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Abstract: The material deterioration of an unreinforced stone masonry (URSM) building, due to
subsequent dynamic loadings of increasing intensity on a shaking table, is investigated by means of
inverse engineering, i.e. calibrating a finite element (FE) model to the experimental response data.
The mechanical properties of the structure were initially estimated by preliminary characterisation
tests. A two-storey full scale URSM building was tested on a shaking table using a sequential testing
procedure of stationary and strong motion vibrations. The building was submitted to five uniaxial
time-histories with gradually increasing intensity on a shaking table at the EUCENTRE laboratory
(Pavia, Italy) up to a near collapse damage state, each one followed by a stationary vibration test. A
frequency domain calibration was carried out to extract the mechanical properties of the equivalent
elastic model. To this end, the stationary measurements were used to build up the state-space model.
On the other hand, a recognition model was employed using the finite element method (FEM), whose
stiffness and mass matrices were used to derive the corresponding analytical state-space model,
which was compared to the experimental one. The calibration of the model against the experimental
dynamic results includes increased complexity and high computational effort. Through an iterative
optimisation trial and error procedure, the mechanical properties of masonry and the shear modulus
of the flexible diaphragm of the structure for each test phase were derived. It is shown that the
deterioration is more intense for the shear modulus of the walls compared to their elastic modulus.
The ratio of the in-plane shear to the elastic modulus decreases substantially. The deterioration of the
shear modulus of the timber floors is comparable with those of masonry walls.

Keywords: inverse engineering; shaking table test; unreinforced stone masonry; timber diaphragm;
material properties calibration; elastic and shear moduli

1. Introduction

Structural system identification (SSI) develops a mathematical model for an oscillating
structure based on a set of input and corresponding output measurements that are able
to estimate the dynamic properties of the structure. On the other hand, finite element
(FE) models provide rigorous mathematical models of the response of structures based on
stiffness, mass and damping and applying simplifying mechanical and material models. By
comparing these two models (the SSI and the FE models), the so-called inverse engineering
estimation of the material characteristics can be achieved.

During strong ground vibration, changes occur to the dynamic characteristics of struc-
tures due to modification of the material properties when inelastic deformation appears.
Therefore, the changes in the material properties are, in reality, damage in their micro-
structure, usually observed macroscopically as cracks. SSI is able to determine the dynamic
properties of a structure, i.e., its natural periods, dampings and frequencies, based on
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input–output (IO) measurements. Using these measurements, it is possible to establish
a global multi-input multi-output (MIMO) system mainly characterised by its transfer
function (TF). The accurate calibration of a FE model using MIMO characterisation, due
to the intricate analysis of dynamic response and the significant expense associated with
detailed measurements of the response, is a challenging issue, for which a variety of pro-
cedures have been proposed. Indeed, the calibration of an FE model is a demanding task
and it is frequently treated in a simplistic way, with few updates of the model, to achieve
reasonable similarity between the experimental response and the model [1,2]. However, it
is not recommended to try such a pairing procedure but rather to pair the characteristics of
the structure derived from the modal identification of the signals [3]. A rigorous procedure
requires one to impose certain criteria for the correlation between the model and the test
measurements, known as test-analysis correlation (TAC) [4] and in general, this consists of
the following five main steps (see for example [3]): (i) simulation of the test with a model,
(ii) extraction of the physical properties from the test measurements, (iii) identification of
the critical parameters, (iv) establishment of a validation criterion and definition of the
error, and (v) minimisation of the error between the model and the test measurements.
One of the first metrics proposed to validate the model is the modal assurance criterion
(MAC) [5] between the modes of the model and the test using the orthogonality or the cross
orthogonality criterion [6,7]. On the other hand, the obvious shortcoming of this metric is
that the response is not evaluated [8].

A metric that overcomes the aforementioned drawback is based on the correlation of
the frequency response of the structure [9], which is directly measured during the tests.
This method relies on the modal identification of the state-space system [10–13]. This SSI
is based on a linear filter model, such as the extended Kalman filter (EKF) [14,15], for
the estimation of dynamic characteristics. Several algorithms for the realization of the
system have been proposed, such as the N4SID [10,11] and the Eigen realization algorithms
(ERA) [16]. An important advantage is that despite its computational cost, the state-space
formulation is not likely to be unstable or ill-conditioned [17].

Unreinforced stone masonry (URSM) buildings are very vulnerable to earthquakes [18,19].
A shaking table experiment of a URSM building was performed to study their seismic
response by applying an incremental and consecutive procedure and five time-histories of
a scaled real recording are used to shake the structure up to a near collapse state [20,21].
In this series of test phases, cracks were formed, grew and propagated from phase to
phase and finally isolated masonry portions were involved in an out-of-plane collapse
mechanism [22,23]. Structural health monitoring (SHM) of masonry buildings is usually
performed with ambient vibration measurements, e.g., [24–27]. The scope of this study is to
investigate the evolution of the material properties of the structure by applying a dynamic
analysis of the stationary response by an iterative optimisation process. An elastic FE
model of the structure is prepared and through a calibration process, its equivalent material
characteristics are defined. The investigated parameters are limited to six, corresponding
to the orthotropic elastic and shear moduli of masonry and the shear modulus of the
floor diaphragm.

2. Brief Description of the Shaking Table Test Procedure and Response of the Building

A full-scale, two-storey unreinforced stone masonry (URSM) building, 5.80 × 4.40 m2

in plan and 6 m high (Figure 1), with flexible diaphragms [20], was tested on a shaking table
in Eucentre (Pavia, Italy) to investigate the nonlinear behaviour and the failure mechanism
of the existing URSM structures. The details of the experiment can be found in [28].

A sequence of five test series for a progressively increasing seismic intensity was
performed by scaling the natural accelerogram of the 1979 Montenegro earthquake along
the longitudinal north–south (NS) direction of the URSM building (Figure 2).
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Figure 1. Location of 20 capacitive accelerometers A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S,
T, U and V (red bullets) on the critical positions of the building.

The test structure during the fifth phase exhibited a local failure mechanism, charac-
terised by a rocking non-linear (NL) response [29–31] of a part of the north second floor
wall (perpendicular to the excitation).

Each dynamic test on the shaking table was preceded by calibration tests of random
vibrations (stationary process) and preliminary modal identification was performed by
recording the vibrations induced in the structure due to random noise.

Figure 2 presents the sequence of the test phases; after each strong motion Ti phase,
there is a random stationary vibration Si test. Detection and monitoring of the structural
response in terms of accelerations in the current test series was performed using force
feedback capacitive accelerometers. Their position was located on the critical zones of the
structure, as presented in Figure 1.

The strong motion tests performed at low levels of PGA, namely T1 to T3, with a
nominal PGA 0.05 g, 0.10 g and 0.20 g (and actual values ranging from 0.074 to 0.315 g as
shown in Figure 2), did not induce visible damage to the structure. Only minor cracks were
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visible on west and east façades, which were parallel to the excitation (Figure 3). Dynamic
identification showed, however, the existence of damage as early as the first phase [21].
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Figure 2. Sequence of 5 seismic inputs (strong motion SM and random vibration RV) of the scaled
1979 Montenegro earthquake.
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Figure 3. Crack pattern during test phases T1–T3: cracks shown in black.

The test T5 performed at a nominal PGA of 0.40 g (and an actual one at 0.629 g, as
shown in Figure 2) reached a close to the collapse state (Figure 4). The collapse mechanism
had been already formed in the previous test phase T4 at a nominal PGA of 0.30 g (actual
PGA = 0.509 g), where the west wall presented stepped diagonal cracks at its top and
bottom of the second-floor north pier, as shown with black lines in Figure 4. The collapse
mechanism involved the upper part of the north façade (perpendicular to the excitation),
which tended to overturn out-of-plane, the two spandrel beams and wooden lintels on the
west and east walls (parallel to the seismic excitation), which rotated and slid on the lintel
support, and the gable wall of the south façade, which also tended to overturn following
the motion of the north wall due to their connection through the ridge beam (Figure 4).

The stationary tests preceded each strong motion tests and a final stationary test S5
followed the strong motion test T5. However, it should be noted that at this test, the
structure was mildly reinforced with ties to prevent a total collapse of the facades.
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3. State-Space Model of the Acceleration Measurements

The frequency characteristics of the URSM building subjected to subsequent oscilla-
tions with gradually increasing intensity vary substantially, as it experiences heavy damage
over almost the entire NL domain up to collapse. ERA is able to decompose modes, even
when they are very close and coupled. The first step of this method is to calculate the
impulse response from the frequency response H(z) of the random vibration tests using the
inverse Z-transform for the discrete system, which is as follows:

{h(t)} = Z−1{H(z)} (1)

where {h(t)}T is the p × n impulse response vector at a given time step for the n sensors of
the building.The key point of the method relies on obtaining the system Markov parameters
directly from the impulse response {h(t)}, forming the Hankel matrix from the test data [32].
The realisation of the system matrices A, B and C is carried out by the singular value
decomposition (SVD) [33] of the estimated Hankel and shifted Hankel matrices H(1) and
H(2). The state matrices A, B and C are obtained as follows [34]:

[A] = [H(1)]∗[H][H(2)]∗ (2a)

[B] = [H(2)],1 (2b)

[C] = [H(1)][D]1:m, (2c)

The physical representation of the system Σ{A, B, C, D} is obtained using a similar-
ity transformation [35], since the direct interpretation of the state-space matrices is only
possible in limited cases e.g., [32]. The SVD of the discrete state matrix A is applied as
follows [32,36]:

[A] = [Ψ][Λ][Ψ]−1 (3)

In the latter Equation (3) Λ is a uniquely determined diagonal matrix containing the
complex singular values {λk} of A that represent the eigenvalues of the system and Ψ is a
square matrix. The eigenvectors Φ ={ϕi} of the system are obtained as follows:

[Φ] = [C][Ψ] (4)

It should be emphasized that the eigen values λk of the discrete system should be
transformed to the continuous-time model. λi denotes the Eigen values of the continuous-
time system, Ac the continuous-time state matrix, Fs the frequency sampling and ζi the
modal damping. Then, it can be easily found that [14,37]

A = e
1
Fs A

c (5a)

λi = Fs(lnλk) (5b)
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ζi =
Re(λi)

|λi|
(5c)

It is noted here that the transformation of Equation (5) is not unique as any ±κ·2π,
κЄZ can be added to the natural logarithm [14].

4. FEM Calibration
4.1. Overview of the Calibration Procedure

By analysing the random vibration tests, it is possible to estimate the equivalent elastic
properties of the building after the suffered damage (Figures 3 and 4), due to the preceding
strong motion tests (sequence of tests presented in Figure 2). The main assumption of
the procedure is that each structural wall (east, west, north and south) and the flexible
diaphragms can have different elastic moduli due to cracking.

The procedure is illustrated in Figure 5 and can be summarised as follows:

• Step 1: from the laboratory testing, the material properties and the frequency response
functions (FRF’s) of the structure are obtained.

• Step 2: an FE model of the structure is built based on the previously found mate-
rial properties.

• Step 3: static condensation is performed to reduce the degrees of freedom (DOFs) of
the model.

• Step 4: the derivatives of the constitution matrices of the model (M mass, K stiffness
and C damping) are estimated.

• Step 5: using the data from steps 2 to 4, the FRF’s are estimated.
• Step 6: FRF’s from steps 1 and 6 are compared and new material properties are estimated.
• Step 7: the optimisation procedure returns to step 2 until the comparison shows an

acceptable convergence.
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Steps 2 to 7 are explicitly described in the following Section 4.2 to Section 4.7. As
aforementioned, the basic assumption of the FE modelling is to assume that masonry
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remains a continuum and cracking is not directly simulated but indirectly taken into account
by the modified mechanical properties of an equivalent elastic response, in accordance
with the smeared crack approach. The initial values for the calibration procedure are those
found from the material testing.

4.2. Set-Up of the FE Model and Calibration Parameters

A linear elastic FE model is employed following the exact dimensions of the structure
to study the evolution of the material properties due to cracking and damage. The model
is elastic, as it is calibrated with the elastic response of the stationary random vibrations.
The building suffers damage that accumulates in every next test phase [38]. Therefore, the
elastic properties identified from the random vibration tests in each test phase i reflect the
secant modulus of masonry walls, assuming a smeared crack equivalent elastic modulus
of the damaged structure up to the specific test phase i. This approach simulates the
propagation of cracks inside the body of masonry by modifying its elastic properties, i.e.,
using ‘softer’ ones for a cracked wall.

Masonry as a material is far from an elastic homogeneous media, with uniform and
constant properties throughout. On the contrary, masonry is a material characterised by
strong heterogeneity on a micro or meso-scale. Consequently, the macroscopic properties
depend strongly on the configuration of the construction. Brickwork has a standard pattern
that is repeatedly replicated [39]. Stonework, on the contrary, has an intrinsic ‘non-periodic’
construction, resulting from the variability in the stone units and mortar joints. Moreover,
the construction of the walls in a double-wythe fashion, scarcely connected between them at
the edges, makes the equivalent homogenous isotropic elastic properties more problematic.
Therefore, an anisotropic model fits better with the actual situation.

During the calibration process, masonry is considered as an orthotropic material [40–44].
Orthotropy is essential to study the evolution of the shear to elastic moduli ratio G/E.
Masonry properties vary among the walls in the calibration process as a result of the
different cracking and despite the fact that all of them were built from the same constituents
and with the same technique.

The shear moduli Gi is assumed equal to all the three directions, as this was estimated
from diagonal compression tests and no testing was performed for the out-of-plane one.
Elastic moduli of masonry in the out-of-plane direction E2 and the horizontal one E3, as no
testing was performed, are assumed proportional to the 80% of the vertical direction E1
based on standard values from the literature [39,41,42,45]. The calibration parameters are
presented in Table 1. The north and south walls presented a similar damage mechanism
involving the gable roof, and therefore have the same parameters P5. As the damage of the
north and south walls is out-of-plane, the shear modulus is assumed to remain constant
(i.e., G/E = 0.33).

Table 1. The material parameters considered in the calibration process.

E1 E2 E3 G1 G2 G3

West wall P1 0.8P1 0.8P1 P2 P2 P2
East wall P3 0.8P3 0.8P3 P4 P4 P4

North wall P5 0.8P5 0.8P5 0.33P5 0.33P5 0.33P5
South wall P5 0.8P5 0.8P5 0.33P5 0.33P5 0.33P5
Diaphragm - - - P6 P6 P6

The initial material properties are determined from material testing [46]. Then, the
calibration of the FE model is carried out using the FEMCali software [9]. The FE model is
built in ANSYS [47] (Figure 6) using the following elements:

• Eight-node solid elements (SOLID185) with three translational DOFs in each node to
simulate the concrete base of the structure and the masonry walls. Shell elements with
rotational DOFs could be used alternatively but they can simulate the connections
with timber less accurately.
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• Four-node shell elements (SHELL63) with two in-plane translational DOFs in each
node to simulate the timber floor diaphragm and the timber roof diaphragm.

• Two-node beam elements (BEAM4) with six DOFs (translational and rotational) in
each node to simulate the timber beams of the floor and the roof.
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It is noted that the floor’s diaphragm nodes are not connected to the north and south
walls but only to the west and east walls, parallel to the vibration direction. A meticulous
simulation of this connection could include NL compression-only springs to simulate the
interaction with these walls. However, for the stationary tests, this is deemed unnecessary.

The nominal thickness of the walls is 32 cm (Figure 1). Solid elements (SOLID185)
with three DOFs in each node are used to simulate both in-plane (membrane action) and
out-of-plane (bending) actions. The roof of the building is covered with 430 tiles, each one
weighing 3 kg, i.e., 3 × 9.81 = 29.43 N; hence, the total weight of the tiles can be estimated
as 12.7 kN. The corresponding mass is distributed evenly in the 90 joints that comprise the
roof structure. Each of the 81 nodes of the first-floor diaphragm has an added mass equal
to 0.39 t; hence, the total mass of 30.6 t has been evenly distributed. These added masses
have only in-plane DOFs to avoid any unwanted vibration in the vertical axis.

Then, an analysis is performed to retrieve the mass M and stiffness K matrices. The
damping matrix Cζ is constructed at a later phase numerically using the estimated damping
from Equation (5c) of the experimental modal identification. In the following expression, Φ
is the modal matrix and Z is a diagonal matrix that contains the modal damping ratios ζi
identified through the modal identification procedure.[

Cζ

]
=
(
[M][Φ][M]−1

)
Z
(
[M]−1[Φ][M]

)
(6)

The initial elastic properties of the “intact” walls are determined from a set of six
vertical compression tests, six diagonal compression tests and five in-plane cyclic shear
tests [48]. From uniaxial compression tests, stress–strain curves were obtained, together
with an estimation of the compressive strength of the masonry. The conventional shear
modulus was calculated similarly from the shear stress–strain curves obtained in the
diagonal compression tests, as a secant modulus at 1/3 of the panel strength. The shear
modulus of the diaphragm Gdiaph is 354 MPa, whose equivalent thickness is 4 cm. The
main results are summarized in Table 2. The initial ratio of shear to elastic moduli G/E is
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0.33 smaller than the suggested value in many codes 0.4 [49]. The fact that the proposed
ratio of G/E in codes is larger than the actual one has been reported in several studies
(e.g., [40,42–44]). The experimentally found ratio 0.33 would correspond to the marginal
value for a Poisson ratio v = 0.5 of a homogeneous material. This value drops as cracking
appears, as shown in the next sections; therefore, the assumption of a heterogeneous
material is the only valid one for the current analysis.

Table 2. Mechanical properties (compressive strength fm, elastic modulus E, tensile strength ft and
shear modulus) of stone masonry in MPa.

fm E ft G

Mean 3.28 2550 0.137 840
St. Dev. 0.26 345 0.031 125

c.o.v. 8% 13.50% 21.80% 14.80%

4.3. Static Condensation of the FE Model

A key issue associated with full scale experiments of structures is the location of
sensors. Due to availability, computation capabilities and cost considerations, a minimum
number of sensors should be placed so that the locations fulfill the requirements of an
efficient system identification. However, the FE model of the structure includes thousands
of DOFs, with some eigenvalues outside the frequency range of practical interest. For this
reason, it is necessary to reduce the order of the FE model to the size of measurements
accordingly, in order to transform the high dimensional system of equations from the FE
modeling of the mechanical structure into the lower experimental dimensionality.

The static condensation is the basis for the model reduction [50]. An FE model of the
structure under investigation is prepared using the mechanical properties from monotonic
and cyclic tests of the materials before the shaking table test (Figure 6). This model is
constrained by applying the relevant laboratory conditions and restrains and properly
loaded with gravitational loads. The total number of the degrees of freedom (DOFs) is
denoted as σ, normally equal to the double, threefold or sixfold of the number of nodes
of shells, solids and beams, respectively. This set σ can be subdivided into c (constrained)
and f (free) DOFs. Static analysis equations (i.e., forces Ff equal to the product of stiffness
Kff times the displacements δf of the f DOFs) take on a matrix form after applying the
respective constraint conditions, which are as follows:[

K f f

]
·
{

δ f

}
=
{

Ff

}
(7)

Free (f) DOFs are divided in two sets, m (masters) and s (slaves) DOFs. Master DOFs
are kept during the reduction process, while slave DOFs are those who should be eliminated.
Therefore, Equation (7) is decomposed in m and s DOFs as follows:[

Kmm Kms
Ksm Kss

]
·
{

δm
δs

}
=

{
Fm
Fs

}
(8)

4.4. Estimation of the Derivatives of the FE Matrices

The direct optimisation of the deviation function between the FE model and the
experimental data using, in each step, a new FE analysis should be avoided due to the
high computational cost involved in the procedure. This would lead inevitably to an
almost infinite time for the FE matrices that have an order of magnitude of ten thousand
approximately. In order to perform an efficient iterative update of the FE model, it is
necessary to estimate the derivatives of the mass, damping and stiffness matrices M, C, K ∈
Rn×n. This method avoids the computational challenges of building the structural matrices
using a direct FE analysis by using an extrapolation method to obtain a reliable difference
quotient for the structural matrices [9]. The Newton central difference-quotient is used in
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Equation (9). The gradient of the structural matrices, with respect to the parameters to be
calibrated, is obtained using the step-wise Ridders interpolation procedure to minimise the
error [51].

f ′(x) ≈ lim
h→0

f (x + h)− f (x− h)
2h

(9)

4.5. Estimation of the Frequency Response Function of the FE Model

The state-space formulation of the building specimen is based on the transformation
of the second order differential system equation into the form of a first order matrix
differential equation, which can be easily solved using numerical integration. Thus, the
system is represented by a model that can be used to retrieve the dynamic response of
any general input excitation. It is emphasized that the state-space formulation a priori
assumes that the system performs linearly; therefore, the matrix model remains constant
during the response [52]. As aforementioned, the shaking table tests of the two-storey
masonry building presents a highly NL response, as extensive cracking appears at high
intensities. However, by focusing only on random vibration tests, which are performed at
a low magnitude, the response is linear, and it is possible to measure the ‘linear effective’
response of the gradually damaged building specimen that represents the secant moduli
after the damage of each strong motion test phase.

The response of an n degrees-of-freedom (DOFs) system excited by random vibration
tests is governed by a second order differential equation. The differential equation of a
continuous-time system is solved for the highest order derivative in Equation (10), where
M, C, K ∈ Rn×n stand for the building structural matrices of mass, damping and stiffness,
respectively. The input matrix is denoted as B ∈ Rn×p and u(t) ∈ Rp represents the input
signals sent to the system, where p is equal to 1. Equation (10) is a large scale second
order differential-algebraic equation, assuming that M is invertible, which is the case for
real structures.

..
y(t) = −M−1Cζ

.
y(t)−M−1Ky(t) + M−1B0u(t) (10)

Using the following transform,

x(t) =
.
y(t) + y(t). (11)

Equation (10) takes the following expression:

dx
dt

= Ax + Bu, where A =

[
0n×n In×n
−M−1K −M−1Cζ

]
, and B =

[
0n×1

M−1B0

]
(12)

Equation (12) describe the dynamics of the vibration of the two-storey URSM structure
in terms of the state variable x(t) ∈ Rn in Equation (11). Then, the following expressions
relate the measured output y(t) ∈ Rm to the state variable:

y(t) = C · x(t) + D · u(t), C =
[
−Ca M−1K −Cζ M−1K

]
, D =

[
−Ca M−1B

]
(13)

For a discrete state space system, the transfer function matrix can be obtained, applying
the z-transform of Equation (11) as follows [37]:

H(z) = C (z I − A)−1 B + D (14)

4.6. Estimation of Deviation between FE Model and Recording Response

The deviation ε between the experimental data and the FE model is estimated using
the frequency response function H(jω). The error e(jω) is defined as the ratio of frequency
response functions between the FE model HFE(jω) and the test data Htest(jω) [8] and can be
obtained as follows:

e(jωi) = ln
HFE(jωi)

Htest(jωi)
(15)
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Then, the deviation is the vector of the real and imaginary parts of the error is defined
as follows [8]:

→
εi =

{
Re(ei) Im(ei)

}√
2max(i)

(16)

4.7. Iterative Method for Solving the Calibration Set of Equations

The minimum of the function of the deviation ε(pi), i = {1,6} between the recordings
and the response of the FEM model for the selected parameters pi is identified using the
steepest descent method. The Levenberg–Marquardt algorithm [53] for fitting a nonlinear
regression in order to solve the non-linear least squares problem has been applied. The
algorithm interpolates between the Gauss–Newton algorithm and the method of gradient
descent. To find the model parameters, the initial estimates are updated during each
iteration in the downhill direction to the gradient, decreasing the average square error
with a damped least-squares approach. However, a standard local search approach is only
applicable for the non-linear least-squares optimization, leading to a good approximation,
as long as the estimates are close to the real values. The Jacobian matrix is built from the
partial derivatives that are computed numerically during each iteration. The calibrated
values of each test phase are used as the starting points for the optimisation loop of the
next test phase.

5. Calibrated Model
5.1. Calibrated Frequency Response

The metric used to optimise the difference between the experimental data and the
FE model is the frequency response visualised in Figure 7. It is shown that the calibration
process achieves very good results. Moreover, it is observed that the deviation of the
calibration increases with the magnitude of the shaking. This is an inherent weakness of
the FE model and the procedure. The adopted smeared crack model does not discriminate
among the floor levels and piers, which would result in higher ‘heterogeneity’ between
structural members as a result of the different level of damage and more accurate depiction
of the cracking. However, as already mentioned, a higher number of variables in the
calibration model leads to a higher numerical cost. Therefore, a discrepancy in the FR is
justified with the test phases of the experiment.
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5.2. Calibrated Acceleration Response

The calibrated FE models are loaded with the strong motion time history (Figure 2) and
the response in point B (Figure 1) of the structure is detected for each test phase depicted in
Figure 8. Therefore, the identified mechanical properties are assumed that they represent
the effective (secant) elastic properties of the NL structure.

It can be observed in Figure 8 that the FE model response is very accurate with regard
to the frequency content and peaks when compared to the experimental results for the first
two test phases and there is a slight difference in the estimation of the last two test phases.
Therefore, the effective calibrated properties can be assumed to be representative of the
structural behaviour given the simplifications of the smeared crack approach. In any case,
the efficiency is better for the lower magnitude tests.

5.3. Mechanical Deterioration

The normalised degradation pi,χ of the parameter Pi,χ(Table 1) is defined as follows,
where Pi,χ is the value of the parameter i at the step of the analysis χ:

Pi,χ = Pi,χ−1
(
1− pi,χ

)
(17)

Table 3 and Figure 9 present the evolution from phase to phase of the equivalent elastic
moduli and the normalised degradation pi,χ for each parameter. The degradation of the
elastic modulus E1 of the west wall (parallel to the excitation) presents a regular shape
(Figure 9a), due to the fact that the wall has a rather uniform distribution of cracks in all
of its piers and spandrels (see Figures 3 and 4). On the contrary, the degradation of the
east wall (parallel to the excitation) is lower and has a sudden increase from the third to
the fourth phase (Figure 9a). This is in line with the diagonal cracks that appear in this
wall at this phase (see Figures 3 and 4). The elastic modulus of the north and south facades
(perpendicular to the excitation) has a steeper increase in the degradation between the
second to the third phases when the horizontal cracks are initially formed and subsequently
propagated (Figure 9a). Therefore, the analysis shows very good coincidence with the
actual damage of the structure.
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Table 3. Elastic (E) and shear (G) moduli in GPa for each test phase of the building’s structural members.

Member Modulus Initial Phase 1 Phase 2 Phase 3 Phase 4

East wall
E 2.55 1.81 1.38 0.99 0.88
G 0.84 0.35 0.26 0.16 0.10

West wall
E 2.55 2.39 2.35 2.31 2.04
G 0.84 0.62 0.59 0.57 0.48

OOP walls E 2.55 2.52 2.07 1.99 1.97

Diaphragm G 0.35 0.35 0.23 0.16 0.14

The degradation of shear moduli appears to be higher than that of the elastic moduli.
In the last phase, the degradation approaches 60 and 90% for the east and west walls,
respectively (Figure 9b). East wall has again a very steep escalation of the degradation after
the second phase, which keeps increasing in the next two phases (Figure 9b). The evolution
of the degradation of the diaphragm shear modulus has a smoother change, which shows
an important increase (i.e., a decrease in the actual value of the shear modulus) in the third
and the fourth phases (Figure 9b), during which the damage mechanism is formed. The
drop of the shear modulus in the diaphragm occurs due to the shearing of the wood around
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the area of the stitching screws and nails of the wooden floor planks. During the first and
the last phase, only a small change in the shear modulus is observed.
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Figure 9. Degradation of (a) elastic and (b) shear moduli Equation (17) and (c) their ratio between
subsequent phases from FE calibration.

The ratios of shear to elastic moduli for the east and west walls increase with the
magnitude of the vibration. The initial value G/E = 0.33 drops below 30%, even from
the first phase of the vibration (Figure 9c). East wall appears to have a ratio value that
approaches 0.25, whereas west wall’s G/E ratio keeps decreasing more approaching 10%
(Figure 9c). These low values have also been noticed experimentally [40,44].

6. Conclusions

FE calibration with the results derived from SSI and state-space modelling was carried
out for the evaluation of the material secant moduli of a URSM building consecutively tested
on a shaking table. The building was full-scale and experienced increasing levels of damage
as the vibration intensity augmented. Random vibration tests after the strong motion tests
allowed to derive a state-space model of the structure and calibrate a FE simulation of the
building. The calibration suggests a gradual deterioration of the mechanical parameters
that comprised the materials of the structure. Six parameters were chosen to be calibrated
in the framework of a smeared cracked approach, involving the elastic moduli of the walls
and the wooden diaphragm of the building. The selection of these parameters is a balance
between the need to differentiate the mechanical properties of the structural parts with
variable responses and damage and on the other hand, to maintain a reasonable numerical
cost of the procedure.

The calibration procedure adopts a deviation metric based on the frequency response
between the experimental data and the FE response. The optimisation process which
follows minimises the deviation and estimates the best-fit parameters. The gradients of the
structural matrices are numerically defined using Ridders interpolation. The calibration
shows robust and reliable results as compared to the structural response and damage.

The results of the analyses give an insight into the structural response of URSM
buildings and show a degradation of the mechanical characteristics with increasing shaking
intensity in the framework of an equivalent linear elastic model. Under strong shaking, the
structure presents a significant degradation of the stiffness of its structural members, in
accordance with the actual damage of the building. The shear modulus appears to decrease
more than the elastic modulus of the respective walls. The west wall which is uniformly
damaged has a regular curve with increasing shaking intensity. The east wall instead has
steep drops in some phases. The shear modulus of the timber diaphragm deteriorates from
phase to phase. The shear to elastic moduli ratio drops to values as low as 10% for the more
damaged wall.
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