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The need to reduce per sample cost of RNA-seq profiling for scalable data generation

has led to the emergence of highly multiplexed RNA-seq. These technologies utilize

barcoding of cDNA sequences in order to combine multiple samples into a single

sequencing lane to be separated during data processing. In this study, we report

the performance of one such technique denoted as sparse full length sequencing

(SFL), a ribosomal RNA depletion-based RNA sequencing approach that allows for

the simultaneous sequencing of 96 samples and higher. We offer comparisons to well

established single-sample techniques, including: full coverage Poly-A capture RNA-seq,

microarrays, as well as another low-cost highly multiplexed technique known as 3′ digital

gene expression (3′DGE). Data was generated for a set of exposure experiments on

immortalized human lung epithelial (AALE) cells in a two-by-two study design, in which

samples received both genetic and chemical perturbations of known oncogenes/tumor

suppressors and lung carcinogens. SFL demonstrated improved performance over

3′DGE in terms of coverage, power to detect differential gene expression, and biological

recapitulation of patterns of differential gene expression from in vivo lung cancer

mutation signatures.
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INTRODUCTION

Since its inception in 2008, RNA sequencing has become the gold-standard for
whole-transcriptome high-throughput data generation (Mortazavi et al., 2008). In addition
to RNA transcript expression quantification, RNA-seq allows for more advanced analyses
including de novo transcriptome assembly (Robertson et al., 2010) and characterization of
alternative splicing variants (Bryant et al., 2012). Furthermore, RNA-seq is species agnostic, such
that the same library preparation technique may be utilized for humans, mouse, rat, kidney bean,
etc. These represent clear advantages over hybridization-based microarray platforms in which
individual microarray platforms are designed to quantify specific transcripts for a specific species
(Wang et al., 2009). However, one persistent drawback of RNA-seq has been its relatively high cost.
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The use of classic RNA-seq techniques for experimental designs
that require profiling of many samples – especially when the
marginal information value of each sample is relatively low, such
as in medium- and high-throughput screening applications – can
thus present a disqualifying cost burden.

Large-scale projects based on transcriptional profiling of
chemical exposure experiments include the Toxicogenomics
Project-Genomics Assisted Toxicity Evaluation System
(Open TG-GATEs) (Igarashi et al., 2015), the DrugMatrix
database (Ganter et al., 2006), and the Connectivity Map
(CMap) (Subramanian et al., 2017), among others. Both the
TG-GATEs and the DrugMatrix projects used microarrays
for expression profiling, which was at the time significantly
less costly than full coverage RNA-sequencing, yet still
requiring multi-million budgets. Alternatively, the CMap
project utilizes the Luminex-1000 (L1000) profiling platform,
a bead-based analog expression assay which quantifies
1,058 human transcripts, which are used to impute the
expression of 11,350 additional transcripts (Subramanian
et al., 2017). This technique is among the least expensive
expression assays available, but it is restricted to human
screens and it directly profiles only a limited panel of genes.
Given the flexibility of RNA-sequencing platforms, highly
multiplexed techniques represent a viable alternative for
generating transcriptional data from exposure screens, as
well as from other experiments that require a large sample
size. Therefore, evaluation of the technical validity of specific
techniques serves to inform research strategies for a variety of
biological inquiries.

The need to reduce the per sample cost of RNA-seq has
led to the adoption of barcoding technologies, where cDNA
sequences from individual samples are tagged and their libraries
are combined and multiplex sequenced in a single lane (Wang
et al., 2011). More recently, these techniques have been optimized
to allow multiplex sequencing of 96 samples per lane or higher
(Hou et al., 2015; Shishkin et al., 2015). Here, we report the results
of our effort at optimizing and evaluating one such technique
denoted as sparse full length (SFL) sequencing (Shishkin et al.,
2015), a ribosomal RNA depletion-based RNA sequencing
approach that allows for the simultaneous sequencing of 96
samples and higher. We offer comparisons to well established
single-sample techniques, including: full coverage Poly-A capture
RNA-seq and microarray, as well as another low-cost highly
multiplexed technique known as 3′ digital gene expression
(3′DGE) (Asmann et al., 2009). Assessments include comparisons
of coverage between the three RNA-sequencing techniques,
as well as signal-to-noise and biological recapitulation of
gene-level differential signals between treatment groups for the
same samples profiled across SFL, microarray, and 3′DGE.
For this evaluation study, we generated a set of exposure
experiments on immortalized human lung epithelial (AALE)
cells (Lundberg et al., 2002) in a two-by-two study design, in
which samples received both genetic and chemical perturbations
of known oncogenes/tumor suppressors and lung carcinogens
(Figure 1). The goal of this report is not only to assess the
performance of our optimized highly multiplexed technique,
but to inform future research in terms of the strengths and

pitfalls of available cost-effective high throughput transcriptomic
profiling techniques.

MATERIALS AND METHODS

Samples
Exposure experiments were performed on immortalized
human bronchial epithelial cells (AALE). Cells were exposed
to both chemical and genotypic perturbations with three
replicates per perturbation combination. Cells were thawed
from liquid nitrogen and grown up in SAGM small airway
epithelial cell growth media (Lonza, Portsmouth NH). Cells
were subcultured using Clonetics ReagentPack subculture
reagents (Lonza, Portsmouth NH). In preparation for exposure,
cells were plated into 24-well plates and allowed to reach
confluency for 24 h. Cell culture media was then replaced,
and compounds added at a concentration of 24 µg/ml
CSC, 173 µM BaP, 490 µM NNK or DMSO. NNK and BaP
compounds were obtained from Sigma-Aldrich (St. Louis, MO,
United States) and CSC obtained from Murty Pharmaceuticals
(Lexington, KY, United States). Genotypic perturbations
included CRISPR knockouts of FAT1, and CDKN2A, as
well as overexpression of NRF2 (NFE2L2), FGFR1, NRG1,
and PIK3CA. Cells transfected with a pSpCas9-EGFP (GFP)
plasmid (PX458) in the absence of sgRNAs were used as
controls for the CRISPR perturbations while overexpression
of an empty vector containing the reporter HcRed served
as control for the overexpression experiments. The same
samples were profiled across SFL, microarray, and 3′DGE for a
subset of combinations of exposures, though all samples were
profiled by SFL. In addition, full coverage poly-A RNA-seq
was performed on a separate set of samples for a subset of
genotypic exposures, including CRISPR knockouts of FAT1,
as well as overexpression of NRF2, NRG1, and PIK3CA. These
samples did not receive any chemical exposures (Figure 1).
Note that in a few cases there was not enough material to
perform 3′DGE, as indicated by the sample numbers of certain
perturbation combinations.

Library Preparation
Library preparation for SFL sequencing was carried out based
on the published protocol (Shishkin et al., 2015). An edited
version of this protocol is available in the Supplementary

Material. RNA was isolated using a standard Qiazol and Qiacube
protocol from Qiagen (Valencia, CA, United States). RNA purity
was assessed using a NanoDrop spectrophotometer and no
samples were excluded from downstream analysis. The dual-
barcoded SFL libraries were pooled from 96 individual samples
and then sequenced on the Illumina R© NextSeq 550 to generate
more than 400 million single-end 75-bp reads. Poly-A RNA
Sequencing libraries were prepared from total RNA samples
using Illumina R© TruSeq R© RNA Sample Preparation Kit v2 and
then sequenced on the Illumina R© HiSeq 2500 to generate more
than 5 million single-end 50-bp reads per sample. Microarray
procedures were performed as described in GeneChipTM WT
PLUS Reagent Kit manual and GeneChipTM WT Terminal
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FIGURE 1 | Design of cross-platform experiments and high-throughput data processing. Schematic of the number of each pair of genotypic and chemical

perturbations, as well as a summary of preprocessing methods used to quantify gene-level expression for each platform. Note that “Unt.” is an abbreviation of

“untreated,” denoting that the RNA-seq samples used in this experiment did not receive chemical perturbations. Numbers in each box represent biological replicates

of each condition. The color scheme for each platform is consistent throughout this report.

Labeling and Controls Kit protocol (Thermo Fisher Scientific).
The labeled fragmented DNA was generated from 100 ng of
total RNA and was hybridized to the GeneChipTM Human
Gene 2.0 ST Array. Microarrays were scanned using Affymetrix
GeneArray Scanner 3000 7G Plus. 3’DGE library preparation was
performed by Broad Institute, Cambridge, MA, United States,
similar to (Soumillon et al., 2014). Final libraries were purified

using AMPure XP beads (Beckman Coulter) according to
the manufacturer’s recommended protocol and sequenced on
an Illumina NextSeq 500 using paired-end reads of 17 bp
(read1) + 46 bp (read2). Read1 contains the 6-base well barcode
along with the 10-base UMI. Across all platforms, the number
of samples that were successfully profiled per perturbation
combination is shown in Figure 1.
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Data Pre-processing
Affymetrix GeneChip Human Gene 2.0 ST Microarray CEL files
were annotated to unique Entrez gene IDs, using a custom
CDF file from BrainArray (hugene20st_Hs_ENTREZG_21.0.0)
and RMA-normalized. For SFL, adapter sequences were trimmed
from raw sequence files using Cutadapt v1.12. Quality assessment
of trimmed SFL sequence files as well as raw full coverage
RNA-seq sequencing files was performed with FastQC v0.11.5.
Both SFL and RNA-seq reads were aligned to human genome
(UCSC RefSeq hg19) with STAR v2.5.2b with the non-defulat
parameter, “–outSAMtype BAM SortedByCoordinate” (Dobin
et al., 2013). Expression quantification in RefSeq genes was
carried out with featureCounts (subread) v1.5.0 (Liao et al.,
2014). For 3’DGE, pre-quantified gene expression count
matrices were obtained from the Broad Institute, Cambridge,
MA, United States. These reads had been aligned to the
transcriptome (UCSC RefSeq hg19), using BWA aln v0.7.10
with the non-default parameter, “-l 24” (Li and Durbin, 2009).
Considering that there are 410 (∼1.05∗106) possible UMIs and
the 3’DGE library sizes are on the order of 106 reads, it is
highly unlikely for the same UMI to be added to multiple cDNA
fragments from the same gene. Therefore, using a custom python
program (Soumillon et al., 2014), reads with the same UMI and
sample barcode were only counted once per gene. All further data
processing and analysis were carried out in R.

Coverage Assessment
Read coverage across the 82 samples, shared between SFL
and 3′DGE, as well as all 18 full coverage RNA-seq samples
was assessed for library size as well as percentage of the
library size that was aligned, uniquely aligned (i.e., reads that
only align once in the genome), and counted in the 22,233
genes which were annotated across all three platforms, i.e., the
intersection of annotated genes. The full set of counted reads is
hereafter referred to as the counted library. Unlike SFL and full
coverage RNA-seq, 3′DGE reads are aligned directly to mRNA
sequences, such that the reported numbers of counted reads
and uniquely aligned reads are the same. To assess the relative
distribution of reads across the total set of shared genes, we
plotted the cumulative proportion of the sum of reads aligning
to individual genes per samples ranked by relative expression
across all three platforms. Saturation analysis of the estimated
minimum percentage of the counted library size to maximize
the number of genes quantified by each platform was performed
using a loess fit the gene discovery of 20 subsamplings of
the per sample counted libraries. All subsampling analysis was
performed using Subseq v1.8.0.

Finally, we assessed the relative induction of noise introduced
by subsampling progressively larger proportions of the original
counted library sizes in each platform, as measured by the
principal component error (Heimberg et al., 2016). In order
to compare the three platforms assuming equally sized starting
library, we repeated the assessment after first subsampling full
coverage RNA-seq libraries and 3′DGE libraries to sizes matching
that of SFL, the smallest library of the three platforms. This
analysis was performed on the 18 samples of like genotypic

perturbations, with no chemical treatment in the case of full
coverage RNA-seq samples and vehicle DMSO treatment in SFL
and 3′DGE samples. Reported values reflect means across 20
iterations of the subsampling and principal component error
calculation procedure.

Signal-to-Noise Assessment
Signal-to-noise was compared among SFL, 3′DGE and
microarrays based on four-group ANOVA analysis and
two-group differential analysis. In order to estimate
signal-to-noise as a means for assessing expected performance
when applying standard statistical methods to the data, rather
than differential gene expression analysis packages, classic
ANOVA was performed for each gene using normalized data
across all three platforms, using the glm function in R. In this
analysis, the signal-to-noise was assessed across like samples
undergoing exposure to CSC or DMSO vehicle, as well as
genotypic perturbations of NRF2 overexpression or HcRed
control. Thus, the analysis included four independent groups
of samples, receiving each combination of chemical (CSC
or DMSO) and genotypic (NRF2 or HcRed) perturbations,
with three replicates in each group. Only genes with mean
expression ≥ 1 across all 12 samples in both SFL and 3′DGE
were included in the analysis (9,813 total genes). Expression
levels across SFL and 3′DGE were normalized via trimmed
mean of M values (TMM) (Robinson and Oshlack, 2010) scaling
and log2 counts-per-million transformation. Additionally,
two-group differential gene expression analysis was performed
for each stratified chemical and genotypic perturbation, using
LIMMA v3.30.7. That is, differential expression of CSC- vs.
DMSO-treated samples, within either HcRed or NRF2 treatment,
as well as differential expression of NRF2- vs. HcRed-treated
samples, within either DMSO or CSC exposure, was performed.
The SFL and 3′DGE count data were transformed for linear
modeling based on voom (Ritchie et al., 2015). Following
modeling, results were restricted to the top 10,000 genes as
ranked by median-absolute-deviation (MAD). This heuristic
gene filtering procedure was adopted because quantification-
based filtering is not applicable to microarray data. This
approach follows recommendations detailed in the LIMMA
manual (Ritchie et al., 2015). All p-values reported from two-
group differential analysis are two-sided. In both ANOVA and
LIMMA analyses, nominal p-values for each gene were corrected
for multiple comparisons using the Benjamini–Hochberg
procedure (Benjamini and Hochberg, 1995).

Biological Signal Recapitulation
Two-group differential analysis signatures were compared by
pre-ranked gene set enrichment analysis (GSEA) to gene sets
derived from published signatures of smoking exposure in the
airway from healthy volunteers (Spira et al., 2004; Beane et al.,
2007), as well as to gene sets analytically derived from The
Cancer Genome Atlas (TCGA) for patients with lung squamous
cell carcinoma (LUSC) or lung adenocarcinoma (LUAD). The
two smoking gene sets consist of genes reported as either
up- or down-regulated in response to smoking in at least
one of the two publications, while TCGA gene sets were
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derived by probing differential expression of individual genes
between patients with or without point mutations or copy
number alterations (CNA) in genes of interest. These include
mutations for the same panel of genes profiled for genotypic
perturbations. In addition we include KEAP1 mutations, a
repressor of NRF2 (Kansanen et al., 2013, 1). Specifically,
point mutation signatures were derived from LUSC and LUAD,
independently, by performing differential analysis of subjects
with and without point mutations in genes of interest, matched
for age, sex, and cancer stage. For NRF2 and PIK3CA point
mutations were defined at specific mutation hotspots of along the
gene body (Supplementary Figure S2) (Campbell et al., 2016).
Likewise, CNA gene signatures were assessed for amplification
and deletions of genes of interest by differential analysis, using
subjects with zero, one, or two additional copies or deletions of
a gene of interest, respectively. All models for mutations and
CNA were adjusted for tumor purity, as reported (Campbell
et al., 2016). Differential signatures were derived using LIMMA.
Genes associated with specific mutations or CNA were defined
as those with significance and magnitude of the linear model’s
genetic alteration coefficient at FDR Q-value < 0.05 and | log2
fold-change| > log2(1.5), respectively.

Each of our genotypic perturbation signatures was compared
by GSEA to the corresponding TCGA-derived gene sets.
For example, the PIK3CA overexpression signatures were
compared to the gene sets derived from PIK3CA mutation
and CNA in the TCGA data. To assess the effect of read
counts on gene discovery and biological recapitulation of each
platform, we compared the differential analysis and GSEA
results to that derived from subsampled libraries across full
coverage RNA-seq, SFL, and 3′DGE. Similar to coverage
assessment, this analysis was performed starting with full libraries
across all three platforms, as well as initially subsampling
the full coverage RNA-seq and 3′DGE libraries to sizes
matching that of SFL. Reported values reflect means from 20

iterations of the subsampling followed by differential analysis
and GSEA procedures.

RESULTS

Coverage Assessment
Comparison of coverage of the three sequencing platforms, full
coverage poly-A RNA-seq, SFL, and 3′DGE, is summarized in
Table 1, Figure 2, and Supplementary Figure S1. Comparison
between SFL and 3’DGE included 82 samples each, while full
coverage poly-A RNA-seq included all 18 available samples. None
of the three platforms demonstrated differences in the library
size variability (total number of assigned reads) across samples,
although there was a notably high difference between the largest
and smallest library size for the SFL samples, with a fold change
of 4.3. Fold changes for full coverage RNA-seq and 3′DGE were
1.9 and 2.9, respectively (Table 1 and Figure 2A).

Unsurprisingly, full coverage poly-A RNA-seq generated the
largest library size, while the SFL and 3′DGE libraries were of
comparable size (Figure 2A). Furthermore, full coverage poly-A
RNA-seq yielded the highest percentage of reads aligned to the
genome, followed by SFL and 3′DGE (Table 1, Figure 2Ci,
and Supplementary Figure S1A). The lower mapping rate
of 3′DGE is most likely due to the lower read quality
scores of 3′DGE compared to full coverage RNA-seq and SFL
(Supplementary Figure S1B). The mean percentage of reads
with Phred quality scores greater than 20 (Q20) was only ∼88%
for 3′DGE, compared to ∼100% for both full coverage RNA-
seq and SFL. The relative 5′–3′ transcript coverage for each
sample across all three platforms is shown in Supplementary

Figure S1F. As expected, reads alignments were skewed toward
the 3′ end of transcripts for 3′DGE, while we did observe
relatively uniform coverage along the transcript for full coverage
RNA-seq and SFL.

TABLE 1 | Comparison of read assignment between full coverage poly-A RNA-seq, SFL, and 3′DGE.

Counts (million) Percent (value/library size)

Mean (SD) Median Minimum Maximum Mean (SD) Median Minimum Maximum

Poly-A RNA-seq (RNA-seq)

Library size (total reads) 13.0 (2.3) 12.6 9.3 17.6

Aligned reads 12.4 (2.2) 12.0 9.0 16.9 95.9 (1.3) 96.0 92.4 97.9

Uniquely aligned reads 10.8 (1.9) 10.3 7.8 14.8 82.9 (1.5) 83.0 79.5 85.3

Counted reads 8.4 (1.5) 8.1 6.4 10.9 65.2 (2.7) 64.6 60.5 70.3

Sparse full length sequencing (SFL)

Library size (total reads) 3.8 (1.1) 3.5 1.6 6.9

Aligned reads 3.3 (1.0) 3.1 1.4 5.9 88.5 (2.9) 88.8 73.0 92.5

Uniquely aligned reads 1.8 (0.6) 1.8 0.7 3.2 48.5 (8.0) 46.8 27.6 64.8

Counted reads 0.9 (0.3) 0.9 0.3 1.6 24.5 (4.0) 23.8 14.3 31.7

3′ digital gene expression (3′DGE)

Library size (total reads) 3.7 (0.7) 3.7 1.9 5.6

Aligned reads 3.0 (0.6) 3.0 1.5 4.5 80.6 (1.6) 81.0 73.5 82.2

Uniquely aligned reads

Counted reads 1.2 (0.2) 1.2 0.7 1.8 33.3 (1.4) 33.0 30.5 38.6
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FIGURE 2 | Comparison of coverage between poly-A RNA-seq, SFL, and 3′DGE. (A) Boxplots of distribution of library size for each platform. (B) Cumulative

distribution of reads assigned to individual genes per sample. The x-axis indicates the quantile for each gene in terms of ranking by relative expression. The y-axis

shows the cumulative proportion of total counted reads assigned to these genes, i.e., the running sum of reads divided by the total number of reads across all

genes. (C) The top 3 boxplots show the percentage of reads aligned (i), uniquely aligned (ii), and counted (iii) relative to the total library size for each platform. The

bottom boxplot (iv) shows the proportion of genes with counts > 1, for protein-coding genes annotated across all 3 platforms (18,488). For (ii), “Reads Uniquely

Aligned” is not shown for 3′DGE because “Reads Uniquely Aligned” and “Reads Counted” are the same values as a result of the data pre-processing protocol,

specific to 3′DGE (see section “Materials and Methods”). Counts values for these percentages are given in Supplementary Figure S1A. (D) Analysis of the principal

component error of subsampled counted library sizes for full coverage poly-A RNA-seq, SFL, and 3′DGE for principal component 1. Results for principal component

2–5 is shown in Supplementary Figure S1D. Initial subsamples of Poly-A RNA-seq and 3′DGE to the SFL library size are also given as dotted lines.

For SFL there was a clear drop-offwhen going from percentage
of aligned reads to percentage of uniquely aligned reads due
to ribosomal RNA (rRNA) contamination of the SFL samples
(Figure 2Cii). Themajority of reads aligning to ribosomal regions
specifically align to RNA28S (Supplementary Figure S3). For
3′DGE, unique UMIs are aligned directly to transcript sequences
and not to the whole genome, such that the number of uniquely
aligned reads and reads counted in transcripts are the same
(Figures 2Cii,iii) (Morrissy et al., 2009). The percentage of
reads that are counted in transcripts is greatest for full coverage
poly-A RNA-seq (mean percentage of total library size: 65.2%),
followed by 3′DGE (33.3%), and SFL (24.5%). However, while
the counted read library size is greater for 3’DGE than for SFL,
more genes were quantified by SFL than by 3′DGE (Figure 2Civ)
(counts > 0 across all samples for 22,233 genes shared across

all three platforms,). A median of 60.9 and 50.5% genes were
quantified by SFL and 3′DGE, respectively. The number of genes
quantified was near the saturation point for each platform, such
that this discrepancy is not due to read depth of each platform
(Supplementary Figure S1C). The reason for the low gene
discovery of 3′DGE is further illustrated in Figure 2B, where
it is shown that the reads are more evenly distributed across
the 22,233 genes by SFL than by 3′DGE, with the cumulative
distribution of reads counted in individual genes nearly identical
in SFL and full coverage poly-A RNA-seq.

The principal component (PC) error was estimated for each
platform for different subsamples of the full counted library size.
The first PC is shown in Figure 2D, while the second through the
fifth PCs are shown in Supplementary Figure S1D. We observe
that as the counted library size increases, the PC error decreases
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at the fastest rate for full coverage RNA-seq, followed by SFL,
then 3′DGE. Although these differences are considerably more
prominent when comparing full coverage RNA-seq to either
SFL or 3′DGE, we do observe that when down-sampling from
10 to 100% of the counted library size, the PC error decreases
at a consistently faster rate for SFL than for 3′DGE. Initially
subsampling full coverage RNA-seq and 3′DGE to match the full
SFL counted library size does not change the results. The same
trend is also observed in the cumulative variance explained by
each successive PC across full coverage RNA-seq, SFL, and 3′DGE
(Supplementary Figure S1E).

In summary, despite lower overall counted library size due
to ribosomal RNA contamination, SFL demonstrates greater
coverage in low-to-medium expressed genes than 3′DGE,
comparable to full coverage poly-A RNA-seq. Consequently, the
transcriptional signal captured by the SFL libraries are more
robust to subsampling of the data compared to 3′DGE as
measured by the principal component error.

Signal-to-Noise Evaluation
Differential expression models comparing experimental groups
of matched samples was performed in SFL, microarray, and
3′DGE and the corresponding signal-to-noise scores were
compared pairwise between platforms (Figure 3). Samples shared
across the three platforms include three replicates for each of four
experimental groups, corresponding to NRF2 overexpression
or HcRed vehicle, as well as CSC chemical exposure or
DMSO vehicle (Figure 1). Signal-to-noise was assessed by a
four-group comparison with classic ANOVA (Figures 3A–D),
as well as by stratified two-group differential analyses using
LIMMA (Figures 3E,F).

We compared the log10 F-statistics between ANOVA models
across all three platforms (Figure 3A). Overall, the distribution
of F-statistics is most similar between SFL and microarrays,
with a Pearson correlation of 0.291. Though statistically
significant (p < 0.01), the corresponding mean difference
between log10 F-statistics is only 0.026. The mean differences
of the log10 F-statistics between SFL and 3′DGE, and between
3′DGE and microarray are 0.328 and 0.302, respectively, and
the corresponding Pearson correlations are 0.160 and 0.216,
respectively. These results are consistent with the discovery rates
estimated for different FDR Q-value thresholds (Figure 3B). For
example, at the FDR Q-value threshold of 0.05, the discovery
rates of SFL and microarray are almost identical, 0.214 (2083
genes), 0.209 (2038 genes), respectively, while the discovery rate
of 3′DGE is much smaller 0.032 (310 genes).

Loess regression of the log10 F-statistics as a function of
mean gene expression shows that the statistical signal increases
with mean normalized expression. This trend is consistently
positive for both SFL and 3′DGE, while leveling off at the most
highly expressed genes in microarrays (Figure 3C). Furthermore,
SFL signal is greater than 3′DGE signal at all levels of mean
expression (Figure 3C). In agreement with the results from
coverage comparison, the distribution of mean normalized
expressions in 3′DGE is smaller than that of SFL, while SFL
is comparable to that of microarray (Figure 3D). Adherence
to assumption of normality, assessed through a Shapiro–Wilk

test, is also associated with higher mean normalized expression
(Supplementary Figure S4).

The results of the comparisons of the two-group differential
analyses across all three platforms were generally congruous
with those of the four-group ANOVA analyses (Figures 3E,F

and Supplementary Figures S5, S6). In all four two-group
comparisons, the correlation of test statistics is closest between
microarray and SFL results, followed by 3′DGE versusmicroarray
results, and 3′DGE versus SFL. For example, in the DMSO-
stratified, NRF2 versus HcRed analysis, estimates of the Pearson
correlations of test statistics are 0.66, 0.45, and 0.43, respectively
(Figure 3E). The discovery rate of 3′DGE is the lowest across
all four differential analyses, while the discovery rate of SFL is
higher in three out of four of these analyses (Figure 3F and
Supplementary Figures S5, S6).

In summary SFL demonstrated greater statistical power than
3′DGE to detect differentially expressed genes, and its results
more closely matched those in microarrays.

Biological Signal Recapitulation
Evaluation
To evaluate the ability of each platform to recapitulate
biologically relevant results, we utilized previously published
signatures of smoking exposure in lung (Spira et al., 2004;
Beane et al., 2007), as well as differential signatures derived
from the TCGA LUSC and LUAD datasets associated with
mutations of the genes over-expressed in our experiments.
From each of these signatures two gene sets were extracted,
one of genes positively associated and one of genes negatively
associated to the variable of interest. These gene sets were
then tested via pre-ranked gene set enrichment analysis
against each of our differential analysis results (CSC vs.
DMSO, stratified by NRF2 or HcRed perturbation; NRF2
vs. HcRed, stratified by CSC or DMSO perturbation). The
enrichment results with respect to both the smoking exposure
signatures and the TCGA mutations are summarized in
Figure 4A, and further detailed in Supplementary Figure S7,
and confirm the highest sensitivity of microarrays, followed by
SFL and 3′DGE.

The set of genes up-regulated in “smokers vs. non-smokers”
was found to be significantly (FDRQ-value< 0.05) enriched in all
“CSC vs. DMSO” signatures, within both genotypic stratifications
for all three platforms. Conversely, the set of down-regulated
genes in “smokers vs. non-smokers” was only enriched in the
microarray signature of “NRF2 over-expressed; CSC vs. DMSO”
(Supplementary Figure S7).

The enrichment results of TCGA-derived gene sets with
respect to differential signatures of genotypic perturbations
were in agreement with the gene-level results, in that they
consistently demonstrated smaller discovery rates by 3′DGE
than by SFL or by microarrays (Figure 4A). For example, the
significantly enriched gene sets in “DMSO-treated; NRF2 vs.
HcRed” differential signatures across all three platforms are
highlighted in Supplementary Figure S7. The number of gene
sets enriched in microarray, SFL, and 3′DGE platforms are five,
three, and zero, respectively.
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FIGURE 3 | Signal-to-noise comparison between SFL, microarray, and 3′DGE. (A) Scatterplots comparing the log10(F-Statistics) from ANOVA models comparing

four n = 3 groups (HcRed:DMSO, HcRed:CSC, NRF2:DMSO, and NRF2:CSC). The gray line shows y = x. The platform with the higher mean log10(F-Statistic) is

plotted on the y-axis. Also, included are the p-value and difference in mean between each bi-platform comparison from paired t-testing, as well as the squared

correlation coefficient. P-values ∼ 0 are less than 0.01. Color of indicate genes discovered by individual platforms (green, orange, or blue), neither platform (gray),

and both platforms (red). (B) Plot of the Discovery Rate versus FDR Q-Value from threshold for each platform from four group ANOVA models. The x-axis is plotted

on a –log10 scale. The vertical line is indicative of a Q-value threshold of 0.05. (C) Loess fit of the log10(F-Statistic) versus median normalized expression from four

group ANOVA models. (D) Distribution of mean normalized expression across all three platforms. (E) Comparison of gene discovery (FDR Q-Value < 0.05) by

differential analysis with limma, comparing normalized gene expression between DMSO:NRF2 and DMSO:HcRed, including the raw discovery rates, discovered

gene overlap, and linear fits, comparing test statistics from each platform. Genes that are discovered by more than 1 platform are shown in red in the scatterplots.

Additional comparisons are shown in Supplementary Figure S5. (F) Plot of the Discovery Rate versus FDR Q-Value from threshold for each platform from two

group differential analyses. The x-axis is plotted on a –Log10 scale. The vertical line is indicative of a Q-value threshold of 0.05.
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FIGURE 4 | Comparison of gene-set enrichment of smoking and gene mutation signatures across SFL, 3′DGE and microarray. (A) Violin plots of the –Log10(FDR

Q-Value) from gene set enrichment analysis of TCGA-derived gene-sets with respect genotypic perturbations (left) and chemical perturbations (right) differential

signatures across like samples within SFL, Microarray, and 3′DGE. Each column corresponds to differential signatures comparing genotypic or chemical perturbation

groups, stratified by a single chemical or genotypic perturbation group, respectively, e.g., the left-most column shows the enrichment results with respect to the

“DMSO-treated; NRF2 vs. HcRed” signature within the samples (stratum) in SFL data. Specific results for TCGA-derived genes sets are shown in Supplementary

Figure S7. (B) Comparison of the gene set enrichment results between SFL, microarray and 3′DGE with respect to the “DMSO-treated; NRF2 vs. HcRed”

differential signature. Shown are the transformed FDR Q-values of the TCGA-derived gene sets corresponding to mutations of NRF2 and CNA of KEAP1. The |

–Log10(FDR Q-Values)| corresponding to the FDR < 0.05 significance thresholds are shown as vertical and horizontal gray lines for the y and x-axes, respectively.

Points of gene sets whose enrichment meets this threshold in either of the two platforms are filled in. Colors and shape of points denote direction and source of the

gene set, respectively. Additional results for chemical and genotypic perturbation signatures are shown if Supplementary Figure S8.

In addition to comparing which gene sets were significantly
enriched in individual differential signatures, we compared the
relative statistical signal of these enrichments. To this end, we
transformed the permutation-based FDR Q-values by taking
the negative Log10 and multiplying by the direction of the
enrichment score (ES), −Log10(FDR Q-values)∗sign(ES). For
each two-platform comparison, we fit a regressionmodel through
the origin. Since consistent results across platforms would result
in a model fit close to the identity line, y = x, we tested

whether the slope coefficient equaled 1 (i.e., B1 = 1). Figure 4B
shows these results for each of the three comparisons of the
NRF2 and KEAP1 mutation-based gene sets enrichment against
the “DMSO-treated; NRF2 vs. HcRed” signatures. In all three
comparisons, microarrays have the highest measured enrichment
signal, followed by SFL and 3′DGE, however, the difference
between microarray and SFL results is not significant, B1 = 0.73;
p-value = 0.2. The coefficients for both of the comparisons
to 3′DGE, are highly skewed in favor of microarray and SFL,
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B1 = 0.18 and 0.14, respectively. Both of these comparisons
are highly significant with p-values < 0.01. Comparison of the
enrichment results for other differential signatures show similar
trends (Supplementary Figure S8).

Next, we compared enrichment results with respect to all
genotypic perturbation signatures between SFL and 3′DGE
(Figure 5A and Supplementary Figure S9A). Each comparison
(i.e., each point in the plot) denotes gene set enrichment results
with respect to genotypic perturbations within each of the four
chemical exposures, DMSO, CSC, BaP, and NNK. Gene sets were
tested for enrichment against concordant differential signatures,
e.g., the PIK3CAmutation-derived gene set was tested against the
“PIK3CA vs. HcRed” signatures. As in the previous analysis, the
permutation-based enrichment FDR Q-values were transformed
by –Log10(FDR Q-values)∗sign(ES). In the “DMSO-treated;
genotypic perturbation vs. control” signatures, we observe that
the gene set enrichment is generally more significant for SFL than
for 3′DGE (B1 = 0.63; p-value < 0.01; Figure 5A). The results
obtained in CSC- and NNK-treated signatures, demonstrate
concordance to these results (B1 = 0.65; p-value = 0.03 and
B1 = 0.60; p-value = 0.01, respectively). The BaP-treated results
are less comparable since only one genotypic perturbation
signature, “FAT1 vs. GFP,” is available for this stratification
(Supplementary Figure S9A).

Additionally, we compared our differential signatures
to available full coverage poly-A RNA-seq genotypic
perturbations (Supplementary Figure S9B), although these
results are considered less comparable because of differences
in experimental set-up. In particular, in the full coverage
poly-A RNA-seq experiments the genotypic perturbations
were performed on untreated rather than DMSO-treated cell
lines (Figure 1).

The effect on discovery rate by subsampling the data across
all three platforms is shown in Figure 5B. Generally, we did
not observe a plateauing of discovery rate, where the number
of detected genes plateaus near full counted library size. When
comparing the correlation between GSEA results on subsampled
data we observe similar trends across full coverage RNA-seq,
SFL, and 3′DGE (Figure 5C). Initial subsampling of full coverage
RNA-seq and 3′DGE to the SFL counted library size did not
change the analysis results.

In summary, differential analysis of molecular and genotypic
perturbations with SFL recapitulates biologically meaningful
signal of gene sets derived from high coverage in vivo data sets.
This performance is comparable to both 3′DGE and microarray.

DISCUSSION

The goal of this study was to evaluate the performance
of SFL sequencing, a low-cost method for performing
highly multiplexed RNA-seq, and to compare it to other
high-throughput gene expression profiling platforms. The
development of such methods would be instrumental to the
generation of large-scale perturbation screens based on in vitro
models. The reduction of the cost per profile would make
it feasible to significantly increase the number of replicates

and conditions to be profiled, including multiple time points,
concentrations, and biological models, and thus would support a
more in-depth investigation of the heterogeneity of the biological
response to different exposures. It would also support the
development of more accurate predictive models of the adverse
or therapeutic outcomes of various exposures. Finally, insights
gained from our study will also inform the design of protocols
for single cell RNA-sequencing (Eberwine et al., 2014), given
their reliance on highly multiplexed libraries.

In addition to SFL, the platforms included in this analysis were
3′DGE, an alternative highly multiplexed sequencing platform,
Affymetrix GeneChip Human Gene 2.0 ST Microarray, an
analog expression platform, and full coverage poly-A capture
RNA-seq. The cost per sample for SFL and 3′DGE was ∼$50,
a 10-fold decrease from that of full coverage RNA-seq, $500,
and a 7-fold decrease from that of the microarray, $350
USD. Throughout this analysis we demonstrate comparable
performances of SFL and 3′DGE to these more expensive
platforms. Furthermore, in this analysis we consistently find
evidence that SFL outperforms 3′DGE.

Performance was assessed in terms of coverage,
signal-to-noise, and recapitulation of expected biological
signal derived from independently generated, publicly available
data collected from human subjects. Coverage was assessed
by comparing the three digital expression platforms, while
signal-to-noise and biological recapitulation was assessed by
comparing SFL, 3′DGE, and microarrays. Microarray expression
quantification has been shown to be highly correlated with
qRT-PCR, especially when processed with updated probe set
annotations, utilized in this analysis (Sandberg and Larsson,
2007). Chemical and molecular perturbations were carried out
in the same samples, and concurrently profiled by SFL, 3′DGE,
and microarrays. We also leveraged previously generated full
coverage poly-A RNA-seq profiles from similar perturbations of
AALE cell lines.

For coverage assessment, performance was evaluated in terms
of the distribution of total reads, or library size, that were aligned
to the human genome, and further quantified in annotated
genes. The best performance was expected in full coverage
poly-A RNA-seq, given that this is the most well-established
technique and has by far the highest sequencing depth. This was
confirmed, as full coverage poly-A RNA-seq was measured to
have the highest per sample library size, percentage of aligned
reads, percentage of uniquely aligned reads, and percentage of
counted reads (Figure 2 and Supplementary Figure S1). The
coverage performance of SFL suffered as a result of rRNA
contamination, where as many as 53% of the total library size
per sample was assigned to ribosomal regions of the genome
(Supplementary Figure S3).

3′DGE is a poly-A capture technique, therefore ribosomal
depletion is not a possible pitfall. 3′DGE generates a short
nucleotide tags from transposon-based fragmentation, which
are enriched for 3′ adjacent sequences of a given transcript
(Soumillon et al., 2014). Since many transcripts of the same gene
generate identical sequence tags, unique molecular identifiers
(UMIs) are used to distinguish between unique reads and
duplicate reads generated from PCR amplification. Although
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mRNA fragment duplication occurs with any RNA-seq protocol,
the impact of this artifact on downstream analyses is negligible for
techniques, such as SFL, which generate more complex sequence
libraries (Parekh et al., 2016).

3′DGE sequences were aligned directly to human mRNAs,
rather than the whole genome. Therefore, percentages of
reads aligned and reads counted (Figures 2Ci,iii) reflect the
percentages of these non-unique UMIs that align to at least one

FIGURE 5 | Comparison of gene-set enrichment of gene mutation signatures across SFL and 3′DGE. (A) Comparison of the gene set enrichment results between

SFL and 3′DGE with respect to the “DMSO-treated; genotypic perturbation vs. control” differential signatures. Points indicate gene set enrichment against

concordant signatures, e.g., PIK3CA mutation and CNA gene sets against the “PIK3CA vs. HcRed” differential signatures. Shown are the transformed FDR Q-values

from permutation-based testing by pre-ranked GSEA. | –Log10(FDR Q-Values)| corresponding to the FDR = 0.05 significance thresholds are shown as vertical and

horizontal gray lines for the y- and x-axes, respectively. The names of the gene sets whose enrichment meets this threshold in either of the two platforms are shown

and their points are filled in. Colors and shape of points denote direction and source of the gene set, respectively. Additional results for CSC, NNK, and BaP stratified

genotypic perturbation signatures, as well as comparisons between full coverage RNA-seq and either SFL and 3′DGE are shown in Supplementary Figure S9.

(B) Discovery rates for genotypic perturbations across full coverage poly-A RNA-seq, SFL, and 3′DGE, for chemically untreated (full coverage RNA-seq) and DMSO

treated (SFL and 3′DGE) samples. Results demonstrate full counted library size, as well as subsampled libraries. (C) Correlation between transformed FDR Q-values

from gene set enrichment at different subsamples of each platform and the results from the full counted library size. Shown are the results from genotypic

perturbations from untreated (full coverage RNA-seq)/DMSO treated (SFL and 3′DGE), CSC, and NNK chemically treated samples.
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gene and the number of unique UMIs that align to only one
gene, respectively. We observe that the percentage of counted
reads is greater for 3′DGE than SFL, which is explained by
a loss of reads to rRNA contamination in SFL. However, we
observe notably more genes quantified by SFL than by 3′DGE
(Figures 2B,Civ), which indicates that more reads are assigned to
fewer genes in 3′DGE compared to SFL, as well as to full coverage
RNA-seq (Figure 2C). Although rRNA contamination is a
potential drawback of any ribosomal depletion RNA-sequencing
technique, the extent of ribosomal contamination is variable, and
could be potentially improved by further optimization of the
library preparation protocol.

The difference in distribution of reads across shared genes
between SFL and 3′DGE likely explains the difference in
information retained by subsampling as measured by principal
component error. Although full coverage poly-A RNA-seq clearly
outperforms both SFL and 3′DGE for principal component
assessment, we consistently observe that, as the counted library
size increases, the rate of principal component error decreases
faster for SFL than 3′DGE (Figure 2D and Supplementary

Figure S1D). This is unsurprising considering that not only
are considerably fewer genes quantified by SFL compared to
3′DGE, but there is also no discernable difference between the
rate of genes counted as a function of counted library size
between the two platforms (Supplementary Figure S1C). As
we subsample the counted libraries, though we may lose the
same number of genes between SFL and 3′DGE, the percent
of genes lost, and consequently the information lost, will be
greater for 3′DGE than SFL. Furthermore, this more even
read distribution likely explains the improved performance
of SFL over 3′DGE in statistical signal. In particular, our
signal-to-noise evaluation shows consistently higher gene-level
statistical signal from SFL and microarray experiments than
from 3′DGE experiments (Figure 3). These differences appear
to be driven by the differences in the relative quantification of
genes, given that statistical signal is positively associated with
mean gene expression for each platform, and 3′DGE experiments
showed lower gene-level quantification than SFL andmicroarrays
(Figures 3C,D). We observe similar cross-platform relationships
in the two-group differential analyses (Figures 3E,F).

The gene set-based enrichment results are consistent with
those from signal-to-noise analyses. In every comparison
of enrichment scores between SFL and 3′DGE, we observe
generally higher gene set enrichment with respect to the
SFL-derived signatures (Figures 4, 5A and Supplementary

Figures S8, S9). The gene sets were selected to represent known
biological responses to the profiled perturbations, and thus
their enrichment with respect to the perturbation signatures are
expected to be true positives.

The enrichment results confirm this expectation. For example,
in the signatures ofNRF2 overexpression, we consistently observe
enrichment of the gene sets derived from NRF2 amplifications
and KEAP1 deletions, each of which should increase NRF2
activity (Supplementary Figure S7) (Kansanen et al., 2013).
Similarly, we observe significant concordant enrichment of
the gene sets derived from NRF2 and KEAP1-dysregulated
lung tumors in the signature of CSC exposure, suggesting

that the NRF2 pathway is activated by CSC exposure in vitro
(Supplementary Figure S7), which has been previously reported
(Adair-Kirk et al., 2008). Interestingly, these results demonstrate
that the activation of the NRF2 pathway in normal airway
epithelial cells in vitro (by ectopic expression of the gene
or by CSC treatment) is concordant with the activation
of NRF2 by somatic genome alterations in lung tumors,
a finding that, to the best of our knowledge, has not
been previously observed.

Possible sources of technical variability in this study are
the different sequencing platforms, service providers, and read
lengths. However, when subsampling the 3′DGE and SFL counted
libraries, we generally observe higher discovery rates at all
percentages of the full counted libraries, and even more so
when the 3′DGE counted libraries are initially subsampled to
full SFL counted library sizes (Figure 5B), demonstrating that
SFL shows improvements independent of the mapping rate.
This result confirms previous reports showing that increasing
read length above 50-bp does not improve read quantification
(Chhangawala et al., 2015). Furthermore, similar results have
been reported even when the same sequencing platform is used.
A recent study reported a greater number of genes detected, as
well as higher differential analysis discovery rates, in conventional
RNA-seq than in 3’DGE at identical counted library sizes, using
the Illumina HiSeq 2500 platform to generate both libraries
(Xiong et al., 2017).

In summary, in this study we observe higher performance
of SFL than 3′DGE, as measured by coverage, signal-to-
noise, and biological recapitulation of known signal, with the
performance of SFL often matching that of well-established
“gold standards” (full coverage RNA-seq or microarrays). On
the other hand, the fact that 3′DGE is shown to allocate a
large number of reads to relatively fewer, highly expressed genes,
makes this platform more suitable for problems where high
accuracy in the differential quantification of highly expressed
genes is needed. Furthermore, the ready availability of 3′DGE
as a core-provided option, which allows for the out-sourcing
of library preparation, sequence read pre-processing and gene
quantification, is an additional value-added of the platform.
Ultimately, the best-suited platform for a specific project will
depend on the study goals, design, and availability of different
resources. We believe our study presents useful results to make
a more informed choice.

The utility of highly multiplexed RNA-seq crucially depends
on the trade-off between cost and data quality, and on the
nature of the experiments for which the platform would
be ideally suitable. These will in general be experiments
where the marginal information content of a single profile is
relatively low, and thus justifies trading-off some data quality
for reduced cost.
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