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ABSTRACT: The accurate and reliable prediction of properties of molecules typically requires computationally intensive
quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an
efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound
space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning
techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve
prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance
improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of
quantum-mechanical observables.

1. INTRODUCTION experimentally and are frequently used to assess the perform-
ance of approximate computational methods. Though we focus
on atomization energies the methods described in this paper
could also be applied to predict total molecular energies or
different quantum-mechanical properties."

Recently, a machine learning (ML) approach has been
demonstrated to predict atomization energies of various small

The accurate prediction of molecular properties in chemical
compound space (CCS) is a crucial ingredient toward rational
compound design in chemical and pharmaceutical industries.
Therefore, one of the major challenges is to enable quantitative
calculations of molecular properties in CCS at moderate
computational cost (milliseconds per molecule or faster).
However, currently only high level quantum-chemical calcu-
lations, which can take up to several days per molecule, yield
the desired “chemical accuracy” (e.g, 1 kcal/mol for molecular
atomization energies) required for predictive in silico rational
molecular design. Therefore, more efficient algorithms that can
predict properties of molecules quickly and reliably would be a

molecules in their given ground-state geometry.” The method
uses the same input as electronic-structure calculations, namely
nuclear charges and atomic positions, and learns from a training
set of ab initio molecular energies. Though the authors show
that their proposed kernel ridge regression approach (details
will be discussed below) outperforms the semiempirical PM6”

powerful tool in order to sample and better understand CCS. and a simple bond-counting’ scheme, the question arises
Throughout this paper, we focus on atomization energies of whether other molecular descriptors or machine learning

molecules in their ground-state equilibrium geometry. The methods, e.g. neural networks, which have been successfully

atomization energy is an essential molecular property that

determines the stability of a molecule with respect to the atoms Received: March 12, 2013
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applied for potential-energy surface (PES) description,” are also
or even better suited for predicting atomization energies.

Let us briefly comment on the terminology. The term
“model” here refers to a function trained on a set of molecules
(training set) that returns a property value for a given
molecule.® The term “prediction” refers to the fact that such
a model is able to predict properties of molecules that were not
used to fit the model parameters. We note, however, that the
presented models are neither derived from nor explicitly based
on physical laws. Purely data-driven machine learning
algorithms are used to generate them. Thus, for molecules
that behave significantly different than those of the training set,
the prediction is likely to fail; the model may however assess
the probability for own errors.” For example, when the training
set would not contain first-row elements, the prediction of
properties of first-row elements may not work, and, if the
training set does not contain 3d transition metals, a failure for
these elements is also to be expected. On the other hand
predictions can in principle work even when the underlying
physical laws are (still) unknown. Thus, the methods described
below enable us to generate predictions for properties of a huge
number of molecules that are unknown to the algorithm, but
they must not be qualitatively distinct from the molecules of
the training set.

In this work we show how significant improvements in the
prediction of atomization energies can be achieved by using
more specific and suitable ML approaches compared to the one
presented by Rupp et al.> We review several standard ML
techniques and analyze their performance, scaling, and handling
of atomization-energy prediction with respect to different
representations of molecular data. Our best methods reduce the
prediction error from 10 kcal/ mol® to 3 kcal/mol.

These explicit ML models for learning molecular energies
have only been introduced recently. We therefore provide in
this paper comprehensive instructions for the best practical use
of this novel tool set. If model selection and validation are not
carried out properly, overly optimistic or in the worst case
simply useless results may be obtained. A number of common
pitfalls are outlined to help avoid this situation.

In cheminformatics, ML has been used extensively to
describe experimentally determined biochemical or physico-
chemical molecular properties such as in quantitative
structure—activity relationships and quantitative structure—
property relationships (e.g., refs 8—10). Since the 1990s neural
networks have been proposed to model first-principles
calculations for variable geometry.>''™>° Most of them are
limited to fixed molecular compositions or systems with only a
few different atom types. More recently, Gaussian processes
and kernel ridge regression models were also applied to predict
atomic multipole moments,*' the PES of solids,” transition-
state dividing surfaces,”® and exchange-correlation function-
als.”* Hautier et al.”® used machine learning techniques to
suggest new crystal structures in order to explore the space of
ternary oxides, while Balabin and Lomakina®®*” applied neural
networks and support vector machines to predict energies of
organic molecules. The latter considered molecular descriptors
and DFT energies calculated with small basis sets to predict
DFT energies calculated with large basis sets. Most of these
models either partition the energy and construct separate
models for local atom environments or represent the whole
molecule at once.

In this work we explore methods which consider whole
chemical compounds at once to learn atomization energies of
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molecules across chemical compound space. Much work has
been done (with and without ML) to describe nonequilibrium
geometries and understand potential-energy surfaces of various
molecular systems. However, due to the unmanageable size of
CCS it is impossible to do QM calculations on large molecular
databases. One also needs methods that can extend the
accuracy of first-principles QM methods across CCS. Our work
is aiming toward this perspective.

Note that we therefore restrict ourselves in this attempt to
ground-state geometries and focus on enlarging the number
and diversity of included systems. The incorporation of
nonequilibrium geometries is the subject of ongoing work.

2. DATA SET AND DATA REPRESENTATION

In this section we describe the data set that is used to build and
validate the ML models for atomization energy prediction. The
quality and applicability of ML prediction models inherently
depend on the size and diversity of this underlying data set.
Moreover, the numerical representation of the included
molecular structures is a critical aspect for model quality.
Three different representations are introduced in this section
and further discussed in Section S.

2.1. Data Set. The chemical database GDB-13 contains all
molecules obeying simple chemical rules for stability and
synthetic feasibility up to 13 first- and second-row atoms of C,
N, O, S, and CI (970 million compounds).28 In this work, as in
Rupp et al,” the subset formed by all molecules up to seven
first- and second-row atoms of C, N, O, and S is extracted from
the GDB-13. This data set contains 7165 structures with a
maximal size of 23 atoms per molecule (including hydrogens).
The GDB-13 gives bonding information in the form of
SMILES® strings. These are converted to Cartesian
coordinates of the ground-state structure using the OpenBabel
implementation®® of the force-field method by Rappé et al.*!
The atomization energies, which range from —800 to —2000
kcal/mol, are then calculated for each molecule using the
Perdew-Burke-Ernzerhof hybrid functional (PBE0).**** These
single point calculations of geometry optimization were
performed with a well converged numerical basis, as
implemented in the FHI-aims code® (tight settings/tier2
basis set).

2.2. Data Representation. In order to apply machine
learning, the information encoded in the molecular three-
dimensional structure needs to be converted into an
appropriate vector of numbers. This vectorial representation
of a molecule is very important for the success of the learning
approach. Only if all information relevant for the atomization
energy is appropriately encoded in the vector will the machine
learning algorithm be able to infer the relation between
molecules and atomization energies correctly. Our representa-
tion should be solely based on atomic coordinates R; and
nuclear charges Z, as we want to pursue an approach from first
principles that can deal with any stoichiometry and atomic
configuration.

Different system representations that include internal
coordinates, system-specific variables, and complex projections
of local atom densities have been proposed in the context of
potential-energy prediction.””® Finding the optimal representa-
tion for molecules is the subject of ongoing research, and an in-
depth discussion of all of them would be beyond the scope of
this work. Therefore, we focus on three representations derived
from the Coulomb matrix C, a simple matrix representation
introduced by Rupp et al.* (Figure 1).
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Figure 1. Coulomb matrix representation of ethene: A three-dimensional molecular structure is converted to a numerical Coulomb matrix using
atomic coordinates R; and nuclear charges Z;. The matrix is dominated by entries resulting from heavy atoms (carbon self-interaction 0.5-6** = 36.9,
two carbon atoms in a distance of 1.33 A result in ((6.6)/(1.33/0.529)) = 14.3). The matrix contains one row per atom, is symmetric, and requires

no explicit bond information.

@ ce e A
® . 0000 A
O-0Q0c 000 by
® s 00000 80 e — i\
NN RN XN N

C (a)

| L L XX R ®e e o .
[T X IO N Y 000 e v o
[ X X N IR S ®eO o o
9000 s ¢ s o . s 00 e .
® 0 0000 0 0 . [ BN RS
® @0 00 0 0 0 - * 08 ¢ 0
® @ 0 0 s 00 o o (XY X3
*e & & & & 6 o v . * 0 &
s et e e " s e

©

Figure 2. Three different permutationally invariant representations of a molecule derived from its Coulomb matrix C: (a) eigenspectrum of the
Coulomb matrix, (b) sorted Coulomb matrix, (c) set of randomly sorted Coulomb matrices.

The main diagonal of the Coulomb matrix 0.5 Z}** consists of
a polynomial fit of the nuclear charges to the total energies of
the free atoms,” while the remaining elements contain the
Coulomb repulsion for each pair of nuclei in the molecule.
Except for homometric structures (not present in the data set)
the Coulomb matrix is a unique representation of molecules.

The fact that rotations, translations, and symmetry
operations such as mirror reflections of a molecule in 3D
space keep the total energy constant is reflected by the
invariance of the Coulomb matrix with respect to these
operations.

However, there are two problems with the representation of
molecules by their Coulomb matrices, which make it difficult to
use this representation in a vector-space model. First, different
numbers of atoms d result in different dimensionalities of the
Coulomb matrices, and second there is no well-defined
ordering of the atoms in the Coulomb matrix; therefore, one
can obtain up to d! different Coulomb matrices for the same
molecule by simultaneous permutation of rows and columns,
while the energies of all these configurations remain unchanged.

In order to solve the first problem we introduce “dummy
atoms” with zero nuclear charge and no interactions with the
other atoms. In the Coulomb matrix representation this is
achieved by padding each matrix with zeros,” which causes all
matrices to have size d X d (where d is the maximal number of
atoms per molecule).

The ambiguity in the ordering of the atoms is more difficult
as there is no obvious physically plausible solution. To
overcome this problem we investigate three candidate
representations derived from the Coulomb matrix. They are
depicted in Figure 2: (a) the eigenspectrum representation
consisting of the sorted eigenvalues of C, (b) a sorted variant of
the Coulomb matrix based on a sorting of the atoms, and (c) a
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set of Coulomb matrices, which all follow a slightly different
sorting of atoms. All of them are explained in more detail
below.

2.2.1. Eigenspectrum Representation. In the eigenspectrum
representation the eigenvalue problem Cv = Av for each
Coulomb matrix C is solved to represent each molecule as a
vector of sorted eigenvalues (4y,..,44), 4; > A,;. This
representation (first introduced by Rupp et al.®) is invariant
with respect to permutations of the rows and columns of the
Coulomb matrix.

Computing the eigenspectrum of a molecule reduces the
dimensionality from (3d—6) degrees of freedom to just d. In
machine learning, dimensionality reduction can sometimes
positively influence the prediction accuracy by providing some
regularization. However, such a drastic dimensionality reduc-
tion can cause loss of information and introduce unfavorable
noise (see Moussa>® and Rupp et al.*), like any coarse-grained
approach.

2.2.2. Sorted Coulomb Matrices. One way to find a unique
ordering of the atoms in the Coulomb matrix is to permute the
matrix in such a way that the rows (and columns) C; of the
Coulomb matrix are ordered by their norm, ie. lICll > IIC,ll.
This ensures a unique Coulomb matrix representation. As a
downside, this new representation makes the problem much
higher-dimensional than it was when choosing only eigenvalues.
The input space has now dimensionality N%,,, compared to
Nyoms for the eigenspectrum representation. Also, slight
variations in atomic coordinates or identities may cause abrupt
changes in the Coulomb matrix ordering, thereby impeding the
learning of structural similarities.

2.2.3. Random(-ly Sorted) Coulomb Matrices. The problem
of discontinuities due to abrupt changes in the matrix ordering
can be mitigated by considering for each molecule a set of

dx.doi.org/10.1021/ct400195d | J. Chem. Theory Comput. 2013, 9, 3404—3419
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Table 1. Selection of Loss Functions for Regression Tasks”
parameter comments
squared error loss Zse()ﬁrf(xl)) = (); _f(xx.))2 ()
absolute error loss LGy, f(x)) =ly — f(x)! (3)
e-insensitive loss 0 ifif(x) —yl < e
LGy, f(x) = If(x) = yl. = { ) l L
' ' If(x;) = y—e otherwise 4)

“The squared error loss is the most commonly used. The absolute error compared to the squared error is more robust to outliers but not
differentiable. The é-insensitive loss leaves errors up to ¢ unpenalized and has the effect of introducing some slack (or looseness).

Coulomb matrices rather than a single sorted Coulomb
matrix.>” To generate these randomly sorted Coulomb matrices
we construct the Coulomb matrix based on a random ordering
of the atoms and compute the row norms IICll (i.e., a vector
containing the norm of each row of C;). We add random noise
e ~ N(0,0) to disturb the vector IICll and determine the
permutation P that sorts ||Cll+¢. Finally, the rows and columns
of the Coulomb matrix C are permuted according to this
permutation, ie. C.,gm = permuterowsp(permutecolsy(C)).
(Note that for no noise (o = 0) this equals the sorted Coulomb
representation described above.)

This procedure corresponds to an approximate sampling
from the conditional distribution of all possible valid Coulomb
matrices given a specific molecule.’” Similar approaches have
been used in a variety of contexts, for example, feeding
elastically distorted handwritten digits to a neural network®>>”
or a support vector machine,*’ leading to dramatic performance
improvements.

Note that the increased number of samples caused by
considering a set of random Coulomb matrices for each
molecule helps to overcome the high-dimensionality of the
input space but also considerably increases the computational
costs for some ML methods. We discuss this problem in
Section 4.2.2.

3. MACHINE LEARNING METHODS

Machine learning (ML) seeks to infer dependencies from data
using computing systems with learning capability. This subfield
of artificial intelligence evolved in the 1950s from the
intersection of computer science, statistics, and neuroscience
and gave rise to various learning algorithms commonly used in
bioinformatics, computer vision, speech recognition, and
finance.*' =%

In this paper we focus on the description of atomization
energies of molecules in their ground-state structures. From a
mathematical point of view this is a regression task: We seek to
find a function or model f € F that maps an input vector x €
R? (representing the molecule: nuclear number and position of
all atoms) onto the corresponding continuous label value y € R
(here the atomization energy). The space of functions F
depends on the employed machine learning method and
incorporated additional information and assumptions. Since we
consider a training data set {(x,y1),..,(X,,)} in order to find f
€ ¥, the task falls into the category of supervised learning. The
ML problem is formulated as a minimization problem of the
form

mfin Z I(f(x), ) + Ar(f) with f € F
i=1 (1)
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The first term of the objective is the empirical risk described by
a loss function / which measures the quality of the function f. A
specific case is the squared loss /(j,y) = (j — y)*. Some
common loss functions are given in Table 1. The second term
of the objective in eq 1 is a regularization term which measures
the complexity or roughness of the function f. In general r(f) is
a norm of f or its derivatives, e.g. / f”(x)’dx can be used to
favor functions that vary slowly over small regions of input
space. The interplay between these two terms can be
interpreted as follows: Among all functions f that predict outputs
y from inputs x well, choose the one that is the least complex.

In addition to the need to carefully design the complexity
penalty Ar(f), we also need to make sure that the space of
functions F contains enough functions that can approximate
the physical dependencies between molecular structures and
atomization energies. The atomization energy results from the
quantum mechanical interactions between many electrons.
Thus we expect a function that reasonably approximates
atomization energies to be complex and highly nonlinear. In
this work the effect of the considered space of functions on the
quality of the approximation is illustrated by moving from the
space of linear functions to nonlinear differentiable functions.

The simultaneous need for sophisticated function classes
and appropriate regularizers r(f) underlies the design of all ML
algorithms. Learning algorithms that implement them in one
way or another are described in the following sections. For the
sake of notational simplicity we will assume in the formulas that
the data are centered, i.e. (1/n)ZL,y; = 0 and (1/n)ZLx; = 0.
The main differences of the regression methods discussed in
the following lie in two aspects, namely the set of candidate
functions for f that are taken into account and the criteria
applied to select the best candidate functions, i.e. the choice of
functionals / and r.

3.1. Linear Ridge Regression. One of the simplest and
most popular regression models is least-squares linear regression,
where the unknown function is approximated by the hyper-
plane that minimizes the squared distance between the
predicted and the true function value. In ridge regression the
objective function of the least-squares linear regression model is
extended by a regularizer to make the model less sensitive to
outliers. It reads in analogy to eq 1 as

n

min 1 z ()i —f(xi))2 + Allwl? with f(x) = x'w

oo ()
for a given 4 > 0. The minimization problem of eq 5 can be
solved in closed form with w = (X"X+AI)"'X"y, where y is the
training label vector, and X refers to the matrix of all input
vectors. This approach, in contrast to the following ones, is
limited to the set of linear functions, ie. only linear

dx.doi.org/10.1021/ct400195d | J. Chem. Theory Comput. 2013, 9, 3404—3419
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Figure 3. Basic idea of kernel ridge regression illustrated for the task of learning a Lennard-Jones potential function: The data points are mapped into
feature space in such a way that the learning problem becomes linear. The linear solution in feature space corresponds to a nonlinear function in
input space.

dependencies between molecules represented as vectors x; and the mapping function and feature space completely implicit.

their corresponding energies are captured. According to Mercer’s Theorem™ any symmetric positive
The regularization parameter 4 controls the balance between semidefinite function allows for an inner product representation

the quality of the fit (here measured using the squared loss) and k(xx') = <p(x),pp(x')>.

the complexity of the function. The parameter 4 is a so-called Some commonly used kernels are listed in Table 2. Here |lxl|

“hyperparameter”. It is not determined within training (ie., corresponds to a Euclidean L*-norm, while lx| corresponds to a

solving the optimization problem eq S) and needs to be chosen

separately within a so-called “model selection” procedure (cf. Table 2. Selection of Commonly Used Kernels

Section.4.1). .In general, regularizatic.)n is needed in order to inear kernel Ko x) = (6)

work with noisy data, such as experimental measurements of ’

molecular energies. However, in this work we aim to reproduce polynomial kernel k(x, &) = (o’ + ) (7)

the results of an electronic structure calculation, and these Gaussian kernel 1

calculated molecular energies include no noise up to numerical k(x, x) = "-XP(‘ Py lla — x,“z) (8)

precision. The concept of regularization is still beneficial in

. . Laplacian kernel
order to focus on less complex solutions and to cope with P

k(x, x') = exp(—élx - x’l) (

ambiguities in the representation of molecules. For example, %)

based on the molecular representations introduced in Section

2.2 two homometric molecular structures of different energy Manhattan, or city block, L'-norm. Note that now a kernel

values are mapped onto exactly the same input vectors x,. From function needs to be chosen instead of a complex mapping

an algorithmic perspective this situation could also result from function. The kernel function facilitates treating nonlinear

two noisy measurements of the same input. This ambiguity can problems by mapping into infinite-dimensional feature spaces.

be handled using regularization. Mathematically they allow us to move our problem from a d-
3.2. Kernel Ridge Regression. Kernel ridge regression dimensional input space into an n-dimensional space spanned

generalizes the linear ridge regression model toward nonlinear by the n data points. There W focus on the task relevant

functions.* The nonlinearity is incorporated by mapping the subspace to solve our problem.™ Often several kernel functions

yield good results for the same data set — however, the optimal
choice cannot be assessed beforehand and needs to be
determined in statistical tests.

In this paper both the Gaussian as well as Laplacian kernels
showed promising results in preliminary experiments and will
be used to train our models.

Kernel ridge regression** uses a quadratic constraint on the
norm of the weights @; and solves the nonlinear regression
problem

data from the input space into a different space called “feature
space”, aiming to transform the original, nonlinear regression
task into a linear task in feature space. This idea is illustrated for
a simple one-dimensional example in Figure 3: there is no
linear relation between the distance between two atoms and the
corresponding energy as depicted by the Lennard-Jones
potential in the left plot. However, if we apply an appropriate
mapping function to the distances x we get a new variable ¢(x)
which lives in a new one-dimensional space called feature space
and is perfectly correlated with the energy. In general it is not <

that obvious how to choose the mapping function ¢. Often the min Z O =f (x))* + 2 Z ak(x, x;)a
most suitable functions are rather complex and result in infinite =1 b

dimensional feature spaces. Since many learning algorithms ] -

only require dot products between the data vectors, this can be with f(x) = z ak(x; x)

handled using the so-called kernel trick: Instead of mapping the =1 (10)
data and computing the inner product in feature space, we can The minimization problem has the closed form solution a = (K
use a kernel function k(x,x’) to do it in one operation and leave +4-I) "'y, where y is the training label vector and K is the kernel

3408 dx.doi.org/10.1021/ct400195d | J. Chem. Theory Comput. 2013, 9, 3404—3419
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Scheme 1. Ilustration of Linear Mixed-Effects Models Assuming That the Molecules Are Grouped into Three Clusters
(Differentiated by Symbols) and within Each Cluster the Dependency between Molecular Structure (Here Represented As One-
Dimensional Input, x-Axis) and Atomization Energy (y-Axis) Are of Similar Slope but Different Bias®
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“Left: Using linear regression on the whole data set does not model the data appropriately. Center: With a linear mixed-effects model, the fixed-effect
Prue is estimated first from the decorrelated data by linear regression. Right: In a second step, the random effects b;, b,, and b are recovered.

matrix. The regularization parameter A is again a hyper-
parameter, as are any kernel dependent parameters, such as, in
the case of the Gaussian and Laplacian kernel, the kernel width
0. They need to be chosen separately within a model selection
procedure (cf. section 4.1).

One main drawback of kernel-based methods such as kernel
ridge regression is that they are in general not well suited for
large data sets. In our work this issue only arises when many
random Coulomb matrices are used to represent one molecule
(see Section 4.2.2 for further discussion).

3.3. Support Vector Regression. Support vector
regression (SVR 465051 s a kernel-based regression method,
which can be depicted as a linear regression in feature space —
like kernel ridge regression. Unlike kernel ridge regression, SVR
is based on an ¢-insensitive loss function (eq 4), where absolute
deviations up to € are tolerated.

The corresponding convex optimization problem has a
unique solution, which cannot be written in a closed form but is
determined efficiently using numerical methods for quadratic
programming (see Chapter 10 of Scholkopf and Smola*® and
Platt>®). One key feature of SVR is sparsity, i.e. only a few of
the data points contribute to the solution. These are called
support vectors. Though the number of support vectors is
generally small it may rise dramatically for very complex or very
noisy problems.*

For a given data set with n data points, SVR solves the
optimization problem

n
1
ma}i - Z (ai - ai*)(aj - aj*)k('xir xj)
a,q, .
i & ij=1

n n
— ¢ z (o, + &) + Zyi(ai —a),
i=1 i=1

(11)
subject to the following constraints
n
Z (0, — ") =0and0 < a, ¢ < C
-1 (12)

where C is a regularizing hyperparameter. The regression
function takes the form

flx) = Z (o — ai*)k(xir x)
_ (13)

Based on preliminary experiments the Gaussian and Laplacian
kernel were selected for the support vector regression
employed in this study. Thus two hyperparameters need to
be optimized, namely the kernel width ¢ and the parameter C.
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3.4. Mixed Effects. The space of relaxed geometries of
small chemical compounds we are considering is not equally
populated and exhibits some intrinsic structure, e.g. clusters of
compounds with the same stoichiometry surrounded by cavities
due to not chemically feasible stoichiometries. The forming and
characteristics of these clusters depend on the metric, which is
used to measure the distance between compounds. In Section §
and Figure 10 we discuss the shape of clusters generated by
different metrics used in our work.

Mixed-effects models can be used to account for the cluster
structures in compound space. They are intended for the
analysis of such grouped or clustered data.”® Mixed-effects
models divide the sources of variation of atomization energy
into two categories, namely within-group variation (called
random effects) and between-group variation (called fixed
effects). Let us focus on [;-penalized linear mixed-effect models,
which assume a linear target function of the form

)= x\p+x"b+e i=1,.,N (14)
for each group i. The first part of this model (x//3) describes the
fixed effects, i.e. the linear effect of the input features x; on the
atomization energy y, that is independent of the group structure.
The second part (xMb;) captures the group-dependent
contributions (random effects), and ¢; is an independently
and identically distributed (iid) random error term.

For our data set of 7165 molecules the most stable cluster
structure (with respect to different clustering methods and data
partitioning) was reached based on eight cluster centers. These
clusters mainly differed in terms of molecular size and atomic
composition (especially whether sulfur is present or not). Since
it is impossible to visualize the mixed effect models in our input
space of more than 20 dimensions we illustrate the idea in
Scheme 1: after assigning the molecules into the different
clusters the data are decorrelated in such a way that the
covariances between input dimensions becomes zero and the
variance in each dimension one. This way the molecular
representation and atomization-energy information causing the
grouping is partially removed. Afterward linear regression is
used to estimate the fixed effect 8. In a last step the random
effects b; are recovered for each cluster.

The [-penalized linear mixed-effects model allows for high-
dimensional input data and efficient selection of the fixed-
effects variables by implementing a Lasso-type concept™ (see
Schelldorfer et al.>® and Fazli et al.> for details). In this work ;-
penalized linear mixed-effects models are used as a nonlinear
method. To incorporate the nonlinearity the kernel trick is
applied, and the mixed effect is integrated into a kernel matrix
by adding a block-wise diagonal matrix of group memberships

dx.doi.org/10.1021/ct400195d | J. Chem. Theory Comput. 2013, 9, 3404—3419
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to the original kernel matrix in a kernel ridge regression
model.*®

3.5. Multilayer Neural Networks. In multilayer neural
networks, the function f that maps inputs to outputs is
implemented by a directed set of interconnected units, which
are called neurons.**”>® Each neuron implements a basic
computation, typically y = tanh( Y. wa; + b), where {x;} are the
inputs to the neuron, {w,} are the weights, b is a constant, and y
is the neuron output. A neuron is depicted in Figure 4 (left).

b

X4 Q

Wy G
X3 y

w3 } y
X2 w; .

X W

w 1

X1 1 I W T

Figure 4. Left: example of a single neuron annotated with its inputs,
weights, bias, and output. Right: multilayer neural network with its
multiple layers and parameters.

The neurons are placed in a layered architecture as shown in
Figure 4 (right). The mapping between inputs and outputs is
implemented by the following computation:

h, = tanh(\r\/,»hi_1 + bi) for1 <i<L, andh;=x
y = tanh(V-h;)

The matrices Wy,..,W,,V and vectors by,..,b; are the model
parameters and have to be learned from data. Neural networks
are generally trained one sample at a time, using stochastic
gradient descent.”” Typically the training procedure requires a
large number of iterations but scales well with the number of
samples. Thus neural networks are able to absorb a large
number of data points such as several random Coulomb
matrices per molecule, and as we will see later, they strongly
benefit from these additional data points. An advantage of
neural networks is that they are able to automatically extract,
layer after layer, the representation necessary for solving the
task.””%7%2 'As a downside, neural networks algorithms
typically have multiple local minima, ie. if a parameter
configuration where any small change to this parameter set
only reduces the model quality is discovered, we have in general
not reached the optimal parameter set. This implies that
successful training requires an experienced choice of para-
metrizations, learning rates, and initializations in order to find
the best parameter set.””*

3.6. k-Nearest Neighbor. A further well-known nonlinear
algorithm is the k-nearest neighbor method (KNN).* For each
new sample x the k nearest training samples are selected, and
the predominant label among those neighbors determines the
label in classification tasks; for regression tasks the (weighted)
mean label value is taken into account. Despite its simplicity the
KNN approach often works well, if a reasonable distance
measure is applied (typically the Euclidean distance). Only one
hyperparameter k needs to be determined, e.g. by cross-
validation. An illustration of a KNN prediction for ethanol is
given in Figure 5. Note that this approach fails on our
molecular data set especially for very small molecules, where
few compounds of similar size and structure are available.
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Figure S. k-nearest neighbor prediction for ethanol with k = § (k = 2):
The five (two) closest neighbors of ethanol with respect to Euclidean
distances of the sorted Coulomb matrix representations are calculated,
and the average over the corresponding atomization energies (given
below the structures in kcal/mol) is used as predicted value (true value
—808 kcal/mol).

4. METHODOLOGY

4.1. Concepts of Model Selection and Validation.
4.1.1. Model Assessment. The overall goal of machine learning
is to establish high-quality prediction models. The quality of a
model is measured by the generalization error — the expected
prediction error on new data. As the error on new data cannot
be known, one must approximate it by an inference procedure,
which allows one to judge how well the learning machine
generalizes.

The simplest procedure separates the data set into a training
and a test set (also called the hold-out set). The model is then
built on the training set, and the average loss over the test set
(test error)

1 n
test — I( ;T (Xi))
" " gl: a (18)

serves as an approximation of the generalization error.
Averaging over the absolute error loss function results in the
mean absolute error (MAE); for the squared error loss function
the mean squared error (MSE) is calculated. Instead of the
latter, the root mean squared error (RMSE), which estimates
the standard deviation of an unbiased estimator, is commonly
reported.

It is important to note that the training error (erry,,) does
not provide an unbiased estimate of the generalization error
since it decreases for models that adapt too close to the training
data, i.e. overfit (Figure 6).

To build an optimal model and assess its quality accurately
following this simple procedure requires large data sets, which
in practice generally exceed the data available.®> However, this
procedure is often applied in the context of potential-energy
surfaces fitting. Here the ML models are frequently evaluated
on a single set of randomly selected structures or extensive
molecular dynamics runs.**®* One of the standard procedures
to estimate the generalization error on limited data sets is k-fold
cross-validation, which is depicted in Figure 7.

In k-fold cross-validation the data set is randomly split into k
equally sized subsets (splits). Each of these splits serves as a test
set once, while the remaining splits are used for training. In this
way, k models are built, and one prediction is generated for
each available data point. The errors of the k different models
are averaged into one cross-validation error. Note that the
cross-validation error is still a random variable, which depends
on the initial splitting of the data into k splits. To reduce its
variance the whole process of cross-validation may be repeated
several times.

The number of folds k should be chosen with respect to the
number of available data points and computational capacities.
Small data sets and complex tasks require larger values of k to
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Figure 6. Trends of training and test error for rising model complexity
illustrated for kernel ridge regression with Gaussian kernel,
eigenspectrum representation and 4 set to 0.01. A smaller kernel
width results in a more flexible or complex model. This explains why
the model overfits (i.e., the training error decreases while the test error
increases) for kernel widths chosen too small.

1. Split data into k sets of roughly the same size, e.g. into k=35
splits.

2. Use (k — 1) splits for training and model selection. Then test
the generated model on the remaining hold-out or test split.
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3. Repeat step 2. k-times, i.e. until each subset has been once
used for testing.
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4. Combine the k estimates of the prediction error into one cross-
validation error.

Figure 7. Model assessment using k-fold cross-validation. This cross-
validation scheme is frequently used to estimate how accurately
predictive models will perform in practice. Multiple rounds of cross-
validation may be performed using different partitions in order to
reduce variability of the calculated validation error.

ensure sufficiently large training sets. For k = N we attain the
maximal possible number of folds. This cross-validation scheme
is called leave-one-out (LOO) cross-validation and has high
computational cost, since N models must be constructed. For a
few algorithms the LOO cross-validation error may be derived
analytically. In general a k value of 5 or 10 is recommended by
Breiman and Spector.%®

4.1.2. Model Selection. To construct a learning machine, we
not only need to optimize the loss function with respect to the
model parameters (as done by learning algorithms), but the
hyperparameters need to be chosen with care in order to
regularize the optimization problem appropriately. A carefully
designed implementation of this crucial set of procedures is
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what makes machines learn successfully. One of the standard
procedures to select hyperparameters is again k-fold cross-
validation: First a number of candidate models, i.e. models with
different hyperparameter settings, are specified. Then the data
set assigned as the “train and model selection” set is split into k
equally sized subsets. Each candidate model is trained on (k—1)
subsets and evaluated on the remaining validation subset. As
before, the training and evaluation is repeated by cycling
around the validation subset (see Figure 7 Step 3). Finally the
candidate model that performed best in the majority of the k
repetitions is selected and trained on all k subsets. It is
important that the model selection is done separately from the
quality assessment. Using cross-validation for both tasks results
in a nested cross-validation scheme (Figure 8).

Il I B = =
test
Il Il

validation 43 inner loop
5x outer loop

training

Figure 8. The nested cross-validation procedure that was implemented
to select the hyperparameters of the kernel-based models and to
estimate the generalization error.

4.2. Evaluation of Models and Data Representations
on GDB Molecular Data Set. 4.2.1. Model Validation. In
this study, model validation is done by stratified 5-fold cross-
validation. For the stratification, we follow the approach of
Rupp et al” The 7165 molecules are stratified into 1433
buckets of five molecules each, by level of atomization energy.
Then, folds are produced by randomly picking one molecule
from each bucket. The stratified sampling procedure ensures
that each fold contains a representative set of atomization
energies and, therefore, reduces the variance of the estimator of
the test error. In addition to this cross-validation analysis,
saturation curves are calculated to illustrate how the prediction
accuracy changes with an increasing number of training
samples. Training sets from 500 to 7000 data points were
sampled identically for the different ML methods.

4.2.2. Parameter Selection and Implementation Details.
Choice of Parameters for Kernel Methods. The kernel
algorithms were trained using a Gaussian and a Laplacian
kernel. No further scaling or normalization of the data was
done to preserve the meaning of the data in chemical
compound space. To determine the hyperparameters for each
method we used a grid search with an inner loop of cross-
validation. More specifically, we apg)lied a nested cross-
validation or double cross-validation®”®® scheme and per-
formed a 4-fold cross-validation to determine the optimal
hyperparameters on each training set of the S5-fold cross-
validation (see Figure 8). The mean and variance of the
resulting five sets of hyperparameters are listed for each model
in the Supporting Information.

Learning on Random Coulomb Matrices Using Kernel
Methods. Kernel-based methods such as kernel ridge
regression are notoriously difficult to scale to larger data sets.
This makes the learning using several random Coulomb
matrices per molecule as proposed in Section 2.2 difficult.
Large-scale kernel methods have been devised;*” however, they
are either application-specific or induce some performance vs
computation trade-off’’ that may outweigh the benefits of using
more samples. We consider two different approaches:
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(a) maximal kernel matrix: this first approach consists of
generating as many data points from the Coulomb matrix
distribution as the kernel learning algorithm can afford. Due to
the scaling issues of most kernel algorithms, it is in practice
difficult to handle more than a few tens of thousands of data
points. In the case of a data set of 5000 molecules, this equals
using no more than 10 permutations per molecule.

(b) average over kernels: an alternative solution to the scaling
problem of the previous solution is to redefine the kernel
operator to account for the multiple permutations of the
Coulomb matrix. The kernel between two molecules i and j
becomes

k(ax;, xj) = % z K(x;, P(x,')) + x(B(x), x) (16)
I=1

The kernel « is typically a simple Gaussian or Laplacian kernel.
Py(x) is the I"" permutation of the Coulomb matrix x. This way,
the kernel matrix remains of size N gjecales X Nmolecules a0
remains scalable for all employed kernel-based methods.
Choice of Parameters for the Neural Network. Given the
large number of parameters in a neural network, most of them
are usually selected heuristically: We first expand the raw
Coulomb matrix as x = [..,, tanh ((C—0)/6), tanh (C/6), tanh
((C+0)/0),...], where the hyperparameter & determines the
granularity of the expansion. We choose 6 = 1 as it offers a
good trade-off between representational power and computa-
tional efficiency. The resulting expanded input x has between
1500 and 2000 dimensions. We choose a neural network with
two hidden layers of 400 and 100 hidden units, respectively.

1
in

57

Neural network weights are initialized as w ~ N/ (0,

where a;, is the number of incoming connections to a neuron.
We use stochastic gradient descent with mini batches of size 25
and maintain a moving average of neural network parameters
throughout training. When training the neural network on
random Coulomb matrices, we compute predictions for out-of-
sample molecules based on 10 realizations of the random
Coulomb matrix, and taking the average of the associated
network outputs.

For selecting the optimal number of iterations of the gradient
descent, we use a simple hold-out validation procedure where
90% of the training data is used for training the neural network
and 10% for validation. The number of iterations is selected
using early stopping (where the gradient descent stops once the
error on the validation set has reached its minimum).

4.3, Pitfalls, Causes of Overfitting, and Practical Hints.
In this section we review common mistakes that may arise
when implementing ML methods. Not all of these pitfalls apply
to each situation. We explain under which circumstances each
pitfall becomes relevant, and, where appropriate, we underline
the pitfalls with examples related to our task of atomization-
energy prediction.

4.3.1. Pitfalls Concerning Data Distribution and Con-
stitution. Aggregation of Data Sets. The makeup of the data
set is a critical issue in machine learning. Often data are
assembled from different sources, e.g. different research groups,
levels of approximation, or experiments. Though all of them
describe the same data attributes, differences in accuracy and
data density may introduce an unfavorable bias. Let us consider
two data sets — one very small and highly accurate and a larger
one of high diversity but lower accuracy. If they are merged
naively, the accuracy of the small set is easily lost, and the
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resulting model predicts with an overall low accuracy. With the
knowledge of different data sources, a different level of accuracy
can be assigned to (or learned for) each subset of data, and the
resulting model will focus on the highly accurate data, wherever
it is available.”"”*

Regions of Low Data Density. Even if the data are taken
from a single source, an explorative analysis of the data
distribution is recommended. This can be done, for example, by
plotting the data or some projections of the data, e.g. using
principal component analysis (PCA).”>”* The chemical space
of druglike molecules contained in the GDB-13 is not equally
populated, and there are regions of low data density. If the data
are partitioned randomly for cross-validation, the splits might
vary highly regarding the concentration of data points from low
density regions. This unbalanced partitioning leads to a high
variance of the test error, which is a good indicator of a poor
data distribution. The phenomenon is diminished by stratified
sampling of the cross-validation splits, i.e. by distributing the
data to the different cross-validation splits according to their
labels in such a way that data from low density regions are
present in roughly equal proportions in each split.

As an example, we consider kernel ridge regression on our
data with a Gaussian kernel and the eigenspectrum
representation. With stratified cross-validation, we achieve a
mean absolute error of 10.04 + 0.25 kcal/mol. If the cross-
validation splits are generated without stratification we achieve,
for example, the following results: 10.14 + 0.84 kcal/mol, 11.08
+ 3.44 kcal/mol, 13.06 + 7.17 kcal/mol, or, worst, 64.94 +
110.95 kcal/mol.

Clusters. A different sampling strategy has to be applied to
clustered data, if the prediction task requires the interpolation
between clusters. Consider for example a data set where several
conformational isomers are given for each molecule and the
main interest lies in the prediction of new molecules (rather
than additional conformers). A model trained in a standard
cross-validation yields an overoptimistic generalization error,
i.e. the model performs poorly on new molecules compared to
the cross-validation results. A cluster analysis (or physical
knowledge) may help to detect such clusters and a clustered
cross-validation, where the compounds are distributed cluster-
wise over splits, ensures an unbiased model selection in this
situation.”®

Scaling of Inputs. Most machine learning methods are not
invariant under scaling of the input. Typically each input
dimension (feature) is standardized to have zero mean and unit
variance. The standardization ensures that all inputs are
penalized equally strong within regularization, which typically
produces better results. Moreover, the standardization generally
improves the condition of the optimization problem and
alleviates the selection of good model hyperparameters (e.g.,
kernel width, learning rate, initial solution). However, it may
sometimes distort the internal structure and relations between
input dimensions.

The general advice is to run experiments with the
standardized inputs if no prior knowledge is available.
Otherwise, it is worth checking whether an adjusted scaling
(or no scaling) that better reflects the importance and relations
of the features improves the results; e.g. in this study the input
dimensions are related and scaling proved to be disadvanta-
geous for all learning methods.

4.3.2. Pitfalls Concerning Modeling. Underfitting. When
implementing a machine learning method, the first problem
that may arise is that the learning algorithm performs poorly, is
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converging very slowly, or does not converge at all. This could
be due to an unsolvable problem (the molecules are not
appropriately represented, the data set is too small) or to an
inadequate implementation of the modeling procedure. The
following checklist may be useful to avoid the latter cause:

e Try normalizing the data to have mean O along each
dimension and variance 1. Also check that the inputs are
reasonably distributed by plotting a two-dimensional PCA of
data (see previous section on scaling of inputs).

e Make sure that the initialization of all parameters is
reasonable in the case of gradient-based learning algorithms.
For a neural network, initial parameters at each layer are
typically drawn iid from a Gaussian distribution of scale 1/
(a;,)"* where a,, is the number of incoming nodes that are
connected to each unit at the output of the layer. [For more
detailed practicalities concerning neural networks see LeCun et
al.>” and Montavon et al.>*] This is the heuristic we use in our
atomization-energy prediction model. Unreasonable initial
parameters, like zero-valued weights (no learning signal at
all), very large weights (sigmoid saturated), or correlated
weights can cause the algorithms to either diverge or converge
slowly.

e Try different learning rates for neural networks and other
gradient-based learning algorithms. The learning rate is a very
important parameter. A too small learning rate will lead to slow
convergence. On the other hand, a large learning rate may
cause the learning algorithm to diverge. A rule of thumb is to
try different learning rates logarithmically spaced between 107>
and 107,

® Check regularization strength. Regularization may improve
the condition of the optimization problem, especially in the
case of correlated inputs. In the context of quantum chemistry
where there are limited accurate theoretical values but no noise
on the calculated labels y, a small value of regularization must
be applied in order to reflect this low-noise assumption. Slightly
too strong regularization limits the flexibility of the function
and results in high prediction errors. This problem is illustrated
for a kernel ridge regression model on our data set in Figure 9.
The contour lines describe the test error in kcal/mol for
different kernel widths ¢ and regularization strengths A. For a
low regularization of 107° the test error reaches values around
9.5 kcal/mol. It quickly increases to values above 15 kcal/mol if
the regularization parameter is increased to 0.001 atomic units.

oTry different kernels for kernel methods (e.g, a linear
kernel, Gaussian kernel, Laplacian kernel). If the kernel is linear
but the problem is nonlinear, then the learning algorithm will
simply not work. This problem can be detected in a support
vector machine by counting the number of obtained support
vectors. A very small number of support vectors (ranging from
one to ten) is suspicious. Considering the relevant dimension-
ality of the kernel (ie, the number of kernel principal
components that correlate with the task)*” can also be helpful
in order to select the most appropriate kernel.

® Check the grid for grid-based hyperparameter selection. It
is important to make sure that the grid spans a sufficiently large
number of hyperparameter values, while, at the same time,
being sufficiently fine-grained for containing the best hyper-
parameters. Starting from a large and coarse grid iteratively
choose smaller and finer-grained grids, while always making
sure that the optimal hyperparameter values lie within the grid
and not on the edge of it. In the presence of multiple
hyperparameters, for example, the kernel width ¢ and the
regularization parameter A in kernel ridge regression, care must
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Figure 9. Hllustrating the effect of hyperparameter selection for kernel
ridge regression with Gaussian kernel and the eigenspectrum
representation. The contour lines describe the test error in kcal/mol
for different kernel widths ¢ and regularization strengths A in atomic
units. Note that A and o live on different scales. The plot illustrates that
the two hyperparameters are not independent of each other and need
to be optimized together.

be taken. The two parameters are not independent of each
other and need to be optimized simultaneously. Figure 9
illustrates this dependency for a kernel ridge regression model
with Gaussian kernel and eigenspectrum representation. The
test error indicated by the contour lines is very sensitive to
changes of the regularization parameter. The optimal kernel
width lies above a value of 25, if it is optimized for a fixed
regularization value of 1078, For a higher regularization value,
e.g. 107°, the optimal kernel width is much smaller (around
12).

Overfitting. The reduction of the prediction performance
caused by too close adaptation of the model to the training data
is one of the most common problems in machine learning. In
particular, models with many degrees of freedom, such as
neural networks, tend to overfit. Three main causes of
overfitting — typical pitfalls — are explained below:

® Model selection on validation data: Suppose a model with
various sets of parameters is trained on some data and
subsequently evaluated on a separate test data set. Then the
model with the best performing sets of parameters is reported
together with the error on the test data. Unfortunately, this
model has been chosen (among all possible models) to
minimize the error on the test set. Thus the error on this test
set is not a fair estimate of the performance to be expected from
the model on future data. To generate realistic generalization
errors, it is absolutely necessary to do model selection as part of
the training procedure—separately from model validation.
Though this might sound trivial, there are a large number of
studies violating this rule by applying feature selection,
parameter selection, or scaling on the basis of the whole data
set. To reiterate, for the selection of features or standardization
of features only the training data from the current fold may be
used, not the whole set. Practically hyperparameter selection
together with unbiased performance estimation can be
implemented via the nested cross-validation scheme sketched
in Figure 8. Note that this model selection scheme can be easily
parallelized to reduce computation time.”®
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Table 3. Prediction Errors (In Terms of Mean Absolute Error and Root Mean Squared Error + Standard Deviation) for Several

Algorithms and Representations”

algorithm molecule representation MAE [kcal/mol] RMSE [kcal/mol]

basic methods mean predictor none 179.02 + 0.08 223.92 + 0.32

k-nearest neighbors eigenspectrum 70.72 + 2.12 9249 + 2.70

sorted Coulomb 71.54 + 0.97 95.97 + 145

linear regression eigenspectrum 29.17 = 0.3 38.01 + 1.11

sorted Coulomb 20.72 + 0.32 2722 + 0.84

methods with Gaussian kernel mixed effects eigenspectrum 10.50 + 0.48 20.38 £ 9.29

sorted Coulomb 8.5 + 045 12.16 + 0.95

kernel support eigenspectrum 10.78 + 0.58 19.47 + 9.46

vector regression sorted Coulomb 8.06 + 0.38 12.59 + 2.17

kernel ridge regression eigenspectrum 10.04 £+ 0.25 17.02 £ 2.51

sorted Coulomb 8.57 + 0.40 12.26 + 0.78

random Coulomb (2) 846 + 0.21 11.99 + 0.73

random Coulomb (5) 7.10 + 0.22 1043 + 0.83

random Coulomb (8) 6.76 + 0.21 10.09 + 0.76

average random Coulomb (250) 7.79 + 042 1140 + 1.11

methods with Laplacian kernel mixed effects eigenspectrum 9.79 + 0.37 13.18 + 0.79

sorted Coulomb 429 + 0.12 6.51 £ 0.56

kernel support eigenspectrum 9.46 + 0.39 13.26 + 0.85

vector regression sorted Coulomb 3.99 £+ 0.16 645 £ 0.71

kernel ridge regression eigenspectrum 9.96 + 0.25 13.29 + 0.59

sorted Coulomb 4.28 + 0.11 647 + 0.51

random Coulomb (2) 4.02 + 0.07 5.98 + 035

random Coulomb (5) 329 + 0.08 5.10 + 0.39

random Coulomb (8) 3.07 + 0.07 4.84 + 0.40

average random Coulomb (250) 4.10 + 0.14 6.16 + 0.65

multilayer neural network backpropagation eigenspectrum 14.08 + 0.29 2029 + 0.73

sorted Coulomb 11.82 + 0.45 16.01 + 0.81

random Coulomb (1000) 3.51 +0.13 5.96 + 0.48
previous PM6 atoms and coordinates 4.9 6.3
bond counting covalent bonds 10.0 13.0

“The ML algorithms are grouped into four categories: basic machine learning methods which serve as baselines, kernel methods using Gaussian
kernel, kernel methods using Laplacian kernel, and neural networks. For comparison results for bond counting and PM6 (adjusted to this data set) as
reported by Moussa® are given. (Some of the ML results are also included in a preliminary conference contribution.*”)

o Hpyperparameters: Like with underfitting, inappropriate
selection of hyperparameters, especially the regularization
strength, may cause overfitting. As an example Figure 6
illustrates how an unfavorable selection of the kernel width o
can cause overfitting of a kernel ridge regression model on our
data.

o Neglect of baselines: Overfitting is also defined as the
violation of Occam’s Razor by using a more complicated model
than necessary.”” If a complex model is directly applied without
considering simple models, then the solution found may be
more complex than the underlying problem and more intuitive
relations between input and output data will remain
undetected. Thus, it is desirable to additionally report results
on simple baseline models like, the mean predictor, linear
regression, or KNN in order to determine the need for complex
models.

5. RESULTS AND DISCUSSION

Here, we apply the techniques described in the first part of the
paper (learning algorithms, data representations, and method-
ology) to the problem of predicting atomization energies from
raw molecular geometries. We run extensive simulations on a
cluster of CPUs and compare the performance in terms of
cross-validation error of the learning algorithms shown in
Section 3 and data representations described in Section 2. We
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also discuss computational aspects such as training time,
prediction speed, and scalability of these algorithms with the
number of samples.

Cross-Validation Study. The cross-validation results for
each learning algorithm and representation are listed in Table 3.
The algorithms are grouped into five categories: basic machine
learning methods which serve as baselines, kernel methods
using a Gaussian kernel, kernel methods using a Laplacian
kernel, neural networks, and two physically motivated
approaches reported by Moussa.>®

We first observe that ML baseline models in the first category
are clearly off-the-mark compared to the other more
sophisticated ML models such as kernel methods and
multilayer neural networks. This shows that the problem of
predicting first-principles molecular energetics is a complex
one. Among the set of baseline methods, linear regression
performs significantly better (best MAE 20.72 kcal/mol) than
k-nearest neighbors on this data set (best MAE 70.72 kcal/
mol). This indicates that there are meaningful linear relations
between physical quantities in the system and that it is
insufficient to simply look up the most similar molecules (as k-
nearest neighbors does). The k-nearest neighbors approach fails
to create a smooth mapping to the energies.

Next, the kernel methods with Gaussian kernel are compared
to the methods that use the Laplacian kernel (instead of the
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Figure 10. Distribution of pairwise distances within the GDB data set based on the sorted Coulomb representation of molecules (in hartree). The
left plot illustrates the distribution of Euclidean distances between molecules. The cluster between 320 and 410 consists of distances between
molecules with different number of sulfur atoms. The other cluster includes pairs of molecules having both none or both one sulfur atom. For the
Manhattan distance metric (right plot) these clusters are less pronounced, and the distance values show a much larger variety. This may aid the

prediction task.
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Figure 11. Two-dimensional PCA of the distribution of random Coulomb matrices illustrated for SO molecules (calculated over the set of all
molecules). The Manhattan distance between Coulomb matrices is given as input to PCA. Each cloud of same-colored points represents one
molecule, and each point within a cloud designates one random Coulomb matrix associated with the molecule.

Gaussian). The Laplacian kernel seems to be better suited for
the prediction problem than the Gaussian kernel, as it improves
results for all kernel methods. In order to gain insight into the
kernel functions we compare the effect of the Manhattan
distance metric and the Euclidean distance metric on the
distribution of distances between molecules in Figure 10. (Note
that the main difference between Laplacian and Gaussian kernel
is the use of the Manhattan distance instead of the Euclidean
distance.) The Euclidean distances lie in two narrow separate
groups, while the Manhattan distance spreads a much larger
range of distances and shows larger variety with respect to
different stoichiometries of the molecules. One might speculate
that the Laplacian kernel with its Manhattan distance metric
better encodes the approximately additive nature of atomization
energy than the Gaussian kernel with its Euclidean distance
metric. Additionally, the longer tails of the Laplacian kernel and
its nondifferentiable peak at the center help to model piecewise-
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smooth functions (i.e., composed of cliffs and linear plateaus).
Such piecewise smoothness may arise as a result of the highly
complex nature of the learning problem or possibly due to
suboptimal molecular representations.

The results on all ML methods illustrate the impact of the
molecule representation on the prediction performance. For
kernel ridge regression with Laplacian kernel the trend is the
most distinct: the random Coulomb matrix representation
performs best (MAE down to 3.07 kcal/mol), followed by the
sorted Coulomb matrix (MAE 4.28 kcal/mol) and the
eigenspectrum (MAE 9.96 kcal/mol). This ordering correlates
with the amount of information provided by the different
representations: The randomly sorted Coulomb matrix
representation is the richest one as it is both high-dimensional
and accounting for multiple indexing of atoms. This is best
illustrated in Figure 11 where Coulomb matrix realizations form
“clouds” of data points with a particular size, orientation, or
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Figure 12. Saturation curves for various ML models and representations (KRR = kernel ridge regression, NN = multilayer neural network, Mean =
mean predictor, KNN = k-nearest neighbors, laplace = with Laplacian kernel, gauss = with Gaussian kernel, sorted = using sorted Coulomb
representation, 2/5/8/1000 = using 2/5/8/1000 random Coulomb matrices to represent one molecule). Left: Log—log plot where the slope of the
line reflects the learning rate of the algorithm. Right: nonlogarithmic learning curves for kernel ridge regression and neural network models. Kernel
ridge regression with Laplacian kernel and 8 random Coulomb matrices per molecule performs best. However, due to the scaling problem of kernel
methods, the representation of 8 random Coulomb matrices per molecule could not be used with kernel ridge regression for data sets larger than

5500 molecules.

shape for each molecule. This cloud-related information is
missing in the sorted Coulomb matrix representation, as each
molecule is represented by only one data point. The
eigenspectrum representation has the lowest performance in
our study, in part, because different Coulomb matrices may
result in the same eigenspectrum and information is lost in this
mapping. This reduction of information has a particularly
dramatic impact on the performance of complex models (e.g,
kernel ridge regression or neural networks), as they are no
longer able to exploit the wealth of information available in the
previous representations.

The last group of ML method presents results for multilayer
neural networks. Interestingly, these methods do not perform
better than kernel methods on the eigenspectrum representa-
tion (neural networks MAE 14.08 kcal/mol, while kernel
methods are below 10.5 kcal/mol). Moving from the
eigenspectrum to the sorted Coulomb matrices neural networks
improve significantly (MAE 11.82 kcal/mol), and finally neural
networks are almost on par with the kernel methods
considering the random Coulomb matrix representation.
Note that using many randomly permuted Coulomb matrices
(typically more than 1000 per molecule) is crucial for obtaining
good performance in the order of MAE 3.5 kcal/mol with a
neural network (while for kernel ridge regression models five
permutations are sufficient). Figure 11 shows how random
permutations of the Coulomb matrix help to fill the input space
with data points and, thus, allow for learning complex, yet
statistically significant decision boundaries.
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The last category includes results on bond counting and the
semiempirical method PM6’ taken from Moussa.®> Bond
energies are refit to the given data set, and PMG6 is converted to
an electronic energy using a per-atom correction in order to
allow for a fair comparison to data driven ML methods. His
validation setup slightly deviates from our study (static training
set of S000 compounds instead of S-fold cross-validation). This
may introduce a bias in the MAE. However, this will not affect
the qualitative results: simple ML models are clearly inferior to
bond counting or PM6 methods that have been adjusted to the
data set. However, bond counting uses explicit information
about covalent bond orders. This information is not explicitly
included in the Coulomb matrix. Given that, it is important to
note that the best kernel ridge regression model achieves a
MAE of 3.1 kcal/mol compared to 4.9 kcal/mol (PM6) and
10.0 keal/mol (bond counting).

Saturation Study. The results of the saturation study are
summarized in Figure 12. The learning curves (cf. ref 78)
illustrate the power-law decline of the prediction error with
increasing amount of training data. Each curve can be
characterized by the initial error and the “learning rate”, i.e.
the slope of the learning curve in the log—log plot. The curves
for the mean predictor and the KNN model are rather flat,
indicating low learning capacity. The steepest learning curve is
obtained by the neural network based on 1000 randomly
permuted Coulomb matrices per molecule. This may be
attributed to the fact that the neural network gradually learns
the data representation (in its multiple layers) as more data
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become available. The neural networks still do not perform
better than the kernel ridge regression model with eight
randomly permuted Coulomb matrices and a Laplacian kernel.
The latter already yields good results on smaller data sets and
demonstrates the gain of providing the learning algorithm with
a good similarity measure (or kernel). However, for the
representation of eight random Coulomb matrices per molecule
the learning curve of kernel methods is incomplete. The
calculation failed for more than 5500 molecules (i.e., a kernel
matrix of (5500-8)* = 1936 X 10° entries). These scaling
problems together with calculation times are discussed in the
next section. In summary, the saturation study confirms our
previous observations: The baseline methods cannot compete
with sophisticated ML algorithms, the Laplacian kernel yields
better results than the Gaussian kernel, and among the three
different molecular representations the random Coulomb
matrices perform best.

The saturation study also illustrates the limits of the
presented approaches: The molecular representation and
applied algorithm define the maximal reachable accuracy.
Even large data sets can barely improve the performance of
the best models below 3 kcal/mol. Note that the accuracy of
our energy calculation is estimated to be on the order of 3 kcal/
mol. Even a perfect model that reflects chemical reality would
probably yield errors in this order of magnitude. Only a more
accurate or larger data set could clarify which further
enhancements of the algorithms and chemical representations
are recommendable in order to explore chemical compound
space.

Runtime Comparison. Training and prediction times of
most ML methods depend on the size n of the training set and
the maximal size of a molecule or more precisely the
dimensionality of the vector representing each molecule d.
Runtime obviously depends on the machine as well as the
implementation used. For this reason, the numbers given here
are only meant to provide generic guidance.

In general, baseline methods, e.g. the k-nearest neighbors or
linear regression, are fast to train. The k-nearest neighbors
approach does not require any training and takes less than 1 s
to predict 1000 compounds using either a sorted Coulomb or
eigenspectrum representation. However, the prediction time of
k-nearest neighbors scales with the number of training samples
(O(n)), while the prediction time of linear regression is
independent of n. (It only scales with the dimensionality d of
the input.)

Kernel ridge regression as well as mixed effects models take
only a few seconds to train on 3000 samples using the
eigenspectrum or sorted Coulomb representation for one set of
hyperparameters. However, training times for mixed effects
models as well as kernel ridge regression models scale with
O(n*) and require O(n*) memory space. Prediction on our data
set is fast (less than 1 s for 1000 samples) but scales linearly
with n. Kernel ridge regression with 3000 training samples on a
stochastic Coulomb representation with eight permutations still
takes only a matter of minutes.

Support vector regression is implemented using an iterative
approach. When a fixed number of iterations is assumed,
support vector regression training and testing scale with O (n-n,,
+ n) and O(n,), respectively, where n, is the number of
support vectors. For 3000 training samples, support vector
regression training times varied from a few seconds to about 1 h
depending on the cost parameter and representation.
Prediction is fast and takes less than 1 s for 1000 samples. In
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general, support vector regression trades training speed for
prediction speed as the learning algorithm seeks to minimize
the number of data points that contribute to the prediction
function.

For kernel methods the influence of the input dimensionality
d on the runtime depends on the used kernel. Generally
computation times of kernels grow slowly with rising
dimensionality which makes kernel methods a favorable tool
for small high-dimensional data sets.

The only algorithm that requires more than a few minutes for
training is the multilayer neural network, which took about 15
min to train on 3000 compounds using the sorted Coulomb
representation and about 10 h to train on the stochastic
Coulomb representation with 1000 permutations. While this is
slow compared with the other methods, the multilayer neural
network offers the advantage of (almost) linear scaling in
O(kn) for training, where k is the size of the network, which
grows with n and d. Unlike training, prediction in a neural
network is fast (less than 1 s for 1000 samples) and does only
depend on the size of the network.

6. CONCLUSIONS

Algorithms that can predict energies of ground-state molecules
quickly and accurately are a powerful tool and might contribute
substantially to rational compound design in chemical and
pharmaceutical industries. However, state-of-the-art ab initio
calculations that achieve the “chemical accuracy” of 1 kcal/mol
are typically subject to prohibitive computational costs. This
makes the understanding of complex chemical systems a hard
task and the exploration of chemical compound space
unfeasible. Semiempirical models on the other side trade
accuracy for speed. Here machine learning can provide an
interesting contribution barely compromising in this trade-off.
Specifically, we show that machine learning allows one to
drastically accelerate the computation of quantum-chemical
properties, while retaining high prediction accuracy.

All ML algorithms surveyed in this work achieve the first goal
of making quantum-chemical computation a matter of
milliseconds rather than hours or days when using ab initio
calculations.

With respect to prediction accuracy, our results improve over
the 10 kcal/mol MAE using kernel ridge regression that was
reported recently by Rupp et al.” While simple baseline ML
methods such as linear regression and k-nearest neighbors are
not suited for this task, more sophisticated methods such as
kernel-based learning methods or neural networks yield
prediction errors as low as 3 kcal/mol achieved out-of-sample.
This substantial improvement results from a combination of
multiple factors such as a choice of model (such as the kernel
function) and an appropriate representation of the physical
properties and invariance structure of molecules (random
Coulomb matrices). These factors interact in a complex
manner; our analysis is a first step and further investigation
should follow.

The focus of this work was on the prediction of ground-state
atomization energies for small molecules. However, all methods
also provide derivatives which can be used as forces in atomistic
simulations. Whether these forces are (given an appropriate
training set) of similar accuracy as the predicted atomization
energies is a point of further research.”* Moreover, alternative
representations of molecules should be elaborated for this
different task—especially when moving to large systems like
proteins.
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One practical contribution of this work was to establish a
best-practice use of ML methods. Having done this we clearly
point to erroneous modeling and model selection (which is
unfortunately still quite common in applications of ML
methods). We reiterate the fact that ML techniques can be
error prone if the modeling does not adhere to a strict
methodology, in particular, training and validation procedures.
Failing to select hyperparameters appropriately or to keep test
data aside will likely lead to overly optimistic assessment of the
model’s generalization capabilities.

Modeling and model assessment are always limited to the
available data regime; thus predictions beyond the space
sampled by the training data carry uncertainty. For future
studies it will be important to further explore, understand, and
quantify these limits as well as to enlarge the investigated
compound space. Many ML methods are not designed to
extrapolate. However, their interpolation in a nonlinearly
transformed space is much different from common linear
interpolations in the data space (see Figure 3).

There is no learning algorithm that works optimally on all
data sets. Generally, we recommend a bottom-up approach,
starting from simple (linear) baseline algorithms and then
gradually increasing the complexity of the ML method for
further improving model accuracy.

Concluding, ML methods implement a powerful, fast, and
unbiased approach to the task of energy prediction in the sense
that they neither build on specific physical knowledge nor are
they limited by physical assumptions or approximations. Future
studies will focus on methods to decode the trained nonlinear
ML models in order to obtain a deeper physical understanding
and new insights into complex chemical systems.
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