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Abstract. In this paper, we present and evaluate the skill of an EC-Earth3.3 decadal prediction system contribut-

ing to the Decadal Climate Prediction Project – Component A (DCPP-A). This prediction system is capable of

skilfully simulating past global mean surface temperature variations at interannual and decadal forecast times

as well as the local surface temperature in regions such as the tropical Atlantic, the Indian Ocean and most of

the continental areas, although most of the skill comes from the representation of the external radiative forcings.

A benefit of initialization in the predictive skill is evident in some areas of the tropical Pacific and North At-

lantic oceans in the first forecast years, an added value that is mostly confined to the south-east tropical Pacific

and the eastern subpolar North Atlantic at the longest forecast times (6–10 years). The central subpolar North

Atlantic shows poor predictive skill and a detrimental effect of initialization that leads to a quick collapse in

Labrador Sea convection, followed by a weakening of the Atlantic Meridional Overturning Circulation (AMOC)

and excessive local sea ice growth. The shutdown in Labrador Sea convection responds to a gradual increase in

the local density stratification in the first years of the forecast, ultimately related to the different paces at which

surface and subsurface temperature and salinity drift towards their preferred mean state. This transition happens

rapidly at the surface and more slowly in the subsurface, where, by the 10th forecast year, the model is still

far from the typical mean states in the corresponding ensemble of historical simulations with EC-Earth3. Thus,

our study highlights the Labrador Sea as a region that can be sensitive to full-field initialization and hamper the

final prediction skill, a problem that can be alleviated by improving the regional model biases through model

development and by identifying more optimal initialization strategies.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Interest in seasonal to decadal climate predictions has

grown in recent years due to their potential to provide rel-

evant climate information for decision-making in differ-

ent socio-economic sectors (e.g. Suckling, 2018; Solaraju-

Murali et al., 2019; Merryfield et al., 2020). Scientifically,

climate predictions have provided novel ways of evaluating

and comparing climate simulations with observations and

improve our understanding of the intrinsic predictability of

the climate system, including the key mechanisms operating

at interannual to decadal timescales.

On these timescales a large part of the predictable sig-

nal of climate variations during the observational period is

attributable to changes in external radiative forcings (i.e.

changes in the climate system energy balance), which can

be of natural (e.g. solar irradiance and volcanic aerosols) or

anthropogenic (e.g. greenhouse gas concentrations, land use

changes and anthropogenic aerosols) origin. For example,

at the global scale most of the surface temperature changes

can be explained by the warming trend caused by the in-

creasing atmospheric greenhouse gas concentrations, which

are partly compensated for by a parallel increase in anthro-

pogenic aerosols (e.g. Bindoff et al., 2013), and the spo-

radic cooling episodes that followed the major volcanic erup-

tions of Mt. Agung (1963), El Chichón (1982) and Pinatubo

(1991) (e.g. Ménégoz et al., 2018; Hermanson et al., 2020).

Estimates of past changes in these radiative forcings are pre-

scribed as boundary conditions to drive the so-called histor-

ical climate simulations, which investigate the influence of

the forcings on the recent climate variations. These exper-

iments are continued into the future as climate projections

with imposed anthropogenic radiative forcings that follow

different theoretically derived socio-economic emission sce-

narios (O’Neill et al., 2016).

The other main source of predictability originates from in-

ternal variability, in particular in the slowly evolving com-

ponents of the climate system, i.e. the ocean (e.g. Meehl

et al., 2009). Besides being driven with external radiative

forcings, climate predictions are also initialized from the ob-

served state to put the model in phase with observed internal

variability. Predictive skill of real-time forecast systems is as-

sessed by producing retrospective predictions (or hindcasts),

which are then contrasted with observations. At seasonal to

annual timescales, hindcasts show high levels of predictive

skill for El Niño–Southern Oscillation (ENSO) (e.g. Barn-

ston et al., 2019). On decadal timescales, many climate mod-

els have also shown the capacity to skilfully predict the At-

lantic multidecadal variability (AMV) (e.g. García-Serrano

et al., 2015) and, to a lesser extent, the Interdecadal Pacific

Oscillation (IPO) (e.g. Mochizuki et al., 2009; Chikamoto

et al., 2015; Meehl et al., 2015, 2016). The North Atlantic

Ocean, more precisely the Subpolar Gyre, has been identified

as a region where different retrospective prediction systems

skilfully predict the evolution of sea surface temperatures

(SST) and upper-ocean heat content (OHC) (e.g. Pohlmann

et al., 2009; Keenlyside et al., 2008; Robson et al., 2018;

Yeager et al., 2018), although these same systems show a

limited capacity to predict the climate of the neighbouring

continents, which might be related to an inaccurate represen-

tation of key teleconnection mechanisms (e.g. Goddard et al.,

2013; Doblas-Reyes et al., 2013). Encouragingly, a recent

study by Smith et al. (2020) has shown that decadal predic-

tions contributing to the Coupled Climate Model Intercom-

parison Project Phase 6 (CMIP6) can be skilful at predicting

the low-frequency variations of the North Atlantic Oscilla-

tion (NAO), the leading mode of the winter atmospheric cir-

culation in the Northern Hemisphere (Hurrell, 1996), when

considering a large multi-model ensemble. Similarly promis-

ing results for predicting the NAO at multi-annual timescales

has also been shown for the Decadal Prediction Large En-

semble from the National Center for Atmospheric Research

(NCAR) (Athanasiadis et al., 2020). Smith et al. (2020) also

conclude that the NAO and the related climate signals over

Europe might be more predictable than models suggest and

that large ensembles of predictions are necessary as current

forecast systems can strongly underestimate the predictable

signal (Scaife and Smith, 2018).

To reinforce the inter-comparability of the results and al-

low for the exploitation of large multi-model ensembles, the

decadal climate prediction community has promoted the de-

velopment of coordinated climate prediction exercises. The

Decadal Climate Prediction Project (DCPP; Boer et al.,

2016), as part of the Coupled Climate Model Intercompar-

ison Project Phase 6 (CMIP6; Eyring et al., 2016), and build-

ing upon CMIP5 (Taylor et al., 2012) and the efforts of

previous projects (e.g. SPECS and ENSEMBLES), provides

such a framework for addressing different aspects and current

knowledge gaps in decadal climate prediction. DCPP-A is

the main component and consists of an ensemble of decadal

hindcasts, initialized at yearly intervals from 1960 up to 2018

using prescribed CMIP6 external radiative forcings.

A crucial step to maximize the skill of decadal predictions

is the realistic initialization of the climate system. It is of ma-

jor importance to produce physically consistent initial condi-

tions that reflect the observed state of climate as faithfully as

possible: in particular, the three-dimensional ocean tempera-

ture and salinity fields, which determine the basin-wide den-

sity gradients and through them the large-scale ocean circula-

tions and transports, which are essential for predictability on

decadal timescales (e.g. Meehl et al., 2014; Brune and Baehr,

2020). However, observational records are sparse in time and

space, especially in the deep ocean and before modern instru-

ments (such as ARGO floats) were introduced, which poses

a challenge with respect to accurately constraining the initial

state from observations. For this reason, a typical approach

in climate prediction is to use initial conditions from ocean

and atmosphere reanalysis. These are produced with data as-

similation techniques that ensure a dynamically consistent

Earth Syst. Dynam., 12, 173–196, 2021 https://doi.org/10.5194/esd-12-173-2021



R. Bilbao et al.: EC-Earth3 decadal prediction system 175

estimation of the climate state that takes observational un-

certainties into account.

Due to structural errors in climate models and biases in

their climatologies, when initialized from the observed state,

predictions suffer from initial shocks and drifts (e.g. Magnus-

son et al., 2012; Sanchez-Gomez et al., 2016; Kröger et al.,

2018; Meehl et al., 2014). In this paper, initial shocks refer

to abrupt changes that occur soon after initialization as a re-

sult of the adjustment of the climate model to the initial state

and/or to incompatibilities between the initial conditions of

the different components, whereas model drift refers to the

mean evolution of the forecasts towards an imperfect mean

model climate, which is tightly linked to how systematic

model errors develop (Sanchez-Gomez et al., 2016). When

their occurrence is consistent across start dates, initial shocks

(which are not present in all systems) are part of the drift

and can even condition its development. Two main initial-

ization approaches are often used: “full-field initialization”,

which uses direct observational estimates to initialize the

model (e.g. Pohlmann et al., 2009), and “anomaly initializa-

tion”, which imposes the observational estimate anomalies

on the model climatology (e.g. Smith et al., 2007; Keenly-

side et al., 2008). No clear advantage of one approach with

respect to the other has been found in terms of forecast qual-

ity (e.g. Magnusson et al., 2012; Weber et al., 2015; Boer

et al., 2016). The latter was specifically designed to reduce

the forecast drift, as it implies initialization from a state

closer to the model climatology. However, incompatibilities

between the imposed anomalies and the model variability

have been shown to cause dynamical imbalances leading to

skill degradation in the predictions (e.g. Magnusson et al.,

2012; Hazeleger et al., 2013; Volpi et al., 2017). The occur-

rence of forecast drifts and biases compromises the quality of

the predictions, a problem that can be partly circumvented by

correcting the predictions a posteriori – for example, by com-

puting forecast-time-dependent anomalies (e.g. Meehl et al.,

2014; Goddard et al., 2013; Choudhury et al., 2017).

With the objective of reducing initial shocks, several

decadal forecast centres consider the production of in-house

assimilation experiments with the same model or model com-

ponents used for the forecasts from which the initial states are

derived. The simplest and most commonly used assimilation

framework consists of producing assimilation runs with indi-

vidual model components (referred to as “weakly coupled”),

typically of the ocean model, as it is the most important

for the predictability on decadal timescales (e.g. Sanchez-

Gomez et al., 2016; Servonnat et al., 2015). This method may

benefit the initialization of an individual model component;

however, initialization shocks may occur due to incompati-

bilities among the initial conditions. For this reason, many

forecast centres are moving towards fully coupled assimila-

tion (referred to as “strongly coupled”), which is more tech-

nically challenging but assures the physical consistency of

the initial conditions of all the components, among other ad-

vantages (e.g. Brune and Baehr, 2020). For assimilation, a

range of different techniques have been used to produce the

reconstructions, from classical nudging approaches based on

Newtonian relaxation (e.g. Sanchez-Gomez et al., 2016; Ser-

vonnat et al., 2015) to more complex and computationally

expensive methods like the ensemble Kalman filter approach

(e.g. Counillon et al., 2014; Dai et al., 2020), which take as-

pects of the observational uncertainty into account.

The aim of this paper is to present and analyse a decadal

prediction system within the EC-Earth3 model contributing

to the CMIP6 DCPP-A. The paper is organized as follows:

Sect. 2 provides a description of the EC-Earth3 forecast sys-

tem, the initialization approach considered, the skill evalua-

tion metrics and the observational datasets used. In Sect. 3,

we characterize the predictive capacity for the surface tem-

peratures and investigate the importance of the initialization

on surface temperatures, upper-ocean heat content and sev-

eral interannual to decadal indices of climate variability, fol-

lowed by an analysis of the predictive skill in the North At-

lantic. This section illustrates that the low skill in the central

subpolar North Atlantic appears to be related to a strong ini-

tial shock and the subsequent model drift. The final section

summarizes the key results and conclusions of this study.

2 Data and methodology

2.1 EC-Earth3 decadal forecast system

All experiments analysed in this study were performed with

the CMIP6 version of the EC-Earth version 3 atmosphere–

ocean general circulation model (AOGCM) in its standard

resolution (Döscher and the EC-Earth Consortium, 2021).

Its atmospheric component is the Integrated Forecast System

(IFS) from the European Centre for Medium-Range Weather

Forecasts (ECMWF), cycle cy36r4, with a T255 horizon-

tal resolution (grid size of approximately 80 km) and 91

vertical levels. The HTESSEL (Hydrology Tiled ECMWF

Scheme for Surface Exchanges over Land; Balsamo et al.,

2009) land surface scheme is integrated in IFS, and the veg-

etation fields are prescribed and have been derived from an

EC-Earth historical simulation coupled with the LPJ-GUESS

dynamic vegetation model (LPJGuess; Smith et al., 2014).

The ocean component is the version 3.6 of the Nucleus for

European Modelling of the Ocean (NEMO; Madec and the

NEMO Team, 2016), which is itself composed of the OPA

(Ocean PArallelise) ocean model and the Louvain-La-Neuve

sea ice model (LIM3; Rousset et al., 2015), both run with

an ORCA1 configuration (a tripolar grid defined for NEMO

with a 1◦ horizontal nominal resolution) and 75 vertical lev-

els. The atmospheric and oceanic components are coupled

through OASIS (Craig et al., 2017).

Our decadal prediction system follows the CMIP6 DCPP-

A protocol (Boer et al., 2016) and, therefore, consists of

10-member ensembles of 10-year-long predictions initialized

every year in November from 1960 to 2018 (referred to as

PRED hereafter). To determine the impact of initialization,
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PRED is compared with an ensemble of 15 CMIP6 histori-

cal simulations (1960–2015) (Eyring et al., 2016) continued

with the SSP2-4.5 (Shared Socioeconomic Pathway 2-4.5)

scenario simulations (2015–2100) (O’Neill et al., 2016) and

performed with the same model version as PRED. These ex-

periments (referred to as HIST hereafter) correspond to the

CMIP6 members 2, 7, 10, 12, 14 and 16–25, which were all

performed at the Barcelona Supercomputing Center (BSC).

PRED and HIST are both performed with prescribed CMIP6

radiative forcing estimates (i.e., solar irradiance, and green

house gas, anthropogenic aerosol and volcanic aerosol con-

centrations) for the historical period (1960–2014) and the

SSP2-4.5 scenario on the subsequent years (Eyring et al.,

2016).

In PRED, the different components (atmosphere, land,

ocean and sea ice) have been initialized using full-field

initialization. The atmospheric and land initial conditions

have been interpolated from ERA-40 reanalysis outputs

(Uppala et al., 2005) for the 1960–1978 period and from

ERA-Interim (Dee et al., 2011) for the 1979–2018 period.

The ERA-Interim land surface fields were replaced by the

ERA-Interim/Land offline land surface reanalysis (Balsamo

et al., 2015) driven by ERA-Interim surface fields and bias-

corrected using precipitation from the Global Precipitation

Climatology Project (GPCP, Adler et al., 2018). The ocean

and sea ice initial conditions come from a NEMO-LIM

reconstruction, forced at the surface with fluxes from the

DRAKKAR forcing set v5.2 (DFS5.2 Brodeau et al., 2010)

up to 2015 and with ERA-Interim (Dee et al., 2011) there-

after. In this reconstruction, ocean temperature and salin-

ity fields from the ECMWF Ocean Reanalysis System 4

(ORAS4) (Mogensen et al., 2012) are assimilated through

a standard surface nudging approach (e.g. Servonnat et al.,

2015), using temperature and salinity restoring coefficients

of −40Wm−2 K−1 and −150mm d−1, respectively. Even if

no direct assimilation of sea ice products is performed, the

atmospheric surface fluxes combined with the surface ocean

temperature nudging are sufficient to bring the initial sea ice

state close to observations (e.g. Guemas et al., 2014). Be-

low the mixed layer, a Newtonian relaxation term is also

applied to assimilate three-dimensional ORAS4 temperature

and salinity fields. For this, a relaxation timescale that in-

creases monotonically with depth is used, which takes ap-

proximate values of 10 d at 1000 m, 100 d at 3000 m and

330 d at 5000 m. Subsurface relaxation is applied everywhere

except within the 3◦ S–3◦ N band to prevent spurious vertical

velocity effects (Sanchez-Gomez et al., 2016).

To generate the 10 members of PRED, different strategies

are followed depending on the model component. The en-

semble spread for the atmospheric initial conditions is gen-

erated by adding infinitesimal random perturbations to the

three-dimensional temperature field. For the ocean and sea

ice initial conditions, five different reconstructions are per-

formed following the nudging strategy previously described,

each assimilating one of the five members of ORAS4. The

five ocean and sea ice states generated are combined with

two different atmospheric initial conditions each to produce

the 10 ensemble members.

All the simulations completed in this study were per-

formed with the MareNostrum 4 supercomputer, hosted

at the BSC, using the “Autosubmit” workflow manager

(Manubens-Gil et al., 2016), a Python toolbox specifically

developed at the BSC to facilitate the production of experi-

mental protocols with EC-Earth. This toolbox can easily han-

dle experiments with different members, different start dates

and different initial conditions. Autosubmit is hosted in the

GitLab repository of the BSC Earth Sciences Department

(https://earth.bsc.es/gitlab/es/autosubmit, last access: 29 Jan-

uary 2021). The scripts to run the model and all subsidiary

tools are also included in the GitLab repository under version

control, and the tool that generates the perturbations saves the

seed employed for each member, both contributing to guar-

antee the reproducibility of the experiments within the max-

imum fidelity permitted by the model.

The raw model outputs were formatted following the Cli-

mate Model Output Rewriter (CMOR)/CMIP6 conventions

to ensure efficient use and dissemination within the scientific

community. This was done with “ece2cmor” (https://github.

com/EC-Earth/ece2cmor3, last access: 29 January 2021),

a Python tool for post-processing and cmorisation devel-

oped for EC-Earth3 that was implemented in the Autosubmit

workflow. After reformatting, the model data were systemat-

ically quality checked with various tools to ensure no miss-

ing files and scientific validity. Both PRED and HIST exper-

iments are published on the BSC data node of the Earth Sys-

tem Grid Federation (ESGF) where they are publicly avail-

able.

2.2 Observational data for verification

Various datasets are used as reference for estimating the

forecast quality of the two EC-Earth3 ensembles HIST and

PRED. To evaluate surface temperature, we use the NASA

GISTEMPv4 (Lenssen et al., 2019) and the Met Office Had-

CRUT4 (Morice et al., 2012) gridded temperature anomaly

products. Both datasets combine near-surface air tempera-

ture (SAT) over land and sea surface temperature over the

ocean (SST). For indices related to SST only, we use the Met

Office HadISSTv3 (Kennedy et al., 2011). For upper-ocean

heat content we use the Met Office EN4.2.1 gridded ocean

temperature (Good et al., 2013). For comparing spatial fields

with observations, EC-Earth3 predictions and historical sim-

ulations are re-gridded to the observational grid in the case of

the surface temperature variables corresponding to a 2◦ × 2◦

regular grid for NASA GISTEMP4 and a 5◦×5◦ regular grid

for HadCRUT4. Ocean heat content is re-gridded to a 2◦×2◦

regular grid. Model simulations are masked in regions where

and when observations have missing values. The regions with

missing values in observations remain similar over the inves-

tigated period, especially for NASA GISTEMPv4.
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2.3 Forecast drift adjustment and verification metrics

In the full-field initialization approach, models are initial-

ized close to the observed state and as the forecasts progress

they experience a drift towards the (imperfect) model at-

tractor. This drift needs to be corrected to prevent system-

atic errors in the prediction. To avoid drift-related effects,

the evaluation of climate predictions against observations is

performed in the anomaly space (e.g. Meehl et al., 2014).

In this paper, we use the “mean drift correction” method

which consists of computing the anomalies relative to the

forecast-time-dependent climatology. This implies that the

drift is assumed to be insensitive to the background climate

state (e.g. García-Serrano and Doblas-Reyes, 2012; Goddard

et al., 2013), which might not always hold.

Observed and HIST anomalies are computed with respect

to their climatologies. In the case of HIST, it is computed

from the ensemble mean. All climatologies are computed for

the common reference period from 1970 to 2018. This is the

longest period for which predictions at all forecast years (1

to 10) can be produced; thus, this period allows us to com-

pute a climatology that is consistent across the whole forecast

range. For forecast quality assessment purposes, we use the

longest period available for each forecast year (e.g. 1961–

2018 for forecast year 1 and 1970–2018 for forecast year 10)

in order to produce the most accurate estimate of the predic-

tive skill in each case. This implies that the skill of PRED and

HIST may change with the forecast time as the verification

period changes.

To measure the forecast quality we use the anomaly cor-

relation coefficient (ACC) and the mean square skill score

(MSSS). The ACC measures the linear association between

the predicted mean and the observations, but it is insensitive

to the scaling. The MSSS metric takes differences in magni-

tude into account, as it compares the mean square errors of a

given forecast with those from a benchmark prediction (e.g.

persistence), both evaluated against observations.

The impact of initialization on predictive skill is first

assessed by computing the ACC differences between the

decadal hindcasts and historical simulations. These differ-

ences are deemed to be statistically significant according to

the methodology developed by Siegert et al. (2017), which

corrects for the independence assumption when two forecasts

are strongly correlated. The MSSS is used as well to evalu-

ate the impact of initialization. To do so, we compute it for

PRED, using HIST as the reference forecast to beat. Follow-

ing Eq. (5) from Goddard et al. (2013),

MSSS(P,H )

=
ACC2

P − [ACCP − (σP/σO)]2 − ACC2
H + [ACCH − (σH/σO)]2

1 − ACC2
H + [ACCH − (σH/σO)]2

, (1)

where ACCP and ACCH are the ACC for PRED and HIST

respectively, and σO, σP and σH are the standard deviations

for the observations, PRED and HIST respectively.

A positive MSSS value indicates that PRED is more ac-

curate than HIST, whereas a negative value indicates the op-

posite; however, caution is recommended for its interpreta-

tion as MSSS is not symmetric around zero and positive and

negative values of the same magnitude are not comparable.

The statistical significance of the MSSS is estimated using a

random walk test following the methodology developed by

DelSole and Tippett (2016).

The terms in brackets in Eq. (1) represent the conditional

bias of the predictions (CB). We can, therefore, rewrite the

numerator of Eq. (1) in terms of the difference between the

squared ACC values in PRED and HIST (1ACC) and the

difference between the respective squared CB values (1CB):

MSSS(P,H) =
[ACC2

P − ACC2
H] − [CB2

P − CB2
H]

1 − ACC2
H + CB2

H

=
1ACC2 − 1CB2

1 − ACC2
H + CB2

H

. (2)

These final two terms in the numerator, which compare

different characteristics of the forecasts, will be later used to

aid the interpretation of the MSSS results. While the correla-

tion term focuses on phase variability disregarding the signal

amplitude, the conditional bias term reflects both the magni-

tude (amplitude) of the respective time series as well as their

linear trends (Goddard et al., 2013).

The spread–error ratio (SER; Ho et al., 2013) has also been

used as an indicator of the forecast reliability, which is de-

fined as the ratio between the mean intra-ensemble standard

deviation and the root mean square error of the forecast en-

semble mean. When the SER is greater (lower) than one, the

ensemble is overdispersed (under-dispersed) and the predic-

tions will be under-confident (overconfident).

For data retrieval, loading, processing and calculation

of verification measures, the “startR” and “s2dverification”

(Manubens et al., 2018) R libraries have been used, which

were both developed at the BSC.

2.4 Climate indices and diagnostics

Global mean surface temperature (GMST) is derived by

blending the SST over ocean and SAT temperatures over

land. This allows for a consistent comparison with the afore-

mentioned NASA GISTEMPv4 and HadCRUT4 observa-

tional datasets. The use of GMST over global surface air

temperature at 2 m height (GSAT) is particularly favourable

when assessing long-term climate trends (e.g. Richardson

et al., 2018).

In the Pacific Ocean, to distinguish between seasonal to

interannual and decadal variability, we look at the ENSO

and IPO respectively. For ENSO, we use the NINO3.4 in-

dex, which is defined as the area weighted average over the

region from 5◦ N to 5◦ S and from 170 to 120◦ W. For the IPO

we use the tripolar Pacific index (Henley et al., 2015), which

https://doi.org/10.5194/esd-12-173-2021 Earth Syst. Dynam., 12, 173–196, 2021
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corresponds to the average of SST anomalies over the cen-

tral equatorial Pacific (region 2: 10◦ S–10◦ N, 170◦ E–90◦ W)

minus the average of the SST anomalies in the northwestern

(region 1: 25–45◦ N, 140◦ E–145◦ W) and southwestern Pa-

cific (region 3: 50–15◦ S, 150◦ E–160◦ W). To describe the

decadal variability over the Atlantic Basin, we use the AMV

definition from Trenberth and Shea (2006). The AMV is cal-

culated as the spatial average of SST anomalies over the

North Atlantic (Equator–60◦ N and 80–0◦ W) minus the spa-

tial average of SST anomalies averaged from 60◦ S to 60◦ N

(Trenberth and Shea, 2006; Doblas-Reyes et al., 2013). In

addition to the AMV, we also compute the subpolar North

Atlantic (SPNA; 50–65◦ N, 60–10◦ W) ocean heat content in

the upper 300 m (referred to as SPNA-OHC300 hereafter).

As the IPO, AMV and SPNA-OHC300 are decadal modes of

variability, we filter out part of the interannual variability by

considering 4-year temporal averages along the forecast time

(i.e. forecast years 1–4, 2–5, 3–6 . . . ) for these indices.

Likewise, density has been computed using the Interna-

tional Equation of State of Seawater (EOS-80) that refers to

the level of 2000 dbar (sigma-2), which is a level that rep-

resents the deep-water properties. In addition, the contribu-

tions of temperature (sigma-T ) and salinity (sigma-S) to den-

sity were computed using the thermal expansion and haline

contraction coefficients, the latter of which were estimated

as the density change (in the EOS-80 equation) associated

with a small increase in temperature (0.02 ◦C) and salinity

(0.01 psu) respectively.

All ocean diagnostics have been computed using “Earth-

diagnostics”, a Python-based package developed at the BSC.

3 Results

3.1 Characterizing the predictive capacity of surface

temperature

3.1.1 Global mean surface temperature

First we compare the predicted GMST evolution for differ-

ent forecast periods (Fig. 1), estimated by combining SAT

over land and SST over the ocean (see Sect. 2). PRED re-

produces the observed variability and shows very high ACC

skill values: 0.96, 0.97 and 0.95 for forecast years 1, 1–5

and 6–10 respectively (similar values are obtained with com-

parisons to other observational products like HadCRUT4).

As expected, HIST does not capture most of the interan-

nual variability (Fig. 1), as it is largely of internal origin and,

therefore, averages out by construction. Nevertheless, HIST

shows very high skill (0.94, 0.96 and 0.95 for forecast years,

1–5 and 6–10 respectively) associated with the global warm-

ing trend and the cooling episodes in response to the volcanic

eruptions of Agung (1963), El Chichón (1982) and Pinatubo

(1991). The differences in ACC skill between PRED and

HIST are not statistically significant, indicating that the high

skill of PRED is mainly associated with the external forcings.

When the simulations are detrended (a simple attempt to re-

move the warming signal), PRED shows higher ACC skill

values than HIST, revealing the benefit of the initialization,

especially for the earlier forecast years (ACC values of 0.75

and 0.5 in forecast year 1 for PRED and HIST respectively).

Comparing the intra-ensemble spread of PRED and HIST

(shown by the box-and-whisker plots for PRED and shad-

ing for HIST in Fig. 1) shows that PRED has considerably

smaller spread even on the longer forecast times. For exam-

ple, the mean intra-ensemble standard deviation of PRED

is 0.05 K, whereas it is 0.20 K for HIST for the first fore-

cast year. This is probably due to the initialization of PRED,

which puts the simulated internal and observed variability in

phase and may also help to correct systematic errors in the

model response to external forcing (e.g. Doblas-Reyes et al.,

2013). This difference in spread remains comparable when

the ensemble size of HIST is reduced to 10 members, i.e. the

same ensemble size of PRED.

3.1.2 Added value of initialization at the regional scale

At the regional level, PRED shows high skill at predicting

surface temperature at different forecast ranges (Fig. 2a–c),

as expected from the presence of long-term warming trends

(Fig. 2d–f). In the first forecast year, most regions show sig-

nificant skill (Fig. 2a), with a few exceptions such as the cen-

tral subpolar North Atlantic and some regions of Asia, Aus-

tralia and the Southern Ocean, where the simulated trends are

small and mostly not statistically significant (Fig. 2d). By

contrast, the eastern Pacific shows no significant trends but

does show significant skill in the first forecast year associated

with the initialization of ENSO. On longer timescales (fore-

cast ranges from 1 to 5 and 6 to 10 years) PRED also shows

significant skill in many regions worldwide with greater ACC

values compared with forecast year 1 (Fig. 2b, c). This is

probably a consequence of considering 5-year averages for

validation, which reduces the influence of the unpredictable

part of interannual variability. There is, however, an impor-

tant degradation of the skill in some regions for these fore-

cast ranges, in particular in the eastern tropical Pacific, where

the model might not be representing the correct ENSO low-

frequency variability, and in the North Pacific, where gen-

erally low levels of skill have been related to model biases

in ocean mixing processes (Guemas et al., 2012). Compar-

ing the forecast periods for years 1–5 and 6–10, two major

differences are apparent. First, in the Southern Ocean, skill

degrades dramatically with forecast time, which is proba-

bly associated with the development of a warm bias due to

the incorrect representation of cloud feedbacks in the region

(Hyder et al., 2018). Second, the central subpolar North At-

lantic seems to exhibit an opposite change in skill, from neg-

ative ACC values during the first 5 forecast years to positive

but insignificant ACC values in the 5 following years, which

might reflect the recovery from an initial adjustment that af-

fects the North Atlantic. This adjustment might be responsi-
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Figure 1. Global mean surface temperature (GMST) annual mean anomaly time series (K) for PRED, HIST (historical+SSP2-4.5) and

GISTEMPv4 for (a) forecast years 1, (b) 1–5 and (c) 6–10. The anomalies cover the 1961–2018 period and are referenced to the 1971–2000

mean. Multi-year means (b, c) are plotted on the central year (e.g. 2000 represents the values from 1998 to 2002 in panels b and c). For a fair

comparison with observations, PRED and HIST have been masked where and when GISTEMPv4 has missing values. The intra-ensemble

spread for PRED and HIST is represented by the box-and-whisker plots and shading respectively. The ACC for PRED and HIST is shown

in the top-left corner of each panel, including the ACC after removing a linear trend from the time series (shown in parentheses). All ACC

values are statistically significant at the 95 % level.
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Figure 2. Anomaly correlation coefficient (ACC) for the annual surface temperature (SAT and SST blend) in PRED for forecast years (a) 1,

(b) 1–5 and (c) 6–10. The ACC is computed between the model ensemble mean of the blended SAT (over land) and SST (over the ocean)

fields and GISTEMPv4. Grid points with missing values in observations are masked in grey. Panels show surface temperature linear trends

(in K per decade) in PRED for the same forecast years as in panels (a–c). Panels (g–i) show the ACC difference between PRED and HIST in

the same forecast years as above. In all rows, hatching indicates significance at the 95 % confidence level. Both ACC and trends are computed

for annual mean values of all available years for the respective forecast period referenced to the 1970–2018 climatology.
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ble for the strong negative trends over the regions in forecast

years 1–5, which are substantially reduced in forecast years

6–10 (Fig. 2e, f). This will be further discussed in Sect. 3.3.

To determine whether there is a benefit of initialization

on the surface temperature skill, we compute the difference

in ACC between PRED and HIST (Fig. 2g–i) as well as

the MSSS of PRED using HIST as the reference forecast

(Fig. 3a–c). Moreover, to aid in the interpretation of the

MSSS values, we show the two terms that determine its sign,

the first being the difference between the squared ACC val-

ues of PRED and HIST (Fig. 3d–f), and the second being the

difference between their squared conditional biases (Fig. 3g–

i). The colour scales in all panels have been adjusted so that

red colours represent a contribution to improved skill from

initialization (i.e. the colour bar was inverted for the condi-

tional bias plots).

In the first forecast year, both ACC differences (Fig. 2g)

and MSSS (Fig. 3a) show added value from initialization in

the Pacific Ocean, the neighbouring region of the Southern

Ocean and the eastern subpolar North Atlantic, with MSSS

also showing positive impact of initialization in the subtropi-

cal Atlantic. The MSSS terms reveal that in the first forecast

year, the positive MSSS values (indicative of added value of

initialization) are mostly associated with the squared ACC

term (Fig. 3d), whereas the squared conditional biases con-

tribute mostly to negative MSSS skill, in particular over the

whole SPNA region and the northern North Pacific (Fig. 3g).

These negative contributions of the squared conditional bias

term are also present at forecast years 1–5, in which both

the ACC and MSSS differences become predominantly neg-

ative, supporting better predictive capacity in HIST than in

PRED and, therefore, indicating that only a few areas, such as

the northeastern SPNA and the tropical Pacific (Fig. 3b), are

benefiting from initialization. While the skill improvement

in the northeastern SPNA is clearly due the higher ACC in

PRED (Figs. 2h, 3e), the improvement in the tropical Pacific

is due to a reduction in the squared conditional bias of PRED

with respect to HIST (Fig. 3h). At longer forecast times (6–

10 years), added value from initialization remains very lim-

ited. Positive MSSS values are almost exclusive to the east-

ern tropical Pacific and the southeastern Atlantic, due to a

reduction in the squared conditional bias in PRED with re-

spect to HIST (Fig. 3i). In the northeastern SPNA, although

the ACC is greater in PRED (Figs. 2i, 3f), the squared con-

ditional bias in PRED is considerably larger than in HIST,

leading to very negative MSSS values (Fig. 3i), which sug-

gest that some regional key physical processes (e.g. the gyre

and overturning ocean circulations) might not be well repre-

sented in EC-Earth3 predictions.

To complement the analysis of surface temperature, we

also consider the upper-ocean heat content, a quantity that

better represents the thermal inertia of the ocean and a source

of decadal variability and predictability for the surface cli-

mate (e.g. Meehl et al., 2014; Yeager et al., 2018). As previ-

ously shown for surface temperature, in the first forecast year

high and significant ACC values are obtained in all major

basins for the ocean heat content in the upper 300 m (referred

to as OHC300 hereafter; Fig. 4a). A region of negative skill

values is evident over the central subpolar North Atlantic,

as for the surface temperatures (Fig. 2a). Forecast years 1–5

and 6–10 show that the skill in the tropical and eastern Pa-

cific is lost, as is also the case for some regions in the Atlantic

and Pacific sectors of the Southern Ocean (Fig. 4b, c). As for

surface temperature, the skill in the central subpolar North

Atlantic moderately improves in forecast years 6–10 with re-

spect to forecast years 1–5.

Comparing the ACC difference between the PRED and

HIST ensembles reveals that the initialization increases the

forecast skill of OHC300 in the eastern subpolar North At-

lantic in all the three forecast times (and ranges) considered

(Fig. 4d–f); this is a result that is consistent with other fore-

cast systems (e.g. Robson et al., 2018; Yeager et al., 2018).

The Pacific Ocean shows significantly improved skill from

initialization basin-wide in the first forecast year (i.e. ENSO);

however, for forecast years 1–5 and 6–10, the added value of

initialization is limited to parts of the eastern subtropical Pa-

cific and the western tropical Pacific. The initialization im-

proves the skill in most of the Indian Ocean at all forecast

times considered (although it is not statistically significant

for forecast years 6–10), which is consistent with previous

studies showing the high skill of decadal predictions in this

region (Guemas et al., 2013).

3.2 Skill for the main ocean modes of variability

We further evaluate the predictive capabilities of the EC-

Earth3 PRED experiment by considering the skill for pre-

dicting several modes of interannual to decadal variability

(Fig. 5). In the Pacific Ocean, ENSO is the main mode of

climate variability on seasonal to interannual timescales and

can help the predictive capacity worldwide through its well-

known climate impacts (e.g. McPhaden et al., 2006; Yuan

et al., 2018). Figure 5a shows that PRED captures the year-

to-year evolution of the observed ENSO, whereas HIST does

not; this is due to the dat that ENSO events are out of phase

across the HIST ensemble and average out. This is confirmed

by the high ACC values during the first 4 forecast months in

PRED (ACC > 0.9), which are followed by a typical loss of

skill that many dynamical forecast systems experience dur-

ing the spring season (i.e. the spring barrier; Webster and

Yang, 1992) and by a recovery in summer through the next

winter, in which ACC values remain positive and significant

(Fig. 5b). Added value for ENSO due to initialization is evi-

dent up to the second forecast year, as indicated by the pos-

itive MSSS values and the statistically significant difference

in ACC values between PRED and HIST (Fig. 5b). The lack

of skill in HIST is expected, because ENSO is barely influ-

enced by the external forcings and the ensemble mean aver-

ages the phases of the individual members out. In the pre-

dictions, the spread–error ratio reveals that the ENSO pre-
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Figure 3. Mean square skill score (MSSS) of the annual mean surface temperature (SAT and SST blend) in PRED using HIST as the reference

forecast (see Sect. 2.3) for forecast years (a) 1, (b) 1–5 and (c) 6–10. Hatching indicates where the MSSS is significant using a random walk

test (see Sect. 2.3). Its sign is determined by the difference between the terms in panels (d–f) and (g–i) (see Eq. 2). Panels (d–f) show the

difference between the squared ACC values in PRED and HIST for the same forecast years. Panels (g–i) show the difference between the

squared conditional biases in PRED and HIST for the same forecast years. Note that the colour scale in panels (g–i) is reversed with respect

to the other rows so that positive values contribute to improved skill from initialization. GISTEMPv4 is used as the observational reference

for all calculations. Annual mean anomalies are computed by masking PRED and HIST with the GISTEMPv4 missing values (masked in

grey) and using the common 1970–2018 climatology period.
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Figure 4. Upper 300 m ocean heat content (OHC300) anomaly correlation coefficient (ACC) of PRED computed with the EN4 observations

for (a) forecast years 1, (b) 1–5 and (c) 6–10. The impact of initialization is shown as the difference in ACC between PRED and HIST for

(d) forecast years 1, (e) 1–5 and (f) 6–10. In panels (a–c), the hatching indicates the statistical significance of the correlation at the 95 %

confidence level. For panels (d–f) hatching indicates the regions where the difference in correlation between HIST and PRED is statistically

significant at the 95 % confidence level. The black boxes in the North Atlantic delimit the region over which the SPNA indices have been

defined. It also includes the central boundary used to distinguish between its western and eastern sides.

dictions tend to be overconfident in the first 2 years, in con-

trast to HIST which tends to be under-confident. On decadal

timescales, the dominant mode of climate variability in the

Pacific Basin is the IPO. Figure 5e shows that neither PRED

nor HIST is capable of skilfully predicting it – a lack of skill

that has been documented in many other prediction systems

(e.g. Doblas-Reyes et al., 2013). Nonetheless, initialization

does seem to improve the reliability of the IPO (Fig. 5f).

In the Atlantic Ocean, the AMV is the dominant mode

of decadal climate variability and has been linked to sev-

eral climate impacts over Europe, North America and the

Sahel (Zhang and Delwoth, 2006; Sutton and Dong, 2012;

Ruprich-Robert et al., 2017, 2018) as well as to Atlantic trop-

ical cyclones (e.g. Caron et al., 2015, 2018). Both PRED and

HIST are capable of skilfully predicting the AMV, and they

show better performance than a persistence forecast (except

for the forecast range from 1 to 4 years in HIST), as shown

by the ACC (Fig. 5h). PRED however, is consistently better

than HIST, as shown by the MSSS, even though the ACC

differences are not statistically significant. The spread–error

ratio shows that initialization improves the reliability of the

AMV predictions at all forecast ranges (Fig. 5i), as the his-

torical simulations are overdispersive, which is probably due

to excessive intra-ensemble spread, as previously described

in Sect. 3.1.1.

As the subpolar North Atlantic has been shown to be

a region where forecast systems exhibit skill on decadal

timescales, we analyse the SPNA-OHC300 index (see

Sect. 2.4). As for the AMV, the initialization improves the

reliability of the PRED and shows that the HIST intra-

ensemble spread may be too large and, therefore, under-

confident (Fig. 5l). In terms of predictive capacity, PRED

exhibits a lack of skill for the SPNA-OHC300 index up to

the forecast range of 4 to 7 years, with significant ACC val-

ues emerging for longer forecast ranges, coinciding with the

time in which the system outperforms persistence. ACC val-

ues in the HIST ensemble (which are not statistically differ-

ent from those in PRED) also increase with forecast time.

In HIST, this is due to the fact that the skill for each fore-

cast range is computed over a different verification period

(the same one used for PRED), which used the longest pe-

riod available for each forecast range. For the longest forecast

ranges (e.g. 7–10 years), the first start dates cannot be used,

thereby excluding some of the earliest years (e.g. 1960–1966;

for which the warming trend was less prominent) and, thus,

producing an artificial increase in skill for longer forecast
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Figure 5. Skill of the selected modes of ocean variability: (a–c) ENSO (Niño3.4 index), (d–f) IPO, (g–i) AMV and (j–l) SPNA-OHC300.

Panels (a), (d), (g) and (j) show the observed (grey bars) and predicted (PRED in red and HIST in blue) time series of the indices. The

ensemble means are represented using lines, and the ensemble spread is shown using coloured shading. Panel (a) shows the ENSO index for

the first winter (DJF), whereas panels (d), (g) and (j) show the average of the first 4 forecast years for the other indices. Panels (b), (e), (h)

and (k) show the ACC of PRED (red) and HIST (blue), the MSSS of PRED considering HIST the baseline prediction (black dashed line) and

the ACC of a persistence forecast (purple). Statistically significant ACC values (at the 95 % confidence level) are shown using empty circles.

ACC differences that are statistically significant (at the 95 % confidence level) between the PRED and HIST are shown using filled circles.

Panels (c), (f), (i) and (l) show the spread–error ratio of PRED (red) and HIST (blue).
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times. Repeating the calculations for PRED over a common

verification period to all forecast ranges (i.e. 1970–2018) re-

veals that lower skill values are still present for the first fore-

cast years (see Fig. S1 in the Supplement), suggesting that

the differences in skill with forecast time are not due to dif-

ferences in the verification period but to other causes. If we

determine the skill in OHC300 in the western and eastern

SPNA separately (see Fig. S2), we can then see that the skill

in PRED is initially poor and then gradually increases reach-

ing significant values in the last forecast years in the western

SPNA, whereas the eastern SPNA maintains a high and rela-

tively stable predictive skill. The poor initial predictive skill

in the western SPNA might arise from a potential initializa-

tion shock, which is a possibility that is discussed in the next

subsection. The final skill recovery in the region might be re-

lated to the arrival of OHC anomalies from the eastern SPNA,

which are slowly advected by the mean gyre circulation.

3.3 Understanding the limited predictive skill in the

subpolar North Atlantic

In the previous section, we have shown the overall detri-

mental effect of initialization in the EC-Earth3 predictions

over some regions of the North Atlantic at all forecast ranges

(Fig. 3), leading to lack of predictive skill in the specific

case of the central subpolar North Atlantic, as shown by the

ACC maps of surface temperature (Fig. 3) and upper-ocean

heat content (Figs. 4, 5). Decadal variability in the subpo-

lar North Atlantic is highly influenced by the changes in the

ocean circulation, both meridional and barotropic (e.g. Or-

tega et al., 2017). To understand the role of the ocean circu-

lation, we analyse the evolution of the Atlantic Meridional

Overturning Circulation at 45◦ N (defined as the overturn-

ing stream function value at 45◦ N and at 1000 m depth; re-

ferred to as AMOC45N hereafter) and North Atlantic Subpo-

lar Gyre strength index (NASPG, defined as the regional av-

erage of the barotropic stream function in the Labrador Sea

(52–65◦ N, 58–43◦ W), multiplied by minus one to make the

values positive so as to aid the comparison) in PRED and

HIST (Fig. 6a , b). Additionally, we include the ocean-only

reconstruction from which the initial conditions are obtained

(referred to as RECON hereafter) to determine how the pre-

dictions depart from the initial conditions. Actual model val-

ues are used to illustrate how the forecast drift develops.

The mean forecast drift is also shown for completeness, es-

timated as the climatological value as a function of forecast

time (Fig. 6c, d). Figure 6 shows that decadal changes in the

AMOC and NASPG are highly correlated (e.g. R = 0.8 in

RECON) – a relationship that has been shown in previous

studies (Ortega et al., 2017).

Comparing PRED and RECON allows us to identify sev-

eral interesting features. In the first forecast year, the pre-

dicted AMOC45N is of equal value with respect to RE-

CON, whereas the predicted values tend to be weaker for the

NASPG index (Fig. 6). As the forecasts evolve and the model

transitions towards its free-running attractor both indices di-

verge from RECON and experience a pronounced weaken-

ing. By forecast year 10, the indices in PRED reach a weaker

mean state than in HIST (green dashed lines in Fig. 6c and

d respectively). These differences between PRED and HIST

suggest either that the forecasts in PRED need to be run

for longer to reach their attractor (i.e. HIST) (e.g. Sanchez-

Gomez et al., 2016) or that more than one model attractor

exists.

For both indices, we also note a clear difference in the way

the forecast transitions to the model attractor before and af-

ter year 2000. For the first 30 start dates, the AMOC45N and

NASPG in PRED start at stronger values than HIST (c.f. RE-

CON values in Fig. 6a and b), and the individual predictions

exhibit a fast decline that surpasses the HIST mean state. In

year 1995 of RECON, both indices experience a sharp de-

crease and eventually stabilize around a substantially lower

mean state, which is a transition that has been shown to be

partly predictable in previous studies (Robson et al., 2012;

Yeager et al., 2012; Msadek et al., 2014). Due to this weaker

initial state, all predictions after the year 2000 start much

closer to the HIST mean state. As a consequence, the drift in

PRED is smoother for this period. The fact that there are two

distinct periods in which the model drifts in different ways

(Fig. 6c, d) may compromise the applicability of the drift

correction methods used to compute the forecast anomalies,

which assume a stationary forecast drift. This is particularly

evident for the AMOC45N, which shows important differ-

ences in the PRED climatologies during the first 3 forecast

years when the climatologies are computed for the time pe-

riods preceding and following the year 2000 (Fig. 6c red and

blue lines respectively). Thus, in the case of the AMOC, ap-

plying the standard mean drift correction leads to an under-

estimation of its intensity over the first period and an over-

estimation over the second period within the first 3 forecast

years. In light of this problem, refining the current drift cor-

rection techniques to account for this sensitivity to the period

and/or initial state considered, or exploring other alterna-

tive statistical drift models to recalibrate the predictions (e.g.

Nadiga et al., 2019) might help to better estimate the true pre-

diction skill. Interestingly, other variables like the NASPG

seem to be less affected by non-stationary drifts (Fig. 6d).

To understand why the AMOC45 and NASPG are not sta-

bilizing in the predictions around the mean HIST state, we

focus on the Labrador Sea. The Labrador Sea is a key re-

gion of deep-water formation, in which climate models show

limitations with respect to representing realistic oceanic con-

vection, which can happen too often, too deep or can be com-

pletely absent in some cases (Heuzé, 2017). Figure 7a shows

the mixed layer depth (MLD) evolution in the Labrador Sea,

which is a proxy for the convection activity in this region.

The MLD index is computed as the average of February–

March–April, which are the months with the deepest mix-

ing. In PRED, MLD systematically collapses within the first

3 forecast years, which is in stark contrast with the typical
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Figure 6. Evolution of the (a) AMOC45N and (b) NASPG in the raw forecasts, historical ensemble and reconstruction. Ensemble mean

forecasts (10 members) of PRED are shown from blue to red every four start dates, with individual ensemble members shown in grey.

The ensemble mean RECON (5 members) is shown with the black dashed line. The ensemble mean of all HIST (15 members) is shown

in green, and the ensemble mean of the HIST members that do not exhibit convection are shown in purple. Panels (c, d) show the PRED

climatological values as a function of forecast time for the AMOC45N and NASPG respectively. Three time periods are considered for

PRED: the climatology for the 1970–2018 period (black), the climatology for the 1970–2000 period (red) and the climatology for the 2000–

2018 period (blue). The black, green and purple dashed lines indicate the climatology computed over the 1970–2018 period for RECON, all

HIST members, and HIST members that do not show convection respectively.

behaviour in the HIST ensemble, in which deep convection

happens regularly. In the HIST ensemble mean, Labrador

convection remains active throughout the whole period, al-

though it exhibits a long-term weakening trend, consistent

with the increase in local stratification caused by the exter-

nally forced ocean surface warming. The Labrador MLD in-

dex also allows us to identify three HIST members with a

distinct evolution from the rest, characterized by no convec-

tion during most of the historical period with a slight increase

from 2005 onward (purple line in Fig. 7a). These simula-

tions have a remarkable similarity to the state towards which

PRED appears to be drifting. The ensemble mean of these

three HIST members is also compatible with the AMOC45N

and NASPG states at the end of the forecasts (purple lines

in Fig. 6), suggesting that the attractor towards which PRED

converges is associated with a suppressed Labrador Sea con-

vection state. Note also that, in the first forecast year of

PRED, the Labrador Sea MLD is stronger than in RECON.

All of the above suggest the existence of an initial adjustment

in PRED, which initially boosts convection and subsequently

brings the model towards a non-convective mean state.

Other key indices are also affected by the Labrador Sea

convection collapse in PRED. For example, we see that sea

ice grows to occupy the whole Labrador Sea as soon as con-

vection ceases (Fig. 7b, e). As for the MLD, the sea ice ex-

tent of the HIST members with no convection is remarkably

similar, whereas convection in the other members maintains

a relatively reduced sea ice coverage. The western SPNA-

OHC300 (50–65◦ N, 60–30◦ W) also seems to experience an

abrupt initial change, as shown in Fig. 7c; the PRED cli-

matological value at a forecast time of 1 year is lower than

in the RECON climatology (Fig. 7f). In forecast years 2–

3, this index tends to increase, approaching the HIST mean

state, which is higher than in RECON. However, this trajec-

tory changes drastically after forecast year 3 (Fig. 7f), and a

quick cooling begins towards the no-convection HIST state.

This sudden change could be explained by a delayed re-

sponse to the convection collapse in the predictions, which

is expected to drive a weakening of the SPG intensity by
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Figure 7. The same as in Fig. 6 but for the mixed layer depth (MLD) in the Labrador Sea in February–March–April (FMA), the sea ice

extent (SIE) in the Labrador Sea during the same months and the western SPNA-OHC300 annual mean.

decreasing the density of its inner core and its associated

geostrophic current (Levermann and Born, 2007). For all of

these indices, we again note that their climatological drifts

seem non-stationary (Fig. 7d, e, f) and that predictions started

after the year 2000 might not be well bias corrected. This,

together with the effect of the strong initial shock, could ex-

plain the low (negative) predictive skill in the western SPNA

(Figs. 2 4), a region that is key for predicting the NAO (e.g.

Athanasiadis et al., 2020), for which PRED also shows low

skill (not shown).

3.4 Insights into the Labrador Sea initialization shock

and drift

Full-field initialization can sometimes produce strong initial-

ization shocks and drifts, as the climate model adjusts from

an initial state that might be substantially far from its attrac-

tor (e.g. Sanchez-Gomez et al., 2016). This section focuses

on Labrador Sea convection, for which Fig. 7a shows a clear

readjustment marked by an initial increase and a subsequent

decline. Both aspects of the predicted Labrador Sea evolution

are investigated separately. We focus on the preconditioning

role of Labrador Sea density stratification on convection and

investigate the role of temperature and salinity, two variables

that might be experiencing a different initialization adjust-

ment and forecast drift over the region.

The initial enhancement of convection is explored in

Fig. 8, describing the evolution of stratification in the

Labrador Sea for the first 5 months of the forecast

(November–March). At the time of initialization (Novem-

ber), the density profiles of PRED and RECON are almost

identical (dark red and blue lines in Fig. 8a). Differences

start to emerge in the subsequent forecast months, in which

the density stratification weakens at a different pace, with

PRED becoming more weakly stratified and, therefore, more

favourable to deep convection. HIST (green lines in Fig. 8d)

also shows a similar tendency to reduce density stratification

from November to March, although the Labrador Sea den-

sity remains more strongly stratified than in PRED and RE-

CON, which would explain why convection is also weaker.

By considering the temperature and salinity contributions to

density stratification (sigma-T and sigma-S, Fig. 8b, c), we

find that even though the overall density structure is domi-

nated by salinity, with temperature largely opposing the mean

density stratification, the major differences between PRED

and RECON occur in the sigma-T profile and are more no-

table at the surface. During the first 5 months of the forecast,

sigma-T fully accounts for the differences between PRED

and RECON in Labrador Sea density (e.g. 0.038 kgm−3 at

the surface by March), with virtually no differences aris-

ing in sigma-S (0.005 kgm−3), which fails to counterbalance

the temperature-driven changes. As a result, the destabilizing

role of temperature on density stratification in the deep con-

vection months is stronger in PRED than in HIST (Fig. 8e,

f), promoting deeper convection.

To understand why Labrador Sea stratification diverges

from RECON to PRED in the first forecast months, we in-

spect the local surface restoring fluxes in the former, which,

on average, are indicative of systematic model biases in the

https://doi.org/10.5194/esd-12-173-2021 Earth Syst. Dynam., 12, 173–196, 2021



188 R. Bilbao et al.: EC-Earth3 decadal prediction system

Figure 8. Labrador Sea (a) density, (b) sigma-T and (c) sigma-S climatological profiles in the first 5 forecast months (November–March)

of PRED, and the equivalent calendar months of RECON. Panels (d–f) are the same as in panels (a–c) but for PRED and HIST (different

panels are used to increase visibility). The colour intensity of the profiles from dark to light refers to increasing the forecast month.

ocean component. In RECON, the heat-flux-restoring term

is consistently positive and, thus, contributes to maintain a

warmer surface in these months of deep convection (Fig. 9).

These fluxes are not present in PRED because the simula-

tions are fully coupled, which will quickly adjust to a new

free-running state with a colder upper Labrador Sea, explain-

ing the relative surface cooling (and associated weakening

of density stratification) with respect to RECON (Fig. 8).

By contrast, the freshwater fluxes from the salinity-restoring

term are negative in the Labrador Sea, and they contribute

to maintaining a saltier (and denser) surface in RECON than

in PRED. Its effect, however, appears to be small in mag-

nitude, as no remarkable differences emerge in sigma-S be-

tween RECON and PRED.

After better understanding the process behind the initial

shock in the first winter, we now investigate the origin of

the weakening in the Labrador Sea convection after the first

forecast year of PRED. Again, we analyse the evolution of

the Labrador Sea density profile in PRED, but for each con-

vective season (February–March–April, FMA) as a function

of the forecast year (Fig. 10). The corresponding profiles for

RECON and the ensemble members of HIST are included

to contextualize the predictions. The sigma-T and sigma-S

profiles are also shown to disentangle the contributions from

temperature and salinity to density. After the first forecast

Earth Syst. Dynam., 12, 173–196, 2021 https://doi.org/10.5194/esd-12-173-2021



R. Bilbao et al.: EC-Earth3 decadal prediction system 189

Figure 9. Labrador Sea (52–65◦ N, 58–43◦ W) monthly climatology of the nudging correction fluxes in RECON of (a) heat and (b) fresh-

water. In both cases the fluxes are defined from the atmosphere into the ocean.

Figure 10. Labrador Sea (a) density, (b) sigma-T and (c) sigma-S climatological profiles for the convection season (February–March–April)

in PRED, RECON and HIST. In PRED, the intensity of the blue lines is used to represent the changing forecast time: the darkest blue line

corresponds to the 1st forecast year, and the lighter blue line corresponds to the 10th forecast year. The HIST members have been divided

into two sub-ensembles: those with and without convection in the Labrador Sea – HIST (green lines) and HIST-NoConv (purple lines). The

green dashed line is the HIST ensemble mean using all members.

FMA (darkest blue line in Fig. 10), for which we showed

a decrease in stratification that favoured deeper convection

with respect to RECON, the density stratification becomes

increasingly stronger with forecast time. This evolution is ex-

plained by the changes in salinity (Fig. 10c), as temperature

contributes to decrease stratification at all forecast ranges

(Fig. 10b). In the second forecast FMA, density stratifica-

tion in PRED is already stronger than in RECON (red line

in Fig. 10a). By the third forecast FMA, it becomes stronger

than in most of the HIST members with active convection

(green lines), and by the sixth FMA, it is already higher than

in all of them. Interestingly, the stratification of sigma-S is

not particularly different in PRED than in the HIST ensemble

members with convection, which suggests, once again, that

the counterbalancing effect of sigma-T is important to under-

stand the absence of convection in the forecasts. By the 10th

(last) forecast FMA (lightest blue line in Fig. 10), the density

stratification is remarkably similar to that in the HIST en-

semble members without convection. This may suggest that

PRED is stabilizing around this particular HIST state. How-

ever, this hypothesis is contradicted by the vertical profiles of

sigma-T and sigma-S, which appear to be more comparable

to the HIST members with convection in the final forecast

FMA. Therefore, it is possible that the forecast drift is bring-

ing PRED to a different equilibrium state than in HIST.

To investigate the model drift in the Labrador Sea and how

it affects its stratification, we use scatter plots of the climato-

logical Labrador Sea FMA temperature and salinity both at

the surface and at 500 m of depth (Fig. 11). At the surface,

the mean temperature and salinity for the first forecast FMA

remain close to those in RECON, as well as to the values

in several HIST members with active convection, all placed

https://doi.org/10.5194/esd-12-173-2021 Earth Syst. Dynam., 12, 173–196, 2021



190 R. Bilbao et al.: EC-Earth3 decadal prediction system

Figure 11. Scatter plot between the climatological Labrador Sea temperature and salinity during the convection season (February–March–

April) both (a) at the surface and (b) at 500 m. Blue dots of different intensity represent the climatological PRED values as a function of

forecast year: the red cross represents RECON, and the green (purple) dots represent the HIST members with (without) active Labrador Sea

convection. Isopycnals are represented by dashed grey lines in the background.

along the same isopycnal (27kgm−3). With increasing fore-

cast time, PRED drifts towards a state with lower temper-

ature and fresher conditions – the same one as the HIST

members with no convection. During this transition, the sur-

face in PRED also becomes lighter, contributing to increase

the stratification in the region. Important differences are ob-

served in the subsurface (i.e. 500 m). For example, unlike for

the surface, all the HIST members (i.e. the convective and

non-convective ones) show rather similar climatological tem-

perature and salinity (T–S) values, roughly aligned along the

same isopycnal (27.25kgm−3). In this case, PRED starts far

away from the HIST state (Fig. 11c), although with similar

density conditions. The main difference with respect to the

surface is that with the subsequent forecast years, the sub-

surface does not converge towards the typical mean HIST

states. By the sixth forecast FMA, the mean temperature and

salinity values appear to stabilize along a weaker isopyc-

nal (27.1kgm−3). This suggests that the forecast drift has

brought the model to a different equilibrium state, at least in

the Labrador Sea. The shock and the later drift may be caused

by RECON being far from the EC-Earth3 model climate state

in the Labrador Sea subsurface. In particular, in terms of tem-

perature and salinity (Fig. 11), as the mean density profiles

are rather comparable due to the compensation between the

temperature and salinity contributions (Fig. 10). Similar T–S

diagrams, using HIST as a baseline, will be used in the future

when evaluating the suitability of different ocean reconstruc-

tions to initialize our next decadal prediction systems.

4 Summary and conclusions

In this paper, we have presented and evaluated the predic-

tive skill of a decadal forecast system with EC-Earth, based

on full-field initialization, that contributes to the Decadal

Climate Prediction Project – Component A (DCPP-A). The

main findings of the skill assessment are as follows:

– In agreement with other decadal forecast systems (e.g.

Yeager et al., 2018; Robson et al., 2018), EC-Earth3 is

able to skilfully simulate the global mean surface tem-

perature at short (forecast year 1) and long (forecast

years 6–10) forecast times, with a large part of the skill

arising from changes in the external forcings.

– Comparing different skill metrics (i.e. anomaly correla-

tion coefficient and mean square skill score; ACC and

MSSS) in the predictions and in an ensemble of histor-

ical simulations, we have shown a beneficial effect of

initialization. In the first forecast year, surface temper-

ature anomalies in regions like the tropical Pacific, the

eastern subpolar North Atlantic and the Southern Ocean

show added value from initialization in the predictions.

At longer forecast times, only a few localized regions

show improvements in terms of MSSS due to initializa-

tion, which is exemplified by the eastern equatorial Pa-

cific and the equatorial Atlantic. ACC differences show

more limited improvements, from which we highlight a

narrow band in the eastern subpolar North Atlantic.

– The added value of initialization is more easily dis-

cernible when considering both vertically and region-

ally integrated ocean quantities. For example, skill maps

of the upper 300 m ocean heat content (OHC300),

which is more persistent than surface temperature as it is

less affected by atmospheric perturbations, show larger

areas of improved skill both in the Pacific and Atlantic

oceans. Likewise, skill metrics are systematically bet-

ter in the initialized predictions for the Atlantic multi-

decadal variability, although the improvements are not

statistically significant.
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– Another beneficial effect of initialization is the reduc-

tion in the ensemble spread in the predictions with re-

spect to the historical simulations, at least for the vari-

ables and indices analysed. Therefore, the spread of the

predicted anomalies is better constrained at all forecast

times.

– In contrast with other studies, the central subpolar North

Atlantic is a region of poor forecast skill in the EC-

Earth3 forecast system. Both SST and the OHC300

show a detrimental effect of initialization on its regional

skill in the first 5 forecast years, which could be ex-

plained by an initialization shock and the related long-

term drift.

To investigate this potential shock, we have further ex-

plored the forecast evolution in a selection of key ocean vari-

ables controlling multidecadal variability in the North At-

lantic. The analysis showed that Labrador Sea convection

collapses by forecast year 3 in the predictions, leading to a

rapid weakening of the Atlantic Meridional Overturning Cir-

culation (AMOC) and the Subpolar Gyre circulation. This

causes a cooling tendency of the western SPNA and a local

expansion of sea ice, which occupies the entire Labrador Sea

by forecast year 10. Although a similar state of suppressed

convection is found in 3 out of 15 of the historical experi-

ments, the mean of the historical ensemble (which in our case

might not exactly correspond to a preferred model state) ex-

hibits higher AMOC and subpolar gyre strength values, reg-

ular convection in the Labrador Sea and a more realistic sea

ice extent. This suggests that the Labrador Sea convection

collapse and subsequent North Atlantic changes are associ-

ated with an initialization shock and drift that brings the pre-

dictions apart from their expected trajectory as represented

by the historical ensemble mean.

We have further related the Labrador Sea convection col-

lapse to the evolution of local density stratification and the

separate contributions from temperature and salinity. Dur-

ing the first 3 forecast years, the Labrador density profile

becomes more strongly stratified than in most of the histor-

ical members with active convection, following an intense

surface freshening. This increase in stratification continues

with forecast time, approaching but not reaching the strong

density stratification levels from the three historical members

without convection. To assess if the forecasts actually drift

to an attractor characterized by these three historical mem-

bers, we have additionally evaluated the climatological tem-

perature and salinity in the region as a function of forecast

time at the surface and 500 m. At the surface, the predictions

start with mean temperature and salinity conditions within

the range of those in the historical members with active con-

vection; by the end of the forecast, they approach the typical

state of the members without convection. At the subsurface,

however, the forecasts remain far from either of the typical

historical states, stabilizing at forecast year 10 around a dif-

ferent (and lighter) attractor.

Thus, these results highlight the risk of initializing a sensi-

tive region for decadal prediction, such as the Labrador Sea,

too far from its preferred model state; this is a problem that,

in this case, could have been minimized by applying a weaker

nudging in the subsurface when producing the reconstruction

that provided the ocean and sea ice initial conditions. Our

findings also underline the importance of reducing the mean

model biases in the Labrador Sea as much as possible, in par-

ticular at the subsurface. The problems described herein are

particularly important when considering full-field initializa-

tion (e.g. Magnusson et al., 2012; Smith et al., 2013) – an

approach in which initial imbalances of this kind are more

likely to occur. In this sense, anomaly initialization emerges

as a potential alternative to minimize the drifts and, more im-

portantly here, to minimize the occurrence of initialization

shocks. However, as previous studies have shown (e.g. Volpi

et al., 2017), this approach is not exempt from problems, and

it does not prevent initial model imbalances from happen-

ing, whose effect on Labrador Sea convection remains un-

known. A complementary alternative is to devote new efforts

in climate model development to reduce the model biases

over the region and, thus, reduce the mismatches with the

observation-constrained products used for initialization. In-

deed, an appropriate model tuning in the Labrador Sea would

benefit decadal prediction in two ways: first, by improving

the model realism in a source region of decadal skill, and

second, by helping to prevent or reduce problems associated

with initialization.

Code availability. Ocean diagnostics have been computed us-

ing “Earthdiagnostics”, a Python-based package developed at

the BSC (https://earth.bsc.es/gitlab/es/earthdiagnostics, BSC-CNS

and Vegas-Regidor, 2020). For data retrieval, loading, process-

ing and calculating verification measures, the “startR” (https://

cran.r-project.org/web/packages/startR/index.html, BSC-CNS and

Manubens, 2021) and “s2dv” (https://cran.r-project.org/web/

packages/s2dv/index.html, BSC-CNS et al., 2020) R libraries have

been used. The code to reproduce the results and figures presented

in this study can be made available upon request.

Data availability. The EC-Earth3 CMIP6 simulations

are available through the Earth System Grid Federation

(https://esgf-data.dkrz.de/projects/esgf-dkrz/, ESGF, 2021):

dcppA-hindcast (https://doi.org/10.22033/ESGF/CMIP6.4553,

EC-Earth-Consortium, 2019a), historical

(https://doi.org/10.22033/ESGF/CMIP6.4700, EC-

Earth-Consortium, 2019b) and ScenarioMIP ssp245

(https://doi.org/10.22033/ESGF/CMIP6.4880, EC-Earth-

Consortium, 2019c). The ocean reconstruction used to derive

the ocean and sea ice initial condition can be made available upon

request.
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