γ0 + γ1xi),κ) for ZINB distributed data.

We consider a factorial design in which the factors are the proportion of zero inflation in

the unexposed group, the exposure effect on the count component, as well as on the structural

zeros (Fig 1).

We generate 1,000 datasets for each simulation scenario and fit the data using different

methods such as LOLS, Poisson, NB, ZIP, ZINB, PH, NBH, and 2P-LOLS assuming that the

exposed/unexposed group indicator X is the only predictor in the models. For the hurdle/ ZI

models, X is the predictor for both the probability of zeros/structural zeros and the count com-

ponent. For comparison, we also apply the non-parametric WRS, 2P-WRS, OLS and logistic

regression in the hypothesis testing in the significance of the exposure effect. The flowchart of

the simulation studies is shown in Fig 2.

Results

We compare the model fitting results from different perspectives. Simulations show that, in

many situations, hurdle count models (PH and NBH) produce identical fitting results as their

corresponding ZI models. If the results of PH is the same as ZIP, then PH/ZIP is used to pres-

ent the results for both PH and ZIP. Similarly, NBH/ZINB is used to present the results of

NBH and ZINB when their results are the same.

Hypothesis testing of the covariate effect

To test the significance of covariate effect, we perform the hypothesis test onH0: γ1 = 0 vs. HA:

γ1 6¼ 0 using Wald test statistics for the one part parametric models; for the hurdle/ZI models,

Fig 1. The simulation scenario. γ0 = 1 for all simulation scenarios. The over-dispersion parameter κ is set to be 1 for all ZINB simulation scenarios. β0
reflects the log odds of zero inflation in the unexposed group, and is equal to {−1.386, 0, 1.386} for the {20%, 50%, 80%} of zero inflation in this group. β1
reflects the change in log odds of zero inflation when changing from unexposed to exposed group. The corresponding values of β1 of {−5%, 0, +5%} changing
in the zero inflation are {−0.349, 0, 0.287}, {0.201, 0, 0.201}, and {−0.287, 0, 0.349} for 20%, 50% and 80% of the zero inflations in the unexposed group,
repsectively.

doi:10.1371/journal.pone.0129606.g001
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Fig 2. The flowchart for simulation studies.

doi:10.1371/journal.pone.0129606.g002
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likelihood ratio test statistics is used to test H0: β1 = 0 (~b1 ¼ 0 for hurdle models); γ1 = 0 vs. HA:

not both are equal to 0. For the WRS test, the significance test for the covariate effect is just

equivalent to testing whether there is a significant location shift between the exposed and unex-

posed groups. For the 2P-WRS method, we use the test statistic χ2 = Z2 + U2 [33], where Z is

the test statistic of the logistic regression for the first part of the model and U being the rank-

sum statistic based on the non-zero data. This test statistic follows a χ2 distribution with two

degrees of freedom.

The overall type I error rates. The type I error rates are estimated using the proportion of

data sets for which the null hypothesis was falsely rejected, i.e., the percentages of detecting sig-

nificant overall covariate effect for 10,000 replications when the true value of β1 and γ1 are all

equal to zero. Table 1 shows the estimated type I error rates at significance levels α = {0.05,0.1}

using different methods for the simulated data sets. Results show that Poisson regression has a

substantially inflated type I error for both ZIP and ZINB distributed data, and so does PH/ZIP

for ZINB distributed data. On the other hand, NB method yields fewer false positive than

would be expected by chance, and the deflation is more obvious when the proportion of struc-

tural zeros is 50% or more. The type I error rates of other methods are appropriate.

Power of test. Fig 3 and Fig 4 show the power of test when applying different analysis

methods to the simulated ZIP and ZINB distributed data, respectively. Methods having the

potential of large inflated type I errors (e.g., Poisson model or PH/ZIP model for ZINB distrib-

uted data) are not included in these comparisons. These plots show that the hurdle or ZI mod-

els perform consistently well in all scenarios examined, while the behaviors of one part models

vary across different methods and simulation scenarios. In the consonant effect case, one part

models such as LOLS and NB tend to do as well as ZI or hurdle models with WRS performing

worse when the proportion of zeros is large. However, in dissonant effect cases, one part mod-

els fail to have good power to detect the significance of the overall covariate effect. This is con-

sistent with the observation by Lachenbruch [17] for the continuous non-negative responses

with excess zeros. In the neutral effect case, when the proportion of structural zeros is 50% or

more, the one-part models also have lower power than the two part models.

Table 1. The type I error rate estimations.

ZIP distributed data ZINB distributed data

φc 20% 50% 80% 20% 50%

α .05 .10 .05 .10 .05 .10 .05 .10 .05 .10

LOLS .052 .101 .051 .105 .054 .104 .052 .101 .050 .099

Poisson .117 .193 .205 .287 .273 .361 .345 .422 .394 .471

NB .045 .090 .027 .060 .028 .059 .040 .085 .031 .069

WRS .050 .102 .052 .105 .054 .106 .053 .103 .050 .099

2P-LOLS .050 .103 .053 .110 .060 .113 .054 .104 .051 .100

PH/ZIP .053 .104 .053 .104 .054 .104 .219 .306 .224 .309

NBH/ZINB .051 .103 .049 .098 .051 .100 .051 .098 .057 .112

2P-WRS .047 .099 .047 .101 .044 .094 .053 .103 .049 .098

Estimates are based on 10,000 replicated samples. φc is the probability of y coming from structural zeros

for the unexposed group. α is the significant level of test. A bold value represents inflated type I error.

doi:10.1371/journal.pone.0129606.t001
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Fig 3. The power of test for ZIP simulated data. The X axis is the value of the covariate effect on the count data γ1 and the Y axis is the power of test when
the level of significance is 0.05. Three different cases of covariate effect, i.e., the consonant (φt = φc − 5%), neutral (φt = φc) and dissonant (φt = φc + 5%)
effect, are presented in panels (A), (B) and (C); (D), (E) and (F); and (G), (H) and (I), respectively. Each column reflects different proportion of zero inflation in
the unexposed group: 20% in (A), (D) and (G); 50% in (B), (E) and (H); and 80% in (C), (F) and (I) from the first to the third column.

doi:10.1371/journal.pone.0129606.g003

Model Assessment and Selection for Zero-Inflated Microbiome Data

PLOS ONE | DOI:10.1371/journal.pone.0129606 July 6, 2015 9 / 30



Fig 4. The power of test for ZINB simulated data. The X axis is the value of the covariate effect on the count data γ1 and the Y axis is the power of test
when the level of significance is 0.05. Three different cases of covariate effect, i.e., the consonant (φt = φc − 5%), neutral (φt = φc) and dissonant (φt = φc

+ 5%) effect, are presented in panels (A) and (B); (C) and (D); and (E) and (F), respectively. Each column reflects different proportion of zero inflation in the
unexposed group: 20% in (A), (C) and (E); and 50% in (B), (D) and (F) from the left to the right column, respectively.

doi:10.1371/journal.pone.0129606.g004
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Estimation of the covariate effects

Covariate effect γ1. We first examine the covariate effect estimates and their SEs on the

log scale of count data levels γ1. Fig 5 and Fig 6 are the box plots of the estimation results of γ1
and their standard errors (SEs) for ZIP and ZINB distributed data, respectively, when the true

proportion of inflated zeros for unexposed group is 20%and the true value of γ1 is equal to 0.4.

Notice that for every method investigated, the standard deviation (SD) of the estimations for

ZINB distributed data are larger than those for ZIP distributed data.

For both ZIP and ZINB distributed data, the pattern of estimation bias of one part models

varies across different scenarios. For example, Poisson and NB have unbiased estimation in

neutral effect case, but over-estimate in consonant effect and under-estimate in the dissonant

effect scenario. LOLS under-estimates in all scenarios, but the absolute value of bias increases

as the scenario changes from consonant to neutral, and then to dissonant effect case. The esti-

mation performances of one part models for higher degree of zero inflation show similar pat-

terns (S1 Fig, S2 Fig, and S3 Fig).

On the other hand, the performance of the hurdle and ZI models are consistent across dif-

ferent covariate effect scenarios and different degrees of zero inflation. For ZIP distributed

data, both PH/ZIP and ZINB/NBH give unbiased estimation of γ1. For ZINB distributed data,

only NBH/ZINB give unbiased estimation, while PH/ZIP show under-estimation. 2P-LOLS

shows improvement than LOLS, but still under-estimates the parameter especially for ZINB

distributed data.

We also compare the SE estimation with the sample SD of the estimations. The estimation

for SE is significantly deflated for the Poisson method. Deflation in SE can also be seen in PH/

ZIP method for ZINB distributed data. On the other hand, NB over-estimates SE, although to a

lesser degree. For the ZIP distributed data with 80% zero inflation, NB has some outliers in the

estimation of SE, showing unstableness of this method for a high-degree of zero inflation. The

SE estimations for other methods are similar to the sample SDs of the estimates. The conse-

quence of the incorrect SE estimation is wrong calculation of p-value and the misleading con-

clusion about the significance effect test. For example, under-estimated SE can result in

enlarged Z value and consequently smaller p-value. On the other hand, over-estimation of SE

can yield incorrectly larger p-value.

Covariate effect on the probability of (structural) zeros. Fig 7 shows the boxplots of esti-

mations and their SEs for β1 using ZI models and for ~b1 using hurdle models when ZINB simu-

lated data has 20% zero inflation in the unexposed group and γ1 = 0.4. The true values of ~b1 are

derived from the parameter estimations of the ZI model using Equation 1 and 2. Results for

other simulation settings are shown in S4 Fig, S5 Fig, S6 Fig, S7 Fig. Because the logistic regres-

sion part is the same, the estimations for ~b1 are identical across different hurdle models. Simi-

larly to the case of γ1, ZINB has unbiased estimation of β1 for both ZIP and ZINB distributed

data, while ZIP is only unbiased for ZIP distributed data. Notice that when the proportion of

zero inflation is low (e.g., fc = 20%), ZINB may have unstable results with some large SE. The

estimations are more stable when the zero inflation proportion increases to 50% or when the

sample size is increased (results not given). On the contrary, hurdle models give unbiased and

stable estimates for ~b1 in all simulation scenarios.

AIC values

Table 2 shows the mean of the AICs from simulations under ZINB distribution when fc =

20%. Results for other settings of fc and for ZIP distributed data are shown in S1 Table, S2

Table, S3 Table and S4 Table. Not surprisingly, the true underlying model performs the best
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Fig 5. The estimate of γ1 and its standard error for data simulated under ZIP with ϕc = 20%. The figure displays box-plots of estimates and their
standard errors for γ1 from 1000 replications in (A) and (B); (C) and (D); and (E) and (F) for the consonant (φt = φc − 5%), neutral (φt = φc) and dissonant (φt =
φc + 5%) effect case, respectively. For each box of the boxplots, the center line represents the median, the bottom line represents the 25th percentiles and
the top line represents the 75th percentiles. The whiskers of the boxplots show 1.5 interquartile range (IQR) below the 25th percentiles and 1.5 IQR above the
75th percentiles, and outliers are represented by small circles. The horizontal line in (A), (C) and (E) represents the true value of γ1 (= 0.4) and the bias,
standard deviation (SD), and root mean square error (RMSE) of the estimations of γ1 are shown above its box-plot for each method. The mean and standard
deviation (SD) of the standard error (SE) estimations are shown above the box-plot for each method in panels (B), (D) and (F).

doi:10.1371/journal.pone.0129606.g005
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with the smallest AIC values for each simulation scenario. For ZIP distributed data, the AICs

of NBH/ZINB are very close to those of PH/ZIP. However, for ZINB distributed data, PH/ZIP

has much larger AICs than the true model. Except in the case of fitting PH/ZIP to ZINB dis-

tributed data, hurdle/ZI models in general have smaller AICs than one-part models. Among all

the one-part models, NB has the smallest AIC values and for ZINB distributed data with rela-

tively small proportion (e.g., 20%) of excess zeros, it shows better performance than 2P-LOLS.

Evaluation of model selection procedure

We examine the ability to select the correct model based on AICs. We also evaluate the perfor-

mance of Vuong test in the testing of ZINB vs. NB model for the ZINB distributed data. We

illustrate the empirical probability of selecting different models using AIC criterion in Fig 8

and Fig 9. Notice that in these simulation studies, because of the binary covariate setting, a ZI

model and its corresponding hurdle model have identical AIC values. However, AIC values

can be different if continuous covariates are involved [27].

The AIC criterion never selects LOLS nor Poisson models in either ZIP or ZINB distributed

data, therefore only NB, 2P-LOLS, PH/ZIP, and NBH/ZINB models are compared. For ZIP

distributed data, the plots show that the empirical probabilities of identifying the correct model

(i.e., PH/ZIP) are similar across different simulation settings and are around 90%. At about

3–10% of the time, the AIC criterion favors NBH/ZINB model. When γ1 is small (e.g.,< 0.2)

and the degree of zero inflation is relatively large, 2P-LOLS is chosen at about 3–15% of the

time as the best model. However, if γ1 is sufficiently large, the chance of choosing the 2P-LOLS

becomes rare. The AIC criterion never identifies the ZIP distributed data as NB distributed.

For ZINB distributed data, 85- 99% of the time, the AIC model selection procedure will identify

the correct distribution (i.e., NBH/ZINB). The probability of the correct identification has

smallest value at γ1 = 0 when fc = 20%, but increases with the increasing of γ1 value and the

zero inflation degree. When fc = 20%, the AIC performance has some slight discrepancies

among different covariate effect scenarios, with the dissonant effect case having the largest, and

the consonant effect case having the smallest correct model identification percentage. The

most common mis-specified model for the ZINB distributed data is NB (3–15% of the time)

when fc = 20%, and 2P-LOLS (1–7% of the time) when fc = 50%. PH/ZIP is never identified

as the best model for ZINB distributed data.

Examination of the Vuong test of ZINB vs. NB for the ZINB distributed data when fc =

20% shows that Vuong test has lower power than AIC criterion in the selection of correct

model (results not given in plots or tables). The result shows that about 60% of the time, the

Vuong test favors ZINB over NB when γ1 = 0. Similar to the AIC criterion, the percentage of

the correct model identification increases with the increasing of γ1 value. When fc = 50%,

more than 96% of the time the Vuong test will select the correct model.

Fig 6. The estimate of γ1 and its standard error for data simulated under ZINB with ϕc = 20%. The figure displays box-plots of estimates and their
standard errors for γ1 from 1000 replications in (A) and (B); (C) and (D); and (E) and (F) for the consonant (φt = φc − 5%), neutral (φt = φc) and dissonant (φt =
φc + 5%) effect case, respectively. For each box of the boxplots, the center line represents the median, the bottom line represents the 25th percentiles and
the top line represents the 75th percentiles. The whiskers of the boxplots show 1.5 interquartile range (IQR) below the 25th percentiles and 1.5 IQR above the
75th percentiles, and outliers are represented by small circles. The horizontal line in (A), (C) and (E) represents the true value of γ1 (= 0.4) and the bias,
standard deviation (SD), and root mean square error (RMSE) of the estimations of γ1 are shown above its box-plot for each method. The mean and standard
deviation (SD) of the standard error (SE) estimations are shown above the box-plot for each method in panels (B), (D) and (F).

doi:10.1371/journal.pone.0129606.g006
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Fig 7. The estimate of β1 (or
~
b

1
) and its standard error for data simulated under ZINB when φc = 20% and γ1 = 0.4. The figure displays box-plots of

estimates and their standard errors for the covariate effect on the log-odds of structural zeros for ZIP and ZINBmethod and on the log-odds of zeros for
hurdle models from 1000 replications when γ1 = 0.4. For each box of the boxplots, the center line represents the median, the bottom line represents the 25th
percentiles and the top line represents the 75th percentiles. The whiskers of the boxplots show 1.5 interquartile range (IQR) below the 25th percentiles and
1.5 IQR above the 75th percentiles, and outliers are represented by small circles. Panels (A1), (C1) and (E1) show the estimates of β1 for consonant, neutral
and dissonant effect case, respectively. The horizontal line in these panels represents the true value of β1, which is −0.349 in (A1), 0 in (C1) and 0.287 in
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Application to human microbiome study

The specific objective of the Genetic Environmental Microbial (GEM) project is to define the

risk factors that lead to the onset of Crohn0s disease through the study of individuals before

they develop the disease. Healthy first degree relatives of people with Crohn0s disease, predomi-

nantly siblings and offspring, are recruited. Each subject provides a stool sample and bacterial

DNA is extracted. The V4 hypervariable region of bacterial 16S rRNA gene are sequenced in

paired-end modules (2 × 150 bp) on Illumina MiSeq platform. The resulting paired reads are

assembled using paired-end assembler for Illumina sequences PANDAseq v2.7 [35] to generate

an amplicon size of 253 base pairs. Assembled reads are demultiplexed and analyzed using

Quantitative Insights into Microbial Ecology (QIIME) software v1.8 [36]. For quality filtering,

the default parameters of QIIME are maintained. Chimeric sequences are identified and

removed using usearch61 [37]. To identify OTUs from the non-chimeric sequences we use a

closed reference-based picking approach using UCLUST software against Greengenes database

13_8 of bacterial 16S rRNA sequences. The abundance of a specific bacterial genus can be

obtained by aggregating all the counts of assigned sequences to this genus.

In this paper, we choose three organisms to represent the range of overall percentage of

zeros, in which Anaerotruncus has a small proportion of zero counts (18%), Dehalobacterium

is intermediate (50%) and Campylobacter is high (77%). Histograms for the abundance of

these bacteria (S8 Fig) all exhibit right skewed and over-dispersion. There are 204 males and

262 females, and it is of interest to determine whether there is a significant sex difference in the

abundance of each of these bacteria. A two sample t-test shows that the mean age of males

(19.2 years) is significantly younger than that of females (21.2 years, p = 0.006). Therefore, age

(E1). Panels (A2), (C2) and (E2) show the estimates of
~
b

1
for consonant, neutral and dissonant effect case, respectively. The horizontal line in these panels

represents the true value of
~
b

1
, which is −0.420 in (A2), −0.240 in (C2) and −0.070 in (E2). The bias, standard deviation (SD), and root mean square error

(RMSE) of the estimates are shown above the box-plot for each method. Panel (B1), (D1) and (F1) show the SEs of the estimates for β1, and panel (B2), (D2)

and (F2) show the SEs of the estimates for
~
b

1
. The mean and standard deviation (SD) of the standard error (SE) estimations are shown above the box-plot for

each method.

doi:10.1371/journal.pone.0129606.g007

Table 2. The AIC’s of different methods for data simulated under ZINB distribution with ϕc = 20%.

parameters One part models Hurdle/ZI models

φt γ1 LOLS Poisson NB 2P-LOLS PH/ZIP NBH/ZINB

15% 0 4065 5351 3962 3972 4406 3956

0.2 4237 5749 4125 4137 4682 4118

0.6 4609 6733 4472 4491 5384 4463

20% 0 4017 5331 3899 3908 4333 3892

0.2 4189 5730 4062 4072 4599 4054

0.6 4552 6730 4395 4408 5258 4381

25% 0 3965 5299 3832 3838 4248 3822

0.2 4135 5698 3991 3996 4501 3979

0.6 4490 6722 4313 4320 5134 4294

The numbers are the mean of the AIC’s for 1000 replications. φc is the probability of y coming from

structural zeros for the unexposed group. φt is the probability of y coming from structural zeros for the

exposed group. The smallest AIC values among all fitting models are displayed in bold font.

doi:10.1371/journal.pone.0129606.t002
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Fig 8. The empirical probability of choosing amodel using AIC criterion for ZIP distributed data. The X axis is the value of the covariate effect on the
count data γ1 and the Y axis is the empirical probability of choosing a model using AIC criterion. Three different cases of covariate effect, i.e., the consonant
(φt = φc − 5%), neutral (φt = φc) and dissonant (φt = φc + 5%) effect, are presented in (A), (B) and (C); (D), (E) and (F); and (G), (H) and (I), respectively. Each
column reflects different proportion of zero inflation in the unexposed group: 20% in (A), (D) and (G); 50% in (B), (E) and (H); and 80% in (C), (F) and (I) from
the first to the third column.

doi:10.1371/journal.pone.0129606.g008
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Fig 9. The empirical probability of choosing amodel using AIC criterion for ZINB distributed data. The X axis is the value of the covariate effect on the
count data γ1 and the Y axis is the empirical probability of choosing a model using AIC criterion. Three different cases of covariate effect, i.e., the consonant
(φt = φc − 5%), neutral (φt = φc) and dissonant (φt = φc + 5%) effect, are presented in (A) and (B); (C) and (D); and (E) and (F), respectively. Each column
reflects different proportion of zero inflation in the unexposed group: 20% in (A), (C) and (E); and 50% in (B), (D) and (F) from the left to the right column,
respectively.

doi:10.1371/journal.pone.0129606.g009
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is included as an additional covariate in the model to adjust for possible confounding. The total

number of reads varies among subjects with a mean of 71,490. (SD = 32,839, S9 Fig.).

We fit the data using the different models discussed, including both gender and age as

covariates. For the hurdle/ZI models, they are also covariates for the zero component. We

choose female as the reference category for gender. Considering the variation in the total num-

ber of sequence counts across samples, we use the log-transformed total number of reads as an

offset in a log linear regression model for LOLS, Poisson, NB models, and for the count compo-

nent of the hurdle/ZI models such as 2P-LOLS, PH, NBH, ZIP and ZINB. We also use it as an

offset for the logistic regression part of hurdle models. Results are shown in Table 3 for Cam-

pylobacter, and in S5 Table and S6 Table Tables for Anaerotruncus and Dehalobacterium. The

flowchart of the data analysis is shown in Fig 10.

For Campylobacter with 77% zeros (Table 3), NB, NBH and ZINB has the first, second and

third smallest AICs, respectively, and the AIC values are very close. In addition, all of these

models consistently detect a significant gender effect, while other models do not. Furthermore,

their predictions (Fig 11) are similar and can describe the observed sequence counts very well.

They also perform about the same in the estimations of γ1. However, the ZINB provides a rela-

tively large SE for b̂1, indicating the lack of stability of the parameter estimate in the ZINB

parameterization. Vuong test shows no particular preference for any of these three models. We

thus choose NB as the fitting model and conclude that gender is significantly associated with

the OTU count levels of Campylobacter, with males having significantly lower mean counts

than females.

For bacteria Anaerotruncus, with 18% of zeros, all models consistently suggest significant

association of its abundance with gender, but not age (Poisson family models excluded).

Among all the fitted models, NBH, LOLS and NB has the first, second and third smallest AIC

values, respectively. Vuong test favors NBH over NB and ZINB (p< = 0.05), but no preference

Table 3. The parameter estimate of the gender effect and goodness of fit for bacteria Campylobacter (proportion of zeros: 77%) using different
methods. Female is the reference category for gender.

Model Logit* Count distribution overall AIC

β1 (SE) Pr(> jtj) γ1 (SE) Pr(> jtj) p-value**

LOLS NA NA −0.074 (0.074) 0.316 0.316 1388

Poisson NA NA −0.782 (0.091) < 10−6 < 10−6 2781

NB NA NA −0.841 (0.306) 0.006 0.006 976†

WRS NA NA NA NA 0.420 NA

2P-LOLS 0.335(0.236) 0.156 0.002 (0.220) 0.992 0.365 1051

PH 0.320(0.236) 0.174 −0.598 (0.096) < 10−6 < 10−6 1792

ZIP 0.226(0.237) 0.342 −0.599 (0.096) < 10−6 < 10−6 1793

NBH 0.320(0.236) 0.174 −0.923 (0.470) 0.049 0.059 978††

ZINB 0.022(3.567) 0.995 −0.813 (0.410) 0.047 0.047 981†††

2P-WRS NA NA NA NA 0.597 NA

The standard errors (SEs) of estimations are in parentheses. The first, second and third smallest AIC value among different models (except logistic

regression) are displayed with superscript †, ††, and ††† respectively. The model with its name in bold font is the final selected model.

*: logitðfiÞ ¼ logð fi

1�fi
Þ ¼ XT

i b, where φ is the probability of zeros/structural zeros as defined in hurdle/ZI models.

**: The overall p-value is the same as the p-value for the one part model. For the hurdle/ZI models, p-value is computed uisng the likelihood ratio test

statistics in testing H0: β1 = 0, γ1 = 0 vs. HA: not both are equal to 0.

doi:10.1371/journal.pone.0129606.t003
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Fig 10. The flowchart for microbiome real data analysis.

doi:10.1371/journal.pone.0129606.g010
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between NB and ZINB. Fig 11 shows that these three models perform similarly on the predic-

tion of the counts of 2 or more. However, NB appears to overestimate the probability of zero

counts for females but underestimates it for males. LOLS underestimates zero counts for both

females and males. For NBH, the predicted probability of zero counts matches the observed

probability. Notice that ZINB has a large SE (= 24.705) for b̂1 suggesting non-convergence of

the ZINB model. Therefore we choose NBH as the most appropriate model and conclude that

there is a significant association between gender and the abundance of bacteria Anaerotruncus.

This association is through the effect of gender on the probability of zero OTU counts, with

males having higher chance of having zero counts.

For Dehalobacterium, with 50% of zeros, NBH, ZINB and NB has the first, second and third

smallest AICs, respectively. Vuong test has the same order of model favor (p< 0.01). We thus

choose NBH as the most appropriate model for the OTU counts of this bacteria. Note that the

predictions from ZINB and NBHmodel are indistinguishable and they describe the data better

than NB model (Fig 11). An inspection of the fitting results using formula pðy 2 f0gÞ ¼
expðb0þb1Sexþb2AgeÞ

1þexpðb0þb1Sexþb2AgeÞ
shows that the proportion of structural zeros identified by a ZINB model is

about 40%. If we are interested in modeling these structural zeros, then the ZINB model should

be used instead. Notice that all models suggest insignificant gender effect on the sequence

counts, and we thus conclude that there is no significant association between gender and the

abundance of Dehalobacterium.

Discussion

In microbiome research, count data with excess zeros is commonly encountered. To assess the

importance of accounting for zero inflation and the consequence of mis-specifying the statisti-

cal models, we designed a comprehensive simulation study and compared the performance of

different competing methods under a variety of scenarios such as different degrees of zero

inflation, different directions of covariate effect on the structural zero and count components,

and variation of the count component from equi- to over-dispersion. We focused on the assess-

ment of type I error, power to detect overall covariate effect, measures of model fit, and bias

and effectiveness of parameter estimations.

Results confirm that if the data is zero inflated, standard one part models in general will fail

to provide a good model fit, which may result in biased and inefficient parameter estimations

and the possibility of type I error or loss of power. Particularly, Poisson regression has substan-

tially inflated type I errors and thus is not suitable for count data with excess zeros. On the con-

trary, NB has less type I errors than expected and may be prone to reduced power. Although

LOLS has well-controlled type I error rates and competitive power in the consonant case, it is

not robust to other situations of covariate effects. Furthermore, one part models tend to under-

estimate the frequencyies of zeros and have biased estimation of the covariate effect size, which

may result in incorrect sample size estimation needed for replication studies.

The ZIP and ZINB models were specifically developed for count data with structural zeros.

Among the two ZI models, ZINB is more robust since it can handle both over- and equi-dis-

persion in the count component, while ZIP is only suitable for the later scenario. The ZI regres-

sions allow us to investigate not only the possible association of environmental or genetic

factors with the count levels, but also their associations with the probability of structural zeros.

A drawback of the ZI models is that they may have non-convergence or local maxima prob-

lems due to their computation complexity as a result of simultaneous estimation of both the

structural zero and count components [19, 38]. Consequently, the parameter estimations of the

structural zero component may be unstable. In contrast, hurdle models (PH or NBH) provide
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Fig 11. The comparison plots of the observed and expected counts of bacteria for Campylobacter, Anaerotruncus and Dehalobacterium for
females andmales using the best three models judging by AIC criterion. The X axis is the possible values of the OTUs, the bars are the observed
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more stable parameter estimations for both the zero and count components and they are robust

if there is no zero inflation and can handle zero deflation problems [25]. Furthermore, the fit-

ting indices (such as AICs) and the estimation of the effect for the magnitude of the count data

from the corresponding hurdle and ZI models are similar. Therefore, due to the computational

consideration, if the interest is in prediction or if the data-generating mechanism of the zeros is

unknown, we suggest to choose PH or NBH (depending whether over-dispersion is present in

the count component) over the ZI models. However, if the study goal is in statistical inference,

the model choice should also be adjusted by clinical reasoning [23]. If structural zeros are

believed to exist and the interest is in modeling them, the ZI models should be chosen. In this

case, if non-convergence is encounter, then a larger sample size is probably required.

Other hurdle models such as 2P-LOLS and 2P-WRS show relatively comparable power to

the true ZIP or ZINB model and have well-controlled type I errors in testing the overall covari-

ate effect. Furthermore, they are robust for the case of over-dispersion in the count component

and thus can be considered if we are just interested in the testing of association. However, due

to its mis-specification of the counts as the continuous normally distributed data, 2P-LOLS will

in general result in biased parameter estimation of the covariate effects and is thus not recom-

mended for statistical inference on the bacterial counts. 2P-WRS cannot be used for statistical

inference either.

As this simulation study has shown, the inappropriate application of a statistical model

could have undesirable consequences. Therefore, it is important for researchers to perform

model selection to choose the most appropriate model. Our simulation confirms that the AIC

criterion has good power in identifying the correct distribution of the data and Vuong test has

less power. However, caution should be given for the possibility of model mis-identification

using these selection strategies. For example, for the ZINB distributed data with relatively low

degree of zero inflation, it is possible that NB is mis-identified as the best model. Therefore, a

graphical examination of the comparison of the observed with the predicted values is

recommended.

In this paper, we focus on the discussion of the simulation results for binary covariate case.

Additional simulations are also conducted (results not given) for a continuous covariate and

we have similar observations as in the case of a binary covariate. Particularly, although not

exactly identical, the AIC value produced by NBH and ZINB model are very close and are the

smallest among all fitted models. We also evaluate the overall type I error and power of test for

two other commonly used models: OLS and logistic regression (Results are provided in S7

Table, S10 Fig and S11 Fig). Both OLS and logistic regression have well-controlled type I error

rates. It is interesting to see that OLS performs well in terms of power in the consonant effect

scenario. However, similar to other one-part models, it is not robust to other scenarios (i.e., dis-

sonant or neutral effects). The supplementary material also provides the evaluation results of

relative bias of prediction for zeros for the competing models (S8 Table, S9 Table, S10 Table,

S11 Table and S12 Table). All the one part models underestimate the probability of the zeros

while the hurdle and ZI count models (i.e., PH, ZIP, NBH, ZINB) show unbiased estimations.

2P-LOLS has small bias, and the bias decreases when the proportion of inflated zeros becomes

higher.

counts, the red line connects the expected counts produced by the model with smallest AIC values, the green line connects the expected counts produced by
the model with the second smallest AIC values and the blue line connects the expected counts produced by the model with the third smallest AIC values. The
first, second and third row of the plots are for bacteria Campylobacter, Anaerotruncus, and Dehalobacterium, respectively.

doi:10.1371/journal.pone.0129606.g011
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Our simulation study just focuses on the independent data assumption, however, in clinical

studies and the microbiome field, observations maybe serial or related say due to families, thus

in future work we will extend our evaluation to the related data with excess zeros.
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from structural zeros for the exposed group. The smallest AIC values among all fitting models

are displayed in bold font.

(PDF)

S3 Table. The AIC’s of different methods for data simulated under ZIP distribution with

fc = 80%. The numbers are the mean of the AIC’s for 1000 replications. fc is the probability of

y coming from structural zeros for the non-exposed group. ft is the probability of y coming

from structural zeros for the exposed group. The smallest AIC values among all fitting models

are displayed in bold font.

(PDF)

S4 Table. The AIC’s of different methods for data simulated under ZINB distribution with

fc = 50%. The numbers are the mean of the AIC’s for 1000 replications. fc is the probability of

y coming from structural zeros for the non-exposed group. ft is the probability of y coming

from structural zeros for the exposed group. The smallest AIC values among all fitting models

are displayed in bold font.

(PDF)

S5 Table. The parameter estimate of the gender effect and goodness of fit for bacteria Anae-

rotruncus (proportion of zeros: 18%) using different methods. Female is the reference cate-

gory for gender. The standard errors (SEs) of estimations are in parentheses. The first, second

and third smallest AIC value among different models (except logistic regression) are displayed

with superscript †, ††, and ††† respectively. The model with its name in bold font is the final

selected model. �: logitðfiÞ ¼ logð fi

1�fi
Þ ¼ XT

i
b, where f is the probability of zeros/structural

zeros as defined in hurdle/ZI models. ��: The overall p-value is the same as the p-value for the

one part model. For the hurdle/ZI models, p-value is computed uisng the likelihood ratio test

statistics in testing H0: β1 = 0, γ1 = 0 vs. HA: not both are equal to 0.

(PDF)

S6 Table. The parameter estimate of the gender effect and goodness of fit for bacteria Deha-

lobacterium (proportion of zeros: 50%) using different methods. Female is the reference cat-

egory for gender. The standard errors (SEs) of estimations are in parentheses. The first, second

and third smallest AIC value among different models (except logistic regression) are displayed

with superscript †, ††, and ††† respectively. The model with its name in bold font is the final

selected model. �: logitðfiÞ ¼ logð fi

1�fi
Þ ¼ XT

i
b, where f is the probability of zeros/structural
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zeros as defined in hurdle/ZI models. ��: The overall p-value is the same as the p-value for the

one part model. For the hurdle/ZI models, p-value is computed uisng the likelihood ratio test

statistics in testing H0: β1 = 0, γ1 = 0 vs. HA: not both are equal to 0.

(PDF)

S7 Table. The type I error rate estimations for different competing models (including OLS

and Logistic regression). Estimates are based on 10,000 replicated samples. fc is the probabil-

ity of y coming from structural zeros for the non-exposed group. α is the significant level of

test. A bold value represents inflated type I error.

(PDF)

S8 Table. The relative bias for P(y = 0) for data simulated under ZIP distribution with fc =

20%. The numbers are the mean of the relative bias of p(y = 0) for 1000 replications. fc is the

probability of y coming from structural zeros for the non-exposed group. ft is the probability

of y coming from structural zeros for the exposed group.

(PDF)

S9 Table. The relative bias for P(y = 0) for data simulated under ZIP distribution with fc =

50%. The numbers are the mean of the relative bias of p(y = 0) for 1000 replications. fc is the

probability of y coming from structural zeros for the non-exposed group. ft is the probability

of y coming from structural zeros for the exposed group.

(PDF)

S10 Table. The relative bias for P(y = 0) for data simulated under ZIP distribution with fc

= 80%. The numbers are the mean of the relative bias of p(y = 0) for 1000 replications. fc is the

probability of y coming from structural zeros for the non-exposed group. ft is the probability

of y coming from structural zeros for the exposed group.

(PDF)

S11 Table. The relative bias for P(y = 0) for data simulated under ZINB distribution with

fc = 20%. The numbers are the mean of the relative bias of p(y = 0) for 1000 replications. fc is

the probability of y coming from structural zeros for the non-exposed group. ft is the probabil-

ity of y coming from structural zeros for the exposed group.

(PDF)

S12 Table. The relative bias for P(y = 0) for data simulated under ZINB distribution with

fc = 50%. The numbers are the mean of the relative bias of p(y = 0) for 1000 replications. fc is

the probability of y coming from structural zeros for the non-exposed group. ft is the probabil-

ity of y coming from structural zeros for the exposed group.

(PDF)

S1 Fig. The estimate of γ1 and its standard error for data simulated under ZIP distribution

with fc = 50%. The box-plot of γ1 estimates (in the left column panel) and their corresponding

SE estimates (in the right column panel) for 1000 replications of simulated ZIP data using

LOLS, Poisson, NB, 2P-LOLS and ZINB methods. The horizontal line in the left column plots

is the true value of γ1, which is 0.4. The consonant, neutral and dissonant scenarios are dis-

played in the first, second and third rows, respectively. The bias, root mean square error (rmse)

and standard deviation (sd) of the estimations of γ1 are shown above its box-plot for each

method in the left column. The mean and standard deviation (sd) of the standard error (SE)

estimations above the box-plot for each method in the right column.

(PDF)
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S2 Fig. The estimate of γ1 and its standard error for data simulated under ZIP distribution

with fc = 80%. The box-plot of γ1 estimates (in the left column panel) and their corresponding

SE estimates (in the right column panel) for 1000 replications of simulated ZIP data using

LOLS, Poisson, NB, 2P-LOLS and ZINB methods. The horizontal line in the left column plots

is the true value of γ1, which is 0.4. The consonant, neutral and dissonant scenarios are dis-

played in the first, second and third rows, respectively. The bias, root mean square error (rmse)

and standard deviation (sd) of the estimations of γ1 are shown above its box-plot for each

method in the left column. The mean and standard deviation (sd) of the standard error (SE)

estimations above the box-plot for each method in the right column.

(PDF)

S3 Fig. The estimate of γ1 and its standard error for data simulated under ZINB distribu-

tion with fc = 50%. The box-plot of γ1 estimates (in the left column panel) and their corre-

sponding SE estimates (in the right column panel) for 1000 replications of simulated ZINB

data using LOLS, Poisson, NB, 2P-LOLS and ZINB methods. The horizontal line in the left col-

umn plots is the true value of γ1, which is 0.4. The consonant, neutral and dissonant scenarios

are displayed in the first, second and third rows, respectively. The bias, root mean square error

(rmse) and standard deviation (sd) of the estimations of γ1 are shown above its box-plot for

each method in the left column. The mean and standard deviation (sd) of the standard error

(SE) estimations above the box-plot for each method in the right column.

(PDF)

S4 Fig. The estimate of β1 (or
~
β
1
) and its standard error for data simulated under ZIP dis-

tribution with fc = 20%. The figure displays box-plots of estimates and their standard errors

for the covariate effect on the log-odds of structural zeroes for ZIP and ZINB method and on

the log-odds of zeroes for hurdle models from 1000 replications. Panels (A1), (C1), and (E1)

show the estimates of β1 for consonant, neutral and dissonant effect case, respectively. The hor-

izontal line in these panels represents the true value of β1, which is −0.349 in (A1), 0 in (C1)

and 0.287 in (E1). Panels (A2), (C2), and (E2) show the estimates of
~
b

1
for consonant, neutral

and dissonant effect case, respectively. The horizontal line in these panels represents the true

value of
~
b

1
, which is −0.540 in (A2), −0.218 in (C2) and 0.053 in (E2). The bias, root mean

square error (RMSE) and standard deviation (SD) of the estimates are shown above the box-

plot for each method. Panel (B1), (D1), and (F1) show the SEs of the estimates for β1, and

panel (B2), (D2), and (F2) show the SEs of the estimates for
~
b

1
. The mean and standard devia-

tion (SD) of the standard error (SE) estimations are shown above the box-plot for each

method.

(TIFF)

S5 Fig. The estimate of β1 (or
~
β
1
) and its standard error for data simulated under ZIP dis-

tribution with fc = 50%. The figure displays box-plots of estimates and their standard errors

for the covariate effect on the log-odds of structural zeroes for ZIP and ZINB method and on

the log-odds of zeroes for hurdle models from 1000 replications. Panels (A1), (C1), and (E1)

show the estimates of β1 for consonant, neutral and dissonant effect case, respectively. The hor-

izontal line in these panels represents the true value of β1, which is −0.201 in (A1), 0 in (C1)

and 0.201 in (E1). Panels (A2), (C2), and (E2) show the estimates of
~
b

1
for consonant, neutral

and dissonant effect case, respectively. The horizontal line in these panels represents the true

value of
~
b

1
, which is −0.295 in (A2), −0.098 in (C2) and 0.100 in (E2). The bias, standard devi-

ation (SD), and root mean square error (RMSE) of the estimates are shown above the box-plot
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for each method. Panel (B1), (D1), and (F1) show the SEs of the estimates for β1, and panel

(B2), (D2), and (F2) show the SEs of the estimates for
~
b

1
. The mean and standard deviation

(SD) of the standard error (SE) estimations are shown above the box-plot for each method.

(TIFF)

S6 Fig. The estimate of β1 (or
~
β
1
) and its standard error for data simulated under ZIP dis-

tribution with fc = 80%. The figure displays box-plots of estimates and their standard errors

for the covariate effect on the log-odds of structural zeroes for ZIP and ZINB method and on

the log-odds of zeroes for hurdle models from 1000 replications. Panels (A1), (C1), and (E1)

show the estimates of β1 for consonant, neutral and dissonant effect case, respectively. The hor-

izontal line in these panels represents the true value of β1, which is −0.287 in (A1), 0 in (C1)

and 0.349 in (E1). Panels (A2), (C2), and (E2) show the estimates of
~
b

1
for consonant, neutral

and dissonant effect case, respectively. The horizontal line in these panels represents the true

value of
~
b

1
, which is −0.349 in (A2), −0.063 in (C2) and 0.285 in (E2). The bias, standard devi-

ation (SD), and root mean square error (RMSE) of the estimates are shown above the box-plot

for each method. Panel (B1), (D1), and (F1) show the SEs of the estimates for β1, and panel

(B2), (D2), and (F2) show the SEs of the estimates for
~
b

1
. The mean and standard deviation

(SD) of the standard error (SE) estimations are shown above the box-plot for each method.

(TIFF)

S7 Fig. The estimate of β1 (or
~
β
1
) and its standard error for data simulated under ZINB dis-

tribution with fc = 50%. The figure displays box-plots of estimates and their standard errors

for the covariate effect on the log-odds of structural zeroes for ZIP and ZINB method and on

the log-odds of zeroes for hurdle models from 1000 replications. Panels (A1), (C1), and (E1)

show the estimates of β1 for consonant, neutral and dissonant effect case, respectively. The hor-

izontal line in these panels represents the true value of β1, which is −0.201 in (A1), 0 in (C1)

and 0.201 in (E1). Panels (A2), (C2), and (E2) show the estimates of
~
b

1
for consonant, neutral

and dissonant effect case, respectively. The horizontal line in these panels represents the true

value of
~
b

1
, which is −0.315 in (A2), −0.151 in (C2) and 0.020 in (E2). The bias, standard devi-

ation (SD), and root mean square error (RMSE) of the estimates are shown above the box-plot

for each method. Panel (B1), (D1), and (F1) show the SEs of the estimates for β1, and panel

(B2), (D2), and (F2) show the SEs of the estimates for
~
b

1
. The mean and standard deviation

(SD) of the standard error (SE) estimations are shown above the box-plot for each method.

(TIFF)

S8 Fig. The histogram of of the abundance for bacteria Anaerotruncus, Dehalobacterium

and Campylobacter. The X-axis is the possible counts of the bacterium in the square root

scale. The Y-axis is the frequency of the counts with some line breaks.

(PDF)

S9 Fig. The histogram of total number of sequence counts for the bacteria classified at

genus level. The red dashed line represent the mean of the total counts (71,490) and the blue

dotted line represent the median of the total counts (65,438). The range is from 13,647 to

196,591. The standard deviation of the total counts is 32,839.

(PDF)

S10 Fig. The power of test for ZIP simulated data for competing models (including OLS

and logistic regression). The X axis is the value of the covariate effect on the count data γ1 and

the Y axis is the power of test when the level of significance is 0.05. Three different cases of
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covariate effect, i.e., the consonant (ft = fc − 5%), neutral (ft = fc) and dissonant (ft = fc

+ 5%) effect, are presented in {(A), (B), (C)}, {(D), (E), (F)}, and {(G), (H), (I)}, respectively.

Each column reflects different proportion of zero inflation in the non-exposed group: 20% in

{(A), (D), (G)}, 50% in {(B), (E), (H)} and 80% in {(C), (F), (I)} from the first to the third col-

umn.

(TIFF)

S11 Fig. The power of test for ZINB simulated data for competing models (including OLS

and logistic regression). The X axis is the value of the covariate effect on the count data γ1 and

the Y axis is the power of test when the level of significance is 0.05. Three different cases of

covariate effect, i.e., the consonant (ft = fc − 5%), neutral (ft = fc) and dissonant (ft = fc

+ 5%) effect, are presented in {(A), (B)}, {(C), (D)}, and {(E), (F)}, respectively. Each column

reflects different proportion of zero inflation in the non-exposed group: 20% in {(A), (C), (E)}

and 50% in {(B), (D), (F)} from the left to the right column, respectively.

(TIFF)
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