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Abstract

The purpose of this study was to develop and assess a new quantitative four-view mammographic 

image feature based fusion model to predict the near-term breast cancer risk of the individual 

women after a negative screening mammography examination of interest. The dataset included 

fully-anonymized mammograms acquired on 870 women with two sequential full-field digital 

mammography (FFDM) examinations. For each woman, the first “prior” examination in the series 

was interpreted as negative (not recalled) during the original image reading. In the second 

“current” examination, 430 women were diagnosed with pathology verified cancers and 440 

remained negative (“cancer-free”). For each of four bilateral craniocaudal and mediolateral 

oblique view images of left and right breasts, we computed and analyzed eight groups of global 

mammographic texture and tissue density image features. A risk prediction model based on three 

artificial neural networks was developed to fuse image features computed from two bilateral views 

of four images. The risk model performance was tested using a ten-fold cross-validation method 

and a number of performance evaluation indices including the area under the receiver operating 

characteristic curve (AUC) and odds ratio (OR). The highest AUC = 0.725±0.026 was obtained 

when the model was trained by gray-level run length statistics (RLS) texture features computed on 

dense breast regions, which was significantly higher than the AUC values achieved using the 

model trained by only two bilateral one-view images (p < 0.02). The adjustable OR values 

monotonically increased from 1.0 to 11.8 as model-generated risk score increases. The regression 

analysis of OR values also showed a significant increase trend in slope (p < 0.01). As a result, this 

preliminary study demonstrated that a new four-view mammographic image feature based risk 

model could provide useful and supplementary image information to help predict the near-term 

breast cancer risk.
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I. INTRODUCTION

Due to the controversy and low efficacy of current uniform population-based mammography 

screening, 4, 22 developing a new personalized breast cancer screening paradigm to detect 

more early cancers and also substantially reduce false-positive recalls has been attracting 

extensive research interest in the last several years. 8, 15, 32 The goal of developing and 

implementing a personalized cancer screening paradigm is to identify a small fraction of 

women with significantly higher-than-average near-term risk of developing breast cancer. 

As a result, instead of a uniform mammography screening protocol, each woman should 

have an adaptive or adjustable screening interval and/or screening methods. Specifically, 

only a small fraction of “high-risk” women should be screened more frequently (namely, 

annually or semi-annually), whereas the vast majority of women with average or lower near-

term risk should be screened at longer intervals (e.g., every two to five years) until their 

near-term cancer risk significantly increases in new assessment.

The success of establishing an optimal personalized breast cancer screening paradigm 

depends on the development of a reliable risk prediction model. Although many 

epidemiology study-based breast cancer risk models, such as Gail, Claus, and Tyrer-Cuzick 

model 2, 6, have been developed to assess a long-term or lifetime relative risk of a woman 

developing cancer compared to an average general population risk, establishing a 

personalized screening mammography paradigm requires developing new risk models that 

have higher discriminatory power in predicting the risk of individual women developing 

cancer in the near term. Most of the new risk models developed for investigating the 

feasibility of personalized screening are primarily based on breast or mammographic 

density. 7 Despite the fact that breast density is the second highest risk factor behind age, 2 

its discriminatory power at the individual level remains quite low and controversial. 16, 30 

Subjectively rating mammographic density based on the BIRADS standard is often not 

accurate or reliable due to the large intra- and inter-reader variability. 3 In addition, many 

useful mammographic density features, such as tissue spiculation patterns and bilateral 

asymmetry cannot be quantitatively evaluated and compared using subjective (visual) 

assessment.

To overcome these issues and develop a quantitative mammographic image feature based 

near-term breast cancer risk model, in our recent work, we had identified a new breast 

cancer risk factor that relates to the bilateral mammographic density asymmetry between the 

left and right breasts and investigated its association with the risk of the individual women 

having mammography-detectable breast cancer in the next sequential screening 

mammography after a negative examination of interest. 45 By combining the selected image 

features and three popular risk factors (namely, age, family history and subjectively-rated 

breast density using BIRADS) used in existing epidemiology based risk models, we also 

trained and tested a support vector machine (SVM) classifier to predict the near-term risk/

likelihood of breast cancer development, which yielded the area under a receiver operating 

characteristic (ROC) curve, AUC = 0.725±0.018 and maximum odds ratio of 12.34. 36

Based on the promising results of our previous studies, in this study we focused on 

investigating two new issues to further improve the performance and robustness of applying 

Tan et al. Page 2

Ann Biomed Eng. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this new quantitative image feature biomarker or analysis method to predict near-term breast 

cancer risk. First, since a large number of image texture features can be computed from 

digital mammograms, how to identify effective features and minimize redundancy is 

difficult in CAD and other quantitative image analysis fields. In this study, we applied a 

number of popular algorithms used in medical image processing to compute mammographic 

image texture features including Gabor features, 26 Weber Local Descriptor (WLD) 

features, 11 gray-level run length texture features, 37 gray-level co-occurrence matrix 

(GLCM) based features, 20 and generic statistical or directional based features including a 

fractal dimension texture based feature 1 from the different breast regions. We then 

performed a comprehensive data analysis to identify a group of image features that have the 

optimal (or “best”) association to the near-term breast cancer risk prediction. Second, most 

of the previous studies of predicting breast cancer risk used only mammographic tissue or 

density features computed from a region of interest (ROI) that are extracted from one 

mammogram 23, 42 and our previous studies only used two bilateral craniocaudal (CC) view 

images. 36, 45 In this study, we developed and tested a new scheme to combine the 

mammographic density features computed from four mammograms including bilateral CC 

and mediolateral oblique (MLO) view images of left and right breasts. Specifically, we 

introduced a new “scoring fusion” approach to extract and fuse information derived from all 

four images. Although a four-view image based computer-aided detection (CAD) scheme of 

mammograms has been investigated in our previous study to reduce false positive recalls in 

screening mammography, 35 integrating image features computed from four-view images, to 

the best of our knowledge, has never been tested and applied for the breast cancer risk 

prediction task.

Therefore, the purpose of this study is to identify a group of highly discriminative and non-

redundant image features from all four-view screening mammography images and develop a 

new CAD-based near-term breast cancer risk prediction model by fusing the effective image 

features computed from both CC and MLO view images using a new “scoring fusion” 

classification scheme. The details of our scheme, experimental procedures and results are 

reported in the following sections.

II. MATERIALS

As an ongoing research effort, we have been continuing to retrospectively collect fully-

anonymized full-field digital mammography (FFDM) images from an available clinical 

database of University of Pittsburgh Medical Center to build a large and diverse database in 

the last several years. All images were acquired using Hologic Selenia FFDM systems 

(Hologic Inc., Bedford, MA, USA). The detail description of our institutional review board 

(IRB) approved image data collection protocol has been reported and different portions of 

this database have been used in a number of our previous studies. 35, 44, 45 In this study, 

from this existing database we assembled a dataset that consists of FFDM images acquired 

from 870 women who underwent at least two sequential FFDM screening examinations. 

Each examination had four FFDM images representing the CC and MLO view of the left 

and right breasts. From the results of the latest FFDM examination on record (or namely, the 

“current” images), 430 were considered “positive” cases including 366 screening detected 

cancer cases, 41 interval cancer cases and 23 high-risk pre-cancer cases with surgically-
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removed lesions. Among the remaining 440 “negative” cases, 220 were diagnosed with 

benign lesions or recalled but later proved to be benign or negative in the additional image 

workup or biopsy, and 220 were screening negative (not recalled). All benign and negative 

cases remained cancer-free followed by at least two next sequential FFDM screening 

examinations. The average ages and standard deviations were 59.5±11.5, 51.9±8.2 and 

46.1±5.6 years old for the positive, benign and negative groups of women, respectively.

For each case, we retrospectively retrieved FFDM images acquired from the most recent (or 

first “prior”) FFDM screening examinations which is typically 12-18 months prior to the 

“current” FFDM examination. All “prior” FFDM examinations were interpreted and rated 

by radiologists as “negative” or “definitely benign” (i.e., screening BIRADS 1 or 2), 

respectively. Thus, all these “prior” examinations were not recalled. These “prior” screening 

benign or negative images were used as the baseline images to be analyzed in this study. 

Although all these baseline images were negative, they were divided into different 

categories based on their status changes in the next sequential FFDM examinations (or 

“current” images). For example, the cases were divided into subgroups of “positive” (cancer 

detected in “current” images) or “negative” (i.e., remained cancer-free) cases.

Figure 1 shows two sets of bilateral CC and MLO view images acquired from the “prior” 

(left) and “current” (right) FFDM screening examinations of a woman. The “prior” images 

were interpreted as negative and a cancer (pointed by an arrow) was detected on the 

“current” examination by a radiologist, which was later confirmed in biopsy and pathology 

examinations. From Fig. 1, we can make two observations: first, we observe that the images 

from the CC and MLO views demonstrated different mammographic density and texture 

based properties within the lesion region and the breast fibroglandular tissue background. 

Thus, it is likely that different and supplementary information can be extracted from both 

CC and MLO views, which can be integrated in a risk prediction model or classifier with an 

appropriate fusion method. Second, bilateral asymmetry can be observed between the two 

(left and right) breasts in the “prior” images and especially in the regions surrounding the 

developing lesion, which indicates that useful information can be extracted by computing 

texture based features on these images.

Figure 2 displays the distribution of mammographic density of the cases in our dataset, 

which were rated by the radiologists based on mammographic density BIRADS categories. 

Data analysis results based on ANOVA test showed no statistically significant differences of 

the mammographic density distribution (BIRADS) between the three case subgroups (p > 

0.28) in our dataset.

III. METHODS

III.A. Automated breast segmentation and mammographic image feature computation

For each case in our study, two pairs of bilateral CC-view and MLO-view FFDM images of 

the left and right breasts were analyzed. To increase the accuracy of our scheme, we first 

applied an automatic segmentation scheme on each image to extract the breast regions as 

described in our previous publications. 35, 44 In brief, a gray level histogram of the image is 

plotted and an iterative searching method is used to detect the smoothest curvature between 
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the breast tissue and background or air region. The pixels in the background were discarded 

and the skin region was removed by a morphological erosion operation. To detect the breast 

region in the MLO images, an additional step was required to detect the chest wall/pectoral 

muscle, following which all pixels within the pectoral muscle were discarded as they did not 

add beneficial information to the detection task.

After the breast segmentation step, we applied a variety of computerized schemes to explore 

and compute different types of image texture features. We then analyzed and compared their 

correlations and contributions to predict near-term cancer development risk. In the literature, 

various epidemiology based studies have studied the association between many 

mammographic texture pattern features and breast cancer risk. 17, 18, 25, 28 Various studies 

have also analyzed different methods of estimating percentage mammographic density and 

its correlation with breast cancer risk. 5, 9, 21, 24 In this study, we examined individually and 

combined various texture and mammographic density based features that have been 

proposed in the literature, as well as some new features that to our knowledge have never 

been examined before for breast cancer risk prediction. Specifically, we examined and 

compared 8 different groups of mammographic image features in this study.

The first feature group consists of the popular gray-level run length statistics (RLS) texture 

features computed on the whole breast region. 37, 43 The RLS features consisted of: low gray 

level run emphasis, high gray level run emphasis, short run high gray level emphasis, gray 

level non-uniformity, and run percentage. To compute the RLS features, we first reduced the 

gray level range of the images from 4096 to 256 gray levels resulting in an 8 bit depth gray 

level run length matrix. We computed four run length matrices computed along 0, 45, 90, 

and 135 degrees. We then computed the final feature values as the average and maximum 

values of the four run length features along these directions.

The second group of features consisted of the RLS features computed on the dense breast 

region, whereby we had defined segmentation method of the dense breast region in our 

previous publications. 10, 36 The same features and computation methodology were used to 

compute the features for the dense breast region as for the whole breast region.

In the third feature group, we examined Gabor filter features 26 computed on the whole 

breast region. Gabor features are highly popular for various tasks including content-based 

mammogram retrieval 41 and face recognition. 19 In particular, the spatial response profiles 

of Gabor filters are similar to that of the mammalian vision receptive field. 26 An important 

advantage of Gabor filters is that they can withstand photometric disturbances, e.g. image 

noise, low resolution, and monochrome as they have optimal Heisenberg resolution in space 

and spatial frequency 13 and are thus useful for mammographic texture analysis. Using the 

method proposed in Refs. 20, 33, 41, we computed the following features for this group: 

contrast, difference variance, difference entropy, sum of squares: variance, and dissimilarity. 

The fourth feature group consisted of the Gabor filter features computed on the dense breast 

region.

In the fifth feature group, we examined a group of new features based on the Weber Local 

Descriptor (WLD) descriptors proposed by Chen et al. 11 In Ref. 11, the WLD features 
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outperformed other widely-used features (including Gabor and SIFT) in experimental results 

on popular texture databases (e.g., Brodatz and KTH-TIPS2-a), and produced good 

performances compared to best-known results on some human face detection experiments 

(e.g., MIT+CMU frontal face test set and CMU profile test set). The WLD descriptor is a 

simple, yet powerful and robust local descriptor. It consists of two separate components – 

differential excitation and orientation – and is inspired by Weber's Law, which is a law 

developed according to the perception of human beings. It states that the change of a 

stimulus (such as pixel intensity, lighting) that will be just noticeable is a constant ratio of 

the original stimulus. When the change is smaller than the constant ratio of the original 

stimulus, a human eye (vision system) can recognize it as background noise rather than a 

valid signal. Thus, for a given pixel, we computed the differential excitation component of 

the WLD descriptor as a ratio between two terms: 11 (1) the relative intensity differences of 

a current pixel against its 3×3 neighbors; (2) the intensity of the current pixel. With the 

differential excitation component, the local salient patterns in the image can be extracted. 11 

We also computed the gradient orientation at the location of each pixel. We computed the 

contrast, difference variance, difference entropy, sum of squares: variance, and dissimilarity 

WLD features using the method proposed in Refs. 20, 33, 41.

The sixth feature group consisted of gray level co-occurrence matrix (GLCM) features 

computed on the whole breast region (namely, homogeneity defined in Ref. 33, homogeneity 

defined in Matlab®, normalized inverse difference, normalized inverse difference moment, 

energy, and maximum probability). 12, 20, 33 We computed these features in four directions: 

0, 45, 90, and 135 degrees and at distance d = 1. In Refs. 27, 38, it was reported that the 

GLCM based features computed at d > 1 were strongly correlated. Similar to Refs. 27, 38, we 

reduced the gray level range of the images from 4096 to 256 gray levels to calculate the 

GLCM matrix, and computed the average and maximum values of the features along the 

four directions. The seventh feature group consisted of the GLCM features computed on the 

dense breast regions.

In the eighth feature group, we computed some generic statistical gray value features. We 

included a percentage density (PD) measure computed as the number of pixels within the 

breast region that corresponded with the maximum intensity value within the breast divided 

by the area (number of pixels) of the segmented breast region. 17, 40 We also examined for 

the first time a new fractal texture feature (average fractal dimension) that has been proved 

useful for differentiating between advanced (aggressive) and early-stage (non-aggressive) 

lung tumors in contrast-enhanced computed tomography images 1 in our risk prediction 

scheme. In addition, we computed the mean gradient direction 17 and the mean y-axis 

directional gradient by utilizing the Sobel operator. Finally, we included the regional 

descriptor of the area of number of pixels of the segmented breast region.

Each image feature was computed separately from the two view images of the left and right 

breasts. Thus, each view (e.g., CC or MLO) of a case has two corresponding sets of features. 

In our previous studies, 36, 40 we applied a subtraction method to compute the absolute 

difference of two matched corresponding feature values computed from the CC view images 

of the left and right breasts. In this study, we examined a different approach, namely we 

retained the maximum corresponding features (feature with the higher value from either the 
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left or right breast) computed from the CC view images of both breasts and also the 

maximum features computed from the MLO view images of both breasts. Namely, we 

observed in our preliminary experiments that abnormalities that start to develop in one 

breast can be detected more sensitively by extracting the maximum features of both breasts. 

The maximum features can detect the structural and textural changes within the breast 

regions due to abnormalities that are starting to develop, but have not matured or developed 

fully yet. In contrast, a subtraction operation between the bilateral features of two breasts 

might not be sensitive enough to detect small or subtle abnormal changes that occur only 

within a very small region or locality of the abnormal breast, e.g. in the vicinity of the 

lesion(s). In summary, total number of 10, 10, 10, 10, 10, 12, 12, and 5 image features were 

explored and computed from each bilateral pair of CC or MLO view images for feature 

groups 1 to 8, respectively.

III.B. Optimization of a scoring fusion ANN on the CC and MLO view features

To combine image features extracted from all four images of CC and MLO views for the 

task of predicting near-term breast cancer risk, we propose a two-stage “scoring fusion” 

classification scheme as shown in Fig. 3: At the first stage, two artificial neural networks 

(ANNs) are trained separately and individually on the maximum features extracted from the 

CC and MLO views, respectively. At the second stage of the scheme, a subsequent ANN is 

optimized to adaptively assign/adjust appropriate weights to the outputs of the CC and MLO 

based ANNs from the previous stage. All three ANNs were strictly feedforward ANNs with 

no recurrent loops.

We trained the ANN classifiers by the gradient descent with momentum and adaptive 

learning backpropagation algorithm. 31 In order to derive the optimal number of hidden 

nodes to utilize in the hidden layer of the ANNs, we analyzed the networks’ performances 

for different numbers of hidden nodes in the hidden layer: At the first stage (i.e., the CC and 

MLO based ANNs), the number of hidden nodes was varied between 2 to 10. For the next/

subsequent “scoring fusion” ANN, this range was 1 to 5. Namely, we employed a higher 

range for the CC and MLO view image based ANNs as they had more input features 

compared with only two features for the scoring fusion ANN. We performed the training 

and testing of our scheme in a ten-fold cross-validation framework as explained in Sec. 

III.C. To identify the optimal topology of the ANN in particular the number of hidden 

neurons, for each cycle of the cross-validation scheme, we trained 150 ANNs initialized 

with random weights on the training subset and selected the ANNs that produced the highest 

area under a receiver operating characteristic (ROC) curve (AUC) results on the training 

subset. Other parameters related to the ANN training are as follows: Number of training 

iterations (500), training momentum (0.9), and learning rate (0.01). Namely, we utilized a 

high ratio of the training momentum to the learning rate and a limited number of iterations 

in order to reduce “overfitting” and maintain classifier robustness, and to reduce the overall 

computation time. We also used the hyperbolic tangent activation function at the ANN 

hidden nodes and the linear activation function at the output node. We repeated this training 

process 9 times using the image features computed from each of 8 image feature groups and 

the combination of all features from 8 groups to identify the optimal number of hidden 
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neurons for each ANN trained using image features computed from bilateral CC or MLO 

view images.

III.C. Classification methodology and experimental setup

Next, to test the performance of this two-layer ANN based “scoring fusion” classifier we 

applied a ten-fold cross-validation method in which the sum of 430 positive cases and 440 

negative and benign cases were randomly divided into 10 exclusive subgroups/partitions. In 

each validation (namely, training and testing) cycle, nine partitions were used to train the 

classifier and the trained classifier was subsequently applied to the remaining partition. For 

each case, the classifier generated a corresponding risk score of predicting cancer 

development in the near term. In this study, a higher risk score indicates a higher probability 

of the woman having breast cancer detectable in the next sequential FFDM screening 

examination, or vice versa. This process was repeatedly executed 10 times with the 10 

different combinations of partitions. Thus, each of the cases in our dataset was tested once 

with a corresponding “scoring fusion” classifier-generated risk score. To evaluate the 

contribution of each of 8 feature groups discussed in Sec. III.A, we repeated the ten-fold 

cross-validation experiments for each individual feature group as well as combining all 

features and computed Spearman's rank correlation coefficient along with the corresponding 

p-values to assess the degree of association between each feature group.

To evaluate the accuracy and potential clinical utility of our breast cancer risk prediction 

model, we assessed two major performance components, namely the discrimination and 

calibration components of our new image feature based risk model. 34 Specifically, we used 

an area under ROC curve (AUC) and an adjusted odds ratio (OR) to assess the 

discrimination and calibration performance of our model, respectively. First, we computed 

AUC values along with the corresponding 95% confidence intervals (CIs) using a ROC 

curve fitting program that uses the expanded binormal model and maximum likelihood 

estimation method (ROCKIT http://metz-roc.uchicago.edu/MetzROC/software, University 

of Chicago, 1998). We computed and compared AUC values of the ANN based risk 

prediction using different image feature sets, as well as using the ANN trained with a 

different single view (either CC or MLO) and the final “scoring fusion” based ANN 

classification scheme. From the comparison, we identified one optimal feature set and the 

prediction model that yielded highest risk prediction performance.

Second, using the optimal risk prediction model identified in the previous step based on 

AUC value comparison, we computed and analyzed the ORs of the prediction results. In this 

process, we sorted the model-generated risk prediction scores in ascending order and 

selected five threshold values to segment all the cases into five subgroups/bins with an equal 

number of cases within each subgroup. We then used a publically-available statistical 

computing software package (R version 2.1.1, http://www.r-project.org) to compute and 

analyze the adjusted ORs in all subgroups including an OR increasing risk trend. The 

adjusted ORs and the corresponding 95% CIs at subgroups 2 to 5 were computed using the 

cases in subgroup 1 as a baseline/reference.

Since an operational threshold on the scheme or model generated classification or prediction 

score is required to apply a CAD scheme or a risk model in the clinical practice, in this study 
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we applied a threshold of 0.6 on the risk model-generated risk prediction scores, which is in 

the middle range of the ANN-generated scores as we used a linear activation function in the 

ANN. Using this operational threshold, we generated a confusion matrix and then compute 

the overall prediction accuracy, as well as the positive and negative predictive values of 

applying our risk model to our testing dataset. In addition, to test the potential performance 

dependency of our new risk prediction model on different clinical or demographic 

information, we stratified the cases within our dataset into different subgroups based on 

different criteria (i.e., density BIRADS categories). We then computed and analyzed the 

AUC values, prediction sensitivity and specificity levels of our new risk prediction model in 

different subgroups.

IV. RESULTS

Table 1 displays the AUC results obtained for each of 8 feature groups as discussed in Sec. 

III.A. From Table 1, the highest AUC result was obtained using the run length features 

computed on the dense breast region (AUC = 0.725±0.026), while the lowest-performing 

features were yielded using WLD and the generic statistical features. From Table 1, we also 

observed that using a “scoring fusion” based ANN approach to combine two classification 

scores generated using CC and MLO view image features always yielded higher AUC 

results than the individual CC and MLO based ANNs except for the RLS features computed 

on the whole breast region and the WLD features. For RLS computed on the whole breast 

region and WLD, the AUC result computed using the MLO view ANN was much lower 

than that of the CC view ANN; this likely caused the AUC result of the “scoring fusion” 

classifier to decrease. Also, the AUC result of combining all 79 features (AUC = 

0.695±0.075) was lower than the AUC result of using RLS features computed on the dense 

breast region. This indicates that many of the features are significantly correlated or 

redundant, which was confirmed by calculating Spearman's rank correlation coefficient 

between the different feature groups (as shown in Tables 2 and 3). From Tables 2 and 3, we 

observed that significant correlations were obtained between all feature groups except 

between the RLS features computed on the dense breast region and the generic statistical 

features, between WLD and GLCM features computed on the dense breast region, and 

between GLCM computed on the dense breast region and the generic statistical features.

When using the group of RLS features computed on the dense breast region, the average 

number of hidden nodes of the bilateral CC and the MLO view image based ANNs were 

8.5±1.1 and 8.9±1.1 in the 10-fold cross-validation experiment, respectively. The average 

mean squared error (MSE) of the ANN training results was 0.183±0.003. Figure 4 displays 

the three ROC curves of the CC, MLO and “scoring fusion” based ANNs using the RLS 

features computed on the dense breast region. The corresponding average AUC results with 

standard deviation intervals computed across the ten folds of the cross-validation 

experiments are 0.701±0.039, 0.671±0.043 and 0.725±0.026, respectively. Using DeLong's 

test for paired samples, 14 we analyzed significant differences at the 5% significance level 

between the “scoring fusion” ANN and the CC based ANN (p = 0.015), and between the 

“scoring fusion” ANN and the MLO based ANN (p < 0.001). The performance of the ANN 

trained by features computed from the MLO view was not significantly different with that of 

the ANN trained by features computed from the CC view (p = 0.29), which demonstrates 
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that our new “scoring fusion” scheme can effectively combine information extracted and 

derived from both CC and MLO views. This result also shows that mammograms acquired 

from different projection views contain supplementary information and optimally combining 

the image features from two views has potential to increase prediction power of the new 

cancer risk assessment models.

When using the prediction scores generated by the optimal ANN using the second group of 

features (RLS in the dense region) to compute adjusted ORs and corresponding 95% CIs for 

five subgroups/bins of cases, the results in Table 4 showed an increasing trend of the OR 

values as a function of increasing our two view “scoring fusion” model-generated risk scores 

to predict between the positive (cancer) and negative (cancer free) cases. Namely, the ORs 

increased from 1.00 in subgroup 1 to 11.77 in subgroup 5 (with a 95% CI of 7.07 to 19.59). 

As shown in Figure 5, the slope of the regression trend line between the risk scores 

generated by our risk model and the adjusted ORs is significantly different from zero (p = 

0.009), which shows that as the risk prediction score generated by our “scoring fusion” 

model increases, the risk of women developing breast cancer in the next sequential 

screening examination also increases.

Table 5 shows the confusion matrix obtained by applying an operational threshold of 0.6 on 

the risk prediction score of the “scoring fusion” ANN trained using the RLS features 

computed on the dense breast region. At this operational threshold, the overall prediction 

accuracy was 65.4% in which 569 of 870 cases were correctly classified, whereas 34.6% 

(301 of 870) were misclassified. The positive predictive value was 48.1% (207 of 430), 

whereas the negative predictive value was 82.3% (362 of 440) at this particular operational 

threshold and testing dataset.

Figure 6 displays the ROC curves of applying our risk prediction scheme to four subgroups 

of cases divided by mammographic density BIRADS categories. The AUC values are 

0.734±0.079, 0.725±0.029, 0.715±0.023, and 0.712±0.090 for four subgroups of BIRADS 1 

to 4, respectively. The sensitivity levels of our risk prediction scheme at specificity levels of 

80%, 85%, 90%, and 95% on the cases stratified by density BI-RADS ratings are displayed 

in Table 6. The results show no significant performance dependency of our risk prediction 

model on the cases in different density BIRADS categories. This was confirmed by 

DeLong's test for unpaired samples (p > 0.68 for all comparisons).

V. DISCUSSION

This study is part of our continuing effort to develop and optimize new quantitative image 

analysis methods to help more accurately predict near-term breast cancer risk. Comparing to 

the previous studies in this field, this study has several unique characteristics and distinct 

study results or observations. First, the vast majority of studies related to the image-based 

breast cancer risk prediction in the literature 17, 18, 25, 28 only examined and computed 

mammographic image features from a ROI or one image per patient. Since mammograms 

are two-dimensional projection images with severe overlapping fibro-glandular tissue, the 

image features can be distorted and quite different in CC and MLO view images. Hence, 

using only one ROI or one image has limitations. In this study, we developed a first new 
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image-based near-term breast cancer risk prediction model that combines image features 

computed from four mammograms together using two unique steps. (1) We compared and 

selected the maximum feature value computed from two bilateral (CC or MLO) view images 

of the left and right breasts. (2) We built a scoring fusion ANN to combine the prediction 

scores generated from the image features of CC and MLO views separately. Our study 

results demonstrated that our “scoring fusion” ANN based classifier can derive and combine 

useful and supplementary information from both CC and MLO view images to significantly 

increase risk prediction performance comparing to the results obtained using the risk 

prediction scores generated using the ANN trained by the image features computed 

separately from CC or MLO view images (p ≤ 0.02).

Second, comparing to majority of previous studies using image features to predict breast 

cancer risk, our experiments and data analysis were conducted based on a much larger and 

diverse dataset involving 870 FFDM cases (430 malignant, 220 benign/recalled and 220 

negative), which consists of 3480 digital mammograms altogether. In addition, we 

optimized the parameters in ANN training (i.e., the ratio of training momentum and learning 

rate, as well as training iterations) to reduce over-fitting of ANNs. Our studies shown that 

using 500 training iterations was sufficient for this task. Increasing training iterations to 

1,000 yielded lower performance (e.g., AUC = 0.719±0.030) when using the second feature 

group as shown in Table 1. Hence, due to the large dataset and optimal training parameters, 

the results of our study might be more reliable and robust. The prediction results (e.g., AUC 

value) of this study are also consistent with our previous studies using a small dataset.45

Third, our new image feature based risk model aims to predict near-term cancer risk (i.e., the 

risk of a woman having mammography-detectable cancer in the next sequential FFDM 

screening examination in this study). As a result, our model does not directly compete with 

the existing epidemiology based breast cancer risk prediction models 2 including the Gail 

Model, the Tyrer-Cuzick Model and other newly-reported risk models based on 

mammographic density image 45 and histologic features, 29 which focus on predicting long-

term or lifetime risk of a woman as compared to the general population. The prediction 

results of our new risk model with AUC = 0.725±0.026 and an adjusted OR of 11.77 with a 

95% CI of 7.07 to 19.59 in subgroup 5 were significantly higher than using the subjectively 

rated mammographic density (BIRADS) (as shown in Figure 2) and other existing risk 

factors. 2 The primary reason of our model being able to predict near-term risk lies in that 

our model detects and analyzes the variation and/or increases of bilateral mammographic 

image feature asymmetry, which is a useful and early sign of leading to develop cancer. The 

existing lifetime risk models only provide a fixed estimation score, which is not sensitive to 

the near-term cancer risk variation.

Fourth, in our previous studies, 36, 45we computed the bilateral mammographic image 

feature differences based on absolute feature value subtractions between the left and right 

breasts. In this study, we tested a new approach to extract image features with higher 

discriminatory power from the two bilateral images, which is based on the observation in 

our preliminary experiments. We selected the maximum value of a feature that is computed 

separately from the two bilateral images of the left and right breasts to represent the final 

feature value. This approach has an advantage to maintain both the overall mammographic 
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density information (since mammographic density is a well-known breast cancer risk factor) 

and (2) the bilateral difference information (whereby we have demonstrated that it is also an 

important risk factor to predict near-term breast cancer risk).

Fifth, although a large number of different types of image features have been computed and 

reported in the literature to assess mammographic density and/or tissue structures, whether 

the different types of features are redundant or how to select optimal and robust image 

features has not been well investigated. In this study, we examined 8 groups of popular 

textural and mammographic density based features and compared the effectiveness and 

correlations of these groups of features by training a two-layer ANN-based risk model on 

the individual feature groups as well as a combination of all feature groups. From the 

comparison results, we observed that (1) the run length features computed on the dense 

breast regions are most effective for breast cancer risk prediction; (2) many of the popular 

features reported in literature, such as GLCM and PD, and new features examined in this 

study, such as WLD and an average fractal dimension based feature yielded very 

comparable prediction performance due to higher correlation among these features. Thus, 

the performance of the ANN trained using all features combined was lower than the ANN 

trained only on the run length features computed on the dense breast region. In addition, we 

also tested a fast and accurate sequential forward floating selection (SFFS) based feature 

selection method 39 to select optimal features from 8 feature groups. The ANN classifier 

generated an AUC = 0.716±0.056, which was higher than using all 79 features, but lower 

than using the second group of RLS features (as shown in Table 1).

Sixth, unlike the general screening mammography and the current lesion based CAD 

schemes of mammograms in which the detection or classification performance decreases as 

the mammographic density level increases (from BIRADS 1 to 4), our data analysis results 

showed that our risk prediction model was not mammographic density dependent. The risk 

prediction performance maintains a relatively stable level across all four density BIRADS 

categories (Table 6). This is another advantage of our new risk model using the bilateral 

mammographic image feature asymmetry analysis and two-view information fusion 

approach.

Last, when using an operational threshold of 0.6 on the ANN-generated risk prediction 

scores, we observed that the negative predictive value (82.3%) was substantially higher than 

the positive predictive value (48.1%). This indicates that under this threshold, the prediction 

result is more accurate in identifying the women with low risk of having mammography-

detectable cancers in the next sequential FFDM screening. As a result, these women can be 

screened at a longer interval (such as, every two years rather than every one year). Due to 

the lower cancer detection yield in annual breast cancer screening (i.e., < 5 cancers detected 

in every 1000 screened women), achieving high negative predictive value is more important 

or has higher clinical impact in improving efficacy of breast cancer screening, which can 

exclude a large number of low-risk women from unnecessary frequent screening and thus 

reduce the false-positive recalls. This also shows that the different evaluation criterion 

should be used to evaluate the performance of the quantitative image feature analysis based 

cancer risk models and the conventional lesion-based CAD schemes of mammograms.
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Despite the promising results and new observations, this is a laboratory based retrospective 

data analysis study with a number of limitations. First, although we used a relatively large 

and diverse image dataset, it may have case selection bias. The ratio between positive and 

negative cases also does not represent the actual cancer prevalence ratio in general screening 

practice. Hence, the performance and robustness of our new risk model needs to be further 

tested in future prospective or cohort studies. Second, this is a preliminary technology 

development study. Its clinical utility has not been tested. For example, by adjusting the 

operational threshold, we can adjust the positive and negative predictive values of our risk 

prediction model. What is an optimal and clinically-acceptable operational threshold has not 

been determined. Third, our model was only applied to predict the risk of having 

mammography-detectable cancer in the next sequential FFDM screening examinations 

following a negative screening of interest. Whether the similar model can be developed and 

applied to predict risk in a relatively longer time period (i.e., 2 to 5 years) has not been 

tested. Fourth, we have a limited tracking time of two additional follow-up FFDM 

examinations for the benign and negative cases maintaining cancer-free status. Therefore, in 

this preliminary study, we built a new near-term breast cancer risk prediction model based 

on mammographic image features, which needs to be further examined before it can be 

clinically acceptable to help establish an optimal, personalized breast cancer screening 

paradigm.
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FIG. 1. 

Example of a case in the subgroup of positive cases. It shows two sets of bilateral 

craniocaudal (CC) and mediolateral oblique (MLO) view mammograms acquired from the 

“prior” (left) and “current” (right) FFDM screening examinations of a woman. The “prior” 

images were interpreted as negative, and a suspicious lesion (indicated by the magenta 

arrow) was detected on the “current” examination by a radiologist, which was later 

confirmed to be malignant in biopsy and pathology examinations.
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FIG. 2. 

Distributions of subjectively-rated mammographic density (BIRADS) in the three subgroups 

of positive, benign and negative cases.
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FIG. 3. 

A two-stage “scoring fusion” ANN classification scheme is depicted (modified from 

Ref. 35), whereby the final classification score is derived by optimally fusing the information 

from two ANNs trained on maximum features extracted from the craniocaudal (CC) and 

mediolateral oblique (MLO) views, respectively.
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FIG. 4. 

Three receiver operating characteristic (ROC) curves generated by the output of three ANNs 

trained using the run length features computed on the dense breast region from the 

individual CC and MLO views as well as the proposed scoring fusion method of both views.
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FIG. 5. 

Trend of the increase in odds ratios (ORs) with the increase in risk scores generated by our 

trained “scoring fusion” classifier. The slope of the regression trend line between the 

adjusted ORs and the risk scores is significantly different from the zero slope (p = 0.009).
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FIG. 6. 

Four ROC curves of our CAD scheme applied to four case subgroups rated in four different 

mammographic density BIRADS categories.
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TABLE 1

Average AUC results and corresponding standard deviation intervals computed over the ten-fold cross-

validation experiments for 9 sets of ANNs optimized on the CC and MLO views and the proposed scoring 

fusion method using the image features from 8 feature groups and all 79 features, respectively.

Feature group Number of features AUC

CC MLO Scoring fusion

RLS whole 10 0.702±0.072 0.639±0.078 0.696±0.076

RLS dense 10 0.701±0.039 0.671±0.043 0.725±0.026

Gabor whole 10 0.643±0.050 0.618±0.076 0.676±0.047

Gabor dense 10 0.666±0.052 0.611±0.038 0.682±0.041

WLD 10 0.655±0.041 0.549±0.057 0.637±0.054

GLCM whole 12 0.677±0.036 0.612±0.037 0.686±0.049

GLCM dense 12 0.634±0.052 0.617±0.071 0.658±0.058

Generic statistical 5 0.622±0.042 0.585±0.065 0.636±0.049

All 79 0.681±0.063 0.654±0.080 0.695±0.075
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TABLE 2

Spearman's rank correlation coefficient between different feature groups. The diagonal coefficient values in 

the table are equivalent and were thus omitted (–).

Feature group Spearman's rank correlation coefficient

RLS dense Gabor whole Gabor dense WLD GLCM whole GLCM dense Generic statistical

RLS whole 0.19 0.15 0.18 0.09 0.19 0.18 0.07

RLS dense – 0.22 0.18 0.11 0.27 0.12 0.05

Gabor whole – – 0.12 0.08 0.15 0.15 0.08

Gabor dense – – – 0.07 0.21 0.13 0.10

WLD – – – – 0.09 0.06 0.36

GLCM whole – – – – – 0.17 0.07

GLCM dense – – – – – – 0.04
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TABLE 3

P-values for testing the hypothesis of no correlation between different feature groups against the alternative 

that there is a nonzero correlation. Each p-value corresponds to the values of Spearman's rho in Table 2. The 

diagonal p-values are equivalent and were thus omitted (–).

Feature group p-value

RLS dense Gabor whole Gabor dense WLD GLCM whole GLCM dense Generic statistical

RLS whole <0.0001 <0.0001 <0.0001 0.008 <0.0001 <0.0001 0.045

RLS dense – <0.0001 <0.0001 0.001 <0.0001 0.0003 0.15

Gabor whole – – 0.0003 0.02 <0.0001 <0.0001 0.01

Gabor dense – – – 0.03 <0.0001 0.0001 0.002

WLD – – – – 0.01 0.07 <0.0001

GLCM whole – – – – – <0.0001 0.046

GLCM dense – – – – – – 0.23
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TABLE 4

Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) at five subgroups (bins) with increasing values 

of the risk scores generated by our “scoring fusion” classifier.

Subgroup Number of cases (Positive – Negative) Adjusted OR 95% CI

1 49 – 125 1.00 Baseline

2 54 – 120 1.15 [0.72, 1.82]

3 82 – 92 2.27 [1.46, 3.55]

4 102 – 72 3.61 [2.31, 5.65]

5 143 – 31 11.77 [7.07, 19.59]
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TABLE 5

A confusion matrix obtained when applying a threshold of 0.6 on the “scoring fusion” classifier generated 

risk/probability scores.

Actual
↓

Negative cases Positive cases

Negative cases 362 78

Positive (cancer) cases 223 207
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TABLE 6

Sensitivity levels of our CAD scheme at four specificity levels by stratifying the testing cases according to the 

four mammographic density BIRADS categories.

Specificity 95% 90% 85% 80%

Density BI-RADS 1 25.3% 37.1% 45.8% 53.0%

Density BI-RADS 2 27.4% 38.4% 46.4% 52.9%

Density BI-RADS 3 27.1% 37.7% 45.5% 51.9%

Density BI-RADS 4 27.1% 37.6% 45.3% 51.5%
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