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Abstract: The growing possibilities offered by unmanned aerial vehicles (UAV) in many areas of life,
in particular in automatic data acquisition, spur the search for new methods to improve the accuracy
and effectiveness of the acquired information. This study was undertaken on the assumption that
modern navigation receivers equipped with real-time kinematic positioning software and integrated
with UAVs can considerably improve the accuracy of photogrammetric measurements. The research
hypothesis was verified during field measurements with the use of a popular Enterprise series drone.
The problems associated with accurate UAV pose estimation were identified. The main aim of the
study was to perform a qualitative assessment of the pose estimation accuracy of a UAV equipped
with a GNSS RTK receiver. A test procedure comprising three field experiments was designed to
achieve the above research goal: an analysis of the stability of absolute pose estimation when the
UAV is hovering over a point, and analyses of UAV pose estimation during flight along a predefined
trajectory and during continuous flight without waypoints. The tests were conducted in a designated
research area. The results were verified based on direct tachometric measurements. The qualitative
assessment was performed with the use of statistical methods. The study demonstrated that in a
state of apparent stability, horizontal deviations of around 0.02 m occurred at low altitudes and
increased with a rise in altitude. Mission type significantly influences pose estimation accuracy over
waypoints. The results were used to verify the accuracy of the UAV’s pose estimation and to identify
factors that affect the pose estimation accuracy of an UAV equipped with a GNSS RTK receiver. The
present findings provide valuable input for developing a new method to improve the accuracy of
measurements performed with the use of UAVs.

Keywords: GNSS; real-time kinematic; unmanned aerial vehicle; total station

1. Introduction

Unmanned aerial vehicles (UAVs) play an increasingly important role in the modern
world due to the growing demand for data acquisition services and service automation.
Advanced applications are permeating every area of human life, and they stimulate the
development of new UAV technologies [1]. Due to their widespread availability and ease
of use, unmanned aircraft systems drive the development of new military technologies,
georeferencing applications, transport and environmental protection solutions [2–8]. An
analysis of current military conflicts around the world indicates that the use of unmanned
vehicle systems in air and on land has profound implications for combat. In addition to
surveillance and reconnaissance missions, UAVs can be also used to stage attacks on the
enemy, gather information about enemy forces, and gain advantage in the battlefield. The
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military role of UAVs is growing at an unprecedented rate, and military technologies also
drive the development of civilian applications.

Comprehensive UAV solutions offered by drone manufacturers, such as DJI, Autel
and Yuneec, can be configured to perform measurements at low altitude. Due to their
popularity and reduced cost, commercial UAV technologies have become more accessible
to various industries. High market competition and the emergence of specialized UAV
systems have contributed to the wide use of UAVs in mapping and surveying. Unmanned
vehicle systems have a growing number of applications, and new components are being
introduced to facilitate UAV operation and promote the development of new technologies.
The existing flight control and support solutions, new communication and data transmis-
sion technologies, and new data sensors clearly indicate that UAVs play an increasingly
important role in industry and in everyday tasks [9,10].

A review of the literature indicates that UAVs are widely applied to generate ac-
curate data and perform complex engineering tasks in geodesy [11], surveying, pho-
togrammetry, and remote sensing [12,13], for mapping wetlands [14], for Cultural Heritage
surveys [15,16], in urban change detection [17], to inspect and control objects that are diffi-
cult to access due to their location (bridges) and height (tall buildings, chimneys, power
transmission towers) [18–20], to control photovoltaic panels with the use of thermal imag-
ing cameras [21], to conduct firefighting and police operations, search for missing persons,
and perform various tasks in agriculture [22–24] and forestry [25,26].

The growing popularity of UAV solutions for commercial, recreational, and private
use has led to the development of the U-Space ecosystem based on the Unmanned Traffic
Management (UTM) concept [27]. The U-Space concept was implemented by the regulatory
authorities of the European Union and the EU Member States [28]. The main purpose
of U-Space is to integrate manned and unmanned aviation, promote the development of
UAV services, and ensure safe air navigation. The system supports the coordination of
UAV flights, air traffic management, and facilitates the procedures for UAV users. The
U-Space concept has been introduced to cater to the rapid development of UAV services
and to adapt the existing procedures to the advanced capabilities of modern drones. In this
respect, U-Space creates new administrative and legal options for implementing automatic
and autonomous aircraft [21,29,30]. In regard to automatic flights, various procedures
are developed and uploaded to a drone’s onboard computer to facilitate UAV operation.
Automatic procedures are implemented mainly to maintain the direction of flight along a
predefined trajectory, control flight speed, detect and track an object, and execute the Return
to Home (RTH) command when the drone loses contact with the operator. Control processes
and reliable flight control software during autonomous flights play a very important role
in research on advancements in UAV technology.

Reliable navigation is the key prerequisite in the development of automated UAV
systems. Modern drones are equipped with many sensors that enable the operator to
accurately determine their position and increase the reliability of navigation. In view of
the above, further research is needed to promote the development of reliable methods for
UAV pose estimation, and to integrate these technologies with a drone’s external sensors.
This is a highly challenging task, as demonstrated by the studies undertaken to verify the
accuracy of Global Navigation Satellite System (GNSS) receivers equipped with real-time
kinematic (RTK) positioning systems and Inertial Measurement Unit (IMU) devices [31–35].
The pose estimation accuracy of commercial UAV solutions continues to increase. Tech-
nological advances, the development of new components, and their compatibility and
integration necessitate further research into positioning accuracy, including with the use
of traditional methods that rely on terrestrial equipment to determine the coordinates of
survey points [36,37].

The undertaken research problem has significant implications for fully automatic UAVs
that are flown without the operator’s involvement based on a programmed procedure. The
problem of drone flight planning under uncertainty is also an interesting research problem
for the Artificial Intelligence and Robotics community, as well as the Dynamic Systems and
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Controls community [38]. The problems associated with ensuring flight stability and safety
were classified by La Valle and Sharma [39,40] as:

• Uncertainty in vehicle dynamics and limited precision in following commands,
• Uncertainty in knowledge of the environment, including obstacles in it,
• Unpredictability of factors in operating environment,
• Uncertainty of position information.

The importance of the above planning and flight safety issues for UAV increases due
to their speed, more complex dynamics and limited payload carrying capability [38].

Therefore, the authors decided to focus on the issue of uncertainty of position informa-
tion, which is particularly important in terms of the precision of the data acquired. In this
aspect, the issue of integration of the sensors carried by the drone, GNSS receivers and IMU
and their spatial orientation is relevant [10]. Other different solutions are being analyzed
to improve the ability to determine an accurate position, particularly in the unknown
environment of drone operation. For reasons of availability, most of the research focuses
on solutions based on GPS-RTK, extended with additional supporting systems. The basis
for research in this area is the deficiencies of the RTK method, concerning the inability
to secure continuous network stability and the failures of the components that are parts
of the RTK-GPS system [41,42]. For this reason, in the case of accurate measurements, a
study comparing RTK and PPK technologies concluded that the lowest error rate of the
processed data was obtained using the PPK-GNSS method [43]. Nevertheless, considering
the speed of data acquisition and uncomplicated nature of the RTK method, as well as the
accuracy parameters assumed in the model specifications, it is most often used in surveying.
Therefore, considering the demands of manufacturers to abandon Ground Control Points
(GCP), the problem of the accuracy of the GNSS RTK method became the subject of this
study.

The problems presented above with the use of GNSS RTK technology in new drone
applications, whose limitations relate to indoor operation as well as instability due to
multipath or jamming, lead researchers towards alternative solutions for accurate position-
ing. In an attempt to solve the problems encountered, research has been conducted into
increasing the number of GPS receivers used in relation to a single drone [44], as well as
integrating RTK GNSS calculation software with the drone module, which would increase
the precision of the positioning through transmitted corrections [45,46]. As part of research
on improving the accuracy of position determination by propagating the RTCM messages
from the Ground Control Station (GCS), scientists proposed mesh network involving multi-
ple drones [41,47]. In the perspective of further research, it has been proposed to use one of
many drones, which would also be located in the area of operation, as a GCS transmitting
corrections.

The identification of new solutions to minimize the problem of uncertainty in UAV
position information is being pursued not only through improvements to the GNSS RTK
method itself, but also by considering other methods of acquiring position information [39,40].
The solution is to acquire data from other sensors, which, in the case of large drones and
their extended payloads, can be completed in an extensive set [48,49]. Prototype solutions
of fully autonomous UAVs have been proposed, and they can be expected to support
decision making in the future. Simultaneous Localization and Mapping (SLAM) algorithms
are one of the solutions that can drive the development of fully autonomous drones. SLAM
algorithms support precise identification of objects while simultaneously keeping track
of the drone’s position within the environment to enable accurate navigation [50–54].
However, this method, has some limitations due to self-repeating patterns as well as use in
poor (night) and dynamically changing light conditions [10]. Due to the limitations of the
method, the use of the SLAM algorithm is not the only solution that has been investigated
for precise drone positioning. Among the basic visual odometry methods used in the field
of drone positioning, we can mention solutions using algorithms such as SfM (Structure
from Motion) [55,56], PTAM (Parallel Tracking and Mapping) [57] and DTAM (Dense
Tracking and Mapping) [58]. Another approach is to develop stand-alone systems such as
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AHRS (Attitude Heading Reference System) interacting with the Internal Measurement
Unit (IMU) [59]. Another alternative to the GNSS-RTK system is Ultra-Wide Band (UWB)
distance sensors [60] or pseudolites [61,62].

The main advantage of autonomous UAVs is that decisions concerning flying maneu-
vers, sensor activation, or the use of additional equipment are not programmed in advance
but are made independently by the machine based on real-life circumstances. The present
study was undertaken to assess the accuracy of UAV navigation systems, and the results
can significantly contribute to the development of autonomous aircraft.

Currently, it should be noted that in commercial applications, especially for the low-
budget UAV segment, GNSS-RTK technology is the optimal choice. The authors, consider-
ing the above-mentioned problems in used method and the accuracy parameters specified
in the specification of the model, decided to verify the precision of the drone’s positioning
through the experiments undertaken. Therefore, the main aim of the research was to verify
the stability and accuracy of positioning using the GNSS-RTK method.

2. Materials and Methods

The present study was undertaken to compare and assess the accuracy of UAV pose
estimation based on the data generated by a drone’s onboard navigation system and data
acquired during measurements with two independent tachometers. The measurements
were conducted in three scenarios. For the needs of the study, flight missions were planned
in a selected area; a reference frame of geodetic control points was designed, stabilized, and
measured; waypoints were stabilized, and tachometer stations were installed (Figure 1).
Tachometric measurements of the drone’s geographic coordinates were performed with
the use of a 360◦ prism reflector connected to a DJI M300 RTK UAV. In the experiments,
authors also considered the influence of atmospheric conditions on the measurement results
obtained. The flights therefore took place in a wind that blew from a northerly direction
with an average speed of 6 km/h. The Kp indicator, which was 1, was also taken into
consideration.

The study analyzed surveys made using the GPS RTK method, as a consequence
of using a receiver installed on a drone [63–65] and tachometric method [66–68], as a
reference method for UAV position measurements. The determination of the position of
the P-point on the Earth’s surface, within the RTK method, is implemented on the basis of
a space resection, using a fast initialization based on the on-the-fly (OTF) method [69]. The
calculation of the distance from the satellite to the receiver is based on the combined use of
code and phase measurements, where the observation equation can be written as follows
Equation (1):

Φ + v =
1
λ
ρ(Xc) + N (1)

where:
Φ—DD carrier phase observable (in cycles),
λ—signal wavelength,
v—residual (measurement noise),
Xc—receiver coordinate vector,
ρ(Xc)—DD geometrical range,
N—integer number of cycles (DD initial ambiguity).
The tachometric method, which is based on a situational-elevation measurement

performed using the polar method and trigonometric levelling, is used to determine the
situational position and elevation of points. Plane coordinates relative to the surveying
ground points were calculated using Equations (2) and (3):

XP = XS + dSPcos ASP (2)

YP = YS + dSPsin ASP (3)

where:
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XP, YP, XS, YS—plane coordinates of the points P and S,
dSP—horizontal distance between the points P and S,
ASP—azimuth of the line SP.
In turn, the altitude coordinate H was calculated according to Equations (4) or (5):

HP = HS + dctgZ (4)

or
HP = HS + d′ cos Z (5)

where:
HP, HS—altitude coordinates of a point P and S,
d, d′—distance reduced to horizontal or inclined distance,
Z—zenith angle (zenith length).
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Figure 1. Research area.

DJI MATRICE 300 RTK is one of the most popular commercial drone platforms.
According to the manufacturer’s specifications, the platform has a net weight of 8.37 kg
and dimensions of 810 × 670 × 430 mm (L ×W × H). The drone is equipped with a GNSS
RTK receiver compatible with GPS Navstar, Glonass, BeiDOU, and Galileo systems. Two
GNSS RTK antennas are positioned on the arms, and the drone’s position is determined
with the use of virtual reference stations. DJI MATRICE 300 RTK has vertical and horizontal
hovering accuracy (windless or breezy) of ±0.1 m in D-RTK mode. For the needs of the
study, the UAV was expanded to include a platform for mounting the Leica GRZ122 360◦

prism reflector (Figure 2).
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Figure 2. DJI MATRICE 300 RTK with Leica GRZ122 360◦ prism reflector.

Geodetic coordinates in the reference frame were determined with the static GNSS
method during two measurement sessions lasting 45 min each with 4 TOPCON Hiper
SR GNSS receivers (Figure 3). Coordinates were mapped in the PL 2000 National Two-
Dimensional Coordinate Reference System. The measurements were linked with the
ASG-EUPOS network of permanent reference stations, from which the nearest (ID: OPNT)
was located at a distance of 3.7 km from the site of the survey. At the same time, 4 points
of the basic altimetric network located in the nearest vicinity, whose distances from the
place of flight ranged from 0.8 km to 2.49 km, were used in the measurements to establish
the newly measured points. Coordinates calculated from the grid alignment were mapped
with a horizontal accuracy of 0.002 m and a vertical accuracy of 0.005 m. The location of
tachometer stations using the Free Station method is based on highly accurate coordinate
measurements. The drone’s position was verified with the use of Leica Viva TS30 and Leica
Viva TS15 robotic tachometers (Figure 3).

The tachometers were synchronized to facilitate a comparison of the measured data.
Tachometric measurements were conducted in prism tracking mode to increase sampling
frequency. The results were compared based on angle measurements and distance mea-
surements in tracking mode according to Figure 3. The location of tachometers and their
coordinates are presented in Figure 4.

In the first scenario, the stability of absolute pose estimation was determined while the
UAV hovered above a point with known coordinates. Drone coordinates were determined
with a robotic tachometer within a time interval of 1 s. The UAV was programmed to reach
a target point (point 1001) with known coordinates, and to maintain its position at three
altitudes above the point: 1.5 m, 5 m and 10 m. The measurements were performed in rapid
succession at each altitude to ensure consistent weather conditions and to minimize the
impact of external factors. Therefore, the stability of the drone’s position could be affected
mainly by speed and direction of airflow. The study site and specific lower altitudes
were selected to minimize the impact of wind on the conducted measurements. At the
same time, as part of the experiment conducted, the dependencies and magnitudes of the
prism displacement relative to the drone’s position recorded in the analyzed reports were
established. The determined values were then taken into account in the subsequent stages
of the research.

In the second experiment, the UAV’s position was analyzed during flight along a
predefined trajectory. The flight mission was conducted at an altitude of 10 m along a
path defined by the coordinates of mission points. The mission was planned to ensure
compliance with the requirements for performing low-altitude photogrammetric surveys.
The drone was flown above a square-shaped area, and it hovered and changed direction
above the main waypoints. Additional waypoints for capturing images were introduced
in each direction of flight. Measurements were performed at 14 waypoints. Three sets
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of coordinates, including waypoints, the drone’s position determined by the onboard
GNSS RTK receiver (AIRDATA), and the drone’s position determined based on tachometer
readouts, were analyzed.
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The third experiment was a modified version of the second experiment, and it was
performed to analyze the UAV’s position during uninterrupted flight without hovering
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over waypoints. The remaining parameters and assumptions were identical to the second
experiment. The second and the third research tasks were based on the solutions applied
in low-altitude photogrammetric surveys, and they were designed to assess the accuracy
of coordinate estimation relative to the derived product (such as an orthophotomap) in
several stages: assessment of land cover, calculation of coordinates at the center of the
image, and estimation of the accuracy of the derived products. Terrestrial measurements
were conducted in prism tracking and automatic geo-registration mode. A minimum of
five measurements in each waypoint were performed by both terrestrial stations. Figure 5
shows the scope and the different stages of the experiments carried out.
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3. Results

The experiments generated sets of independent coordinate measurements. The first
dataset contained information about the UAV’s coordinates based on the data logged
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by a dedicated web application for DJI solutions. The AIRDATA application registers
flight parameters, weather conditions, battery levels, and displays alerts about equipment
and environmental factors that could impact flight performance (Figure 6). Coordinates
were registered in the decimal system (WGS 84), and they had to be converted to the PL
2000 reference format for comparison with tachometer data. The UAV registered its position
ten times per 1 s. The second dataset comprised tachometer measurements.
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In the first experiment, the drone’s position was determined only with the use of the
Leica Viva TS15 instrument. Both tachometers were used to register the drone’s position
during the performance of specific tasks. In each experiment, the coordinates of mission
points were determined with a dedicated UAV application. Measurement times were
synchronized, and the drone’s coordinates, both terrestrial and those determined by RTK
GNSS, were visualized in QGIS software.

The results of the first experiment were presented in tabular form of statistics for X-
and Y-coordinates in the PL-2000 reference system at the tested altitudes, and as differences
between the coordinates measured by a tachometer in the eastern part of the study site (K)
and the coordinates measured by the UAV (L) (Tables 1–3).

A comparison of the coordinates measured at each examined altitude revealed that the
measurements conducted at H = 1.5 m should be additionally verified. For this purpose,
20 additional tachometer measurements (K) were conducted over a period of 36 s. To
facilitate data comparison, the coordinates registered by the UAV (10 measurements per
second) were averaged for a 1-s interval. The determined values were then compared with
the model values used in the UAV mission (M).

Table 1. Statistics for measured coordinates (altitude H = 1.5 m).

Tachometer K UAV L
Odds K-L (m)Northing

(m)
Easting

(m)
Northing

(m)
Easting

(m)

Minimum 5,959,078.56 7,464,512.84 5,959,078.63 7,464,512.83 −0.06 0.02
Maximum 5,959,078.59 7,464,512.86 5,959,078.65 7,464,512.85 −0.07 0.02

Mean 5,959,078.57 7,464,512.85 5,959,078.64 7,464,512.84 −0.06 0.01
Std deviation 0.01 0.01 0.01 0.00 − −
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Table 2. Statistics for measured coordinates (altitude H = 5 m).

Tachometer K UAV L
Odds K-L (m)Northing

(m)
Easting

(m)
Northing

(m)
Easting

(m)

Minimum 5959,078.59 7,464,512.81 5,959,078.64 7,464,512.80 −0.05 0.01
Maximum 5,959,078.64 7,464,512.83 5,959,078.71 7,464,512.84 −0.07 −0.01

Mean 5,959,078.61 7,464,512.82 5,959,078.68 7,464,512.83 −0.06 −0.01
Std deviation 0.05 0.01 0.03 0.01 − −

Table 3. Statistics for measured coordinates (altitude H = 10 m).

Tachometer K UAV L
Odds K-L (m)Northing

(m)
Easting

(m)
Northing

(m)
Easting

(m)

Minimum 5,959,078.72 7,464,512.75 5,959,078.75 7,464,512.76 −0.04 −0.01
Maximum 5,959,078.85 7,464,512.79 5,959,078.88 7,464,512.83 −0.04 −0.04

Mean 5,959,078.77 7,464,512.78 5,959,078.83 7,464,512.79 −0.05 −0.01
Std deviation 0.05 0.02 0.05 0.02 − −

The purpose of the second and the third experiment was to generate additional data to
verify the accuracy of the UAV’s pose estimation during a planned mission. During these
experiments, the drone’s coordinates were measured at three altitudes with a sampling
frequency of five measurements per 10 s (Figure 7). Similar to the first experiment, data
registered by the drone were acquired via the AIRDATA application.

The standard deviation was below 0.01 m for coordinates measured at flight altitudes
of 1.5 and 5 m. This parameter was considerably higher at the altitude of 10 m, and it
reached 0.05 m for the X-coordinate (Northing) and 0.02 m for the Y-coordinate (Easting).
The differences between tachometric and UAV measurements ranged from 0.04 to 0.07 m
for the X-coordinate, and from 0.01 to 0.04 m for the Y-coordinate. The error in the UAV
coordinate estimation was 0.06 m for the X-axis and 0.01 m for the Y-axis. The error in UAV
pose estimation was 0.06 m at altitudes of 1.5 m and 5 m, and 0.05 m at the altitude of 10 m.

The spatial distribution of UAV pose states is presented in the diagram below (Figure 8).
Circles denote buffer zones with a radius of 0.05 m, 0.10 m, and 0.20 m, and present the
distance from the waypoints set up in the mission plan. The drone’s position measured
with a tachometer is marked in green (K), and the coordinates acquired from the UAV are
marked in red (L). The analysis revealed that at an altitude of 10 m, the drone’s coordinates
were shifted by 0.10 m to 0.20 m relative to theoretical coordinates. This difference did not
exceed 0.10 m at the remaining altitudes (1.5 m and 5 m).

In the second experiment, the differences between model data (coordinates) introduced
to the mission (model values, M), the results of terrestrial measurements conducted by
two tachometers (K and A), and the coordinates registered by the UAV (L) were compared.
The average differences between waypoint values and the measured values are presented
in diagrams (Figure 9). It should be noted that at least five terrestrial observations were
performed at each waypoint. The data acquired from the UAV via the AIRDATA application
were processed in the same manner as in the first experiment.
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Figure 9. The average differences between model values and the measured values.

The scatterplots presenting the standard deviation for every measuring device revealed
low data spread. On the X-axis, the standard deviation of the measured values ranged from
0.01 m to 0.04 m for most points. Standard deviation values were two or three times higher
only in sporadic cases (Figure 10). The measurements of the Y-coordinate were more stable,
and standard deviation ranged from 0.01 m to 0.07 m for all waypoints.
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Figure 10. Standard deviation for every measuring device.

The UAV’s flight trajectory relative to ground control points is presented in Figure 11.
The values for the entire mission are marked in black, and the values determined during
theoretical hovering above a waypoint are market in red. Buffer zones with radii of 0.05 m,
0.10 m and 0.20 m, describing the distance between the UAV’s position and the planned
waypoints, are also presented in the diagram. Differences in the centering accuracy, which
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is independent of the direction of flight and changes in direction, can be also observed
relative to all waypoints.
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Figure 11. Standard deviation for every observed waypoint.

Most of the analyzed positions were determined within the 0.10 m buffer zone. In
regard to points No. 1, 5 and 10, a large number of the identified positions did not fall within
the 0.05 m buffer zone. At point No. 10, the distance between the positions determined by
the UAV and the waypoint ranged from 0.10 to 0.20 m.

The purpose of the third experiment (scenario) was to conduct a photogrammetry
mission during which photographs were taken. This experiment was conducted to verify
the precision with which the UAV’s position was recorded (in a continuous manner) during
the performance of a standard measurement task. Selected measurements are presented
in the diagram to illustrate the variability in X- and Y- coordinates determined with the
analyzed measuring techniques (Figure 12). Due to a large dataset and the presence of
outliers, the diagram presents measurements conducted over a period of approximately
200 s.

Based on the results of the second experiment, which compared the modeled values
with tachometric measurements and GNSS RTK measurements during the flight, in the
next stage of the study, an attempt was made to compare the differences between UAV
coordinates and terrestrial measurements. During photogrammetric measurements con-
ducted for surveying purposes, images are captured by drone cameras, and the obtained
results and their evaluation have the most important practical implications. The results
of the comparison, including the values of X- and Y-coordinates, are presented in the
below diagram (Figure 13). The diagram shows variations in the differences between the
coordinates measured by the UAV and registered in the AIRDATA application (L) and
the coordinates measured by tachometers (A) and (K). Data are registered continuously in
the AIRDATA application, and the time marking the beginning of the mission was set at
7800. The third experiment lasted 120 s due to the size of the study area. The difference in
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the values of coordinates determined by both tachometers relative to the UAV’s position
approximated 0.05 m for both X- and Y-coordinates.

Similar to the first and second experiment, the results generated by the third exper-
iment were compared with the projected flight path (green solid line). The actual flight
trajectory is presented relative to the planned waypoints in the below diagrams. To improve
legibility, the measured values were presented on a larger scale for selected segments of
the flight path near waypoints 3, 6 and 9 relative to the flight plan presented in the below
Figure 14. Similar to the first and second experiment, the diameter of the buffer zones was
set at 0.05 m, 0.10 m and 0.20 m to better illustrate the scatter of coordinates.

The analyses revealed that the difference between most positions determined by the
UAV and tachometric measurements relative to the planned flight path did not exceed
0.05 m. Greater differences were observed in sporadic cases, but they did not exceed 0.10 m.
The most important finding of the study is that the compared measurements did not differ
by more than 0.10 m.
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4. Discussion

The first experiment was based on a representative sample of measurements con-
ducted in a hovering position. The accuracy with which coordinates were registered by the
UAV was assessed based on an analysis of descriptive statistics. The difference between the
values of X- and Y-coordinates in a 2D system, determined with the use of selected measure-
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ment methods, reached 0.02 m. Standard deviation exceeded 0.05 m only minimally, which
indicates that the GNSS RTK technology supports highly accurate UAV pose estimation. In
the remaining two tasks of experiment 1, which involved changes in the UAV’s hovering
height, greater differences in the measured values and standard deviation were noted for
both coordinates. At altitudes of 5 m and 10 m, the above statistics increased and exceeded
the boundary value of 0.10 m, and standard deviation was determined at 0.05 m for the
X-coordinate and 0.02 m for the Y-coordinate. However, fewer observations were made
during both tasks than in the first stage of the experiment; therefore, the sample could
have been too small. Despite the above, these results suggest that an increase in height can
compromise the accuracy of measurements. According to the authors, measurement accu-
racy was undermined mainly by external factors, in particular weather conditions. In field
surveys, the impact of these factors can be minimized, but never completely eliminated.
However, with significantly higher heights above 10 m, the impact of atmospheric factors
is expected to be greater. These observations were validated by simultaneous terrestrial
measurements which revealed similar changes in the monitored values, as presented in the
below table (Table 4).

Table 4. Statistics for measured coordinates (altitude H = 1.5 m; altitude H = 5 m; altitude H = 10 m).

UAV (L) Tachometer (K)
Northing (m) Easting (m) Northing (m) Easting (m)

Altitude 1.5 m

Difference (m) 0.02 0.02 0.02 0.02

Standard deviation (m) 0.01 0.01 0.01 0.00

Altitude 5 m

Difference (m) 0.04 0.03 0.07 0.04

Standard deviation (m) 0.05 0.01 0.03 0.01

Altitude 10 m

Difference (m) 0.13 0.04 0.13 0.07

Standard deviation (m) 0.05 0.02 0.05 0.02

The second and the third experiment confirmed the hypothesis that a significant
correlation exists between a UAV’s position determined with the GNSS RTK receiver,
tachometric measurements, and the adopted coordinates of waypoints in each mission.
These experiments also proved that centering accuracy in selected points is not influenced
by the direction of flight or changes in direction. The results of experiments 2 and 3 revealed
that the measurements conducted during uninterrupted flight over waypoints were more
consistent with tachometric measurements. In the second experiment, where the drone was
programmed to hover over each waypoint, flight coordinates were determined by the UAV
less accurately relative to the programmed flight path.

The analysis of the obtained results presented in Table 5 allows to conclude that if the
hovering is longer over a point with specified coordinates, the difference is smaller between
the total station measurement and the planned waypoints. In the second experiment, which
involved stopping the drone over a point, we can see many times larger differences in the
range between the tachometric measurement and the model data. Of course, this is also
influenced by the fact that in experiment no. 2 we analyzed the data for 14 points, while in
first experiment measurements only concern one point.
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Table 5. Statistics for measured coordinates in all experiments.

Experiment 1 Experiment 2 Experiment 3

Northing (m) Easting (m) Northing (m) Easting (m) Northing (m) Easting (m)

Min difference (m) −0.050 0.010 −0.090 −0.057 0.010 0.010

Max Difference (m) −0.070 0.010 0.181 0.165 1.130 1.347

Standard deviation (m) 0.05 0.03 0.040 0.070 0.313 0.357

Analyzing the problems encountered with the accuracy of the GNSS-RTK receiver
placed on the drone, it should be noted that the measurements were made in open terrain.
Therefore, the acquisition of spatial data for areas with a much more complex spatial
structure, such as built-up, industrial and mountainous areas, will be associated with lower
stability of the used correction method. As a result of inaccurate positioning of the drone
during spatial data acquisition in a complex environment, there is a risk of incomplete data
acquisition for the entire area, as well as incorrect realization of the assumed lateral and
longitudinal coverage.

Another conclusion of the study is the need to use GCPs to assess the quality and
verify the data acquired from the aerial survey. The GCP, especially in the case of complex
areas, should be regularly spaced, which is supported by the values shown in Table 5. It
is also important to point out that GPC points also solve the problem of establishing the
correct heights of the area for which the data is acquired. The authors believe that accurate
elevation data acquisition using UAVs is a challenge that they would like to analyze in
further research.

Authors believe that research into the accuracy of using the GNSS-RTK method for
UAVs should be continued due to its speed and ease of method application. However,
it should be noted that this method is not without its drawbacks, which are related to
the possibility of losing the connection which sends corrections, particularly in the case
of BVLOS (Beyond Visual Line of Sight) flight. It is also problematic, as analyzed in this
article, to be able to obtain measurements with centimeter accuracy, especially in the subject
of continuous flights without stopping at the time of data collection.

Authors believe that the proposed method, using tachometric measurements as a
complement to the UAV’s data collection process, will allow for the accurate determination
of the drone’s position, as well as the verification of the accuracy of the measurements
taken by the drone’s sensors.

The study also revealed that Y-coordinates should be determined more accurately
relative to X-coordinates, and this observation has important implications for further
research. In the future, the configuration of flight missions should be modified to minimize
the effect of the azimuth on pose estimation accuracy. This aspect should be analyzed in
detail to determine whether X- and Y-coordinates are affected by the direction of flight
when the mission is adequately configured.

5. Conclusions

The accuracy of a UAV’s pose estimation is the key determinant of drones’ applicability
for surveying operations. This is an important consideration since despite their limitations,
UAVs considerably speed up field surveys. Professional solutions are expensive, but most
commercial UAV models are affordable for contractors performing surveying operations.

The study demonstrated that the positioning accuracy of the DJI MATRICE 300 drone
equipped with a GNSS RTK receiver is consistent with the manufacturer’s specifications.
The GNSS RTK receiver correctly mapped X-coordinates, and the difference between the
values measured by the UAV and model data increased with a rise in flight altitude. The
conducted experiments revealed that most deviations can be attributed mainly to external
factors, including weather conditions. The influence of these factors can be minimized,
but not completely eliminated in field surveys. A UAV’s pose estimation accuracy cannot
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be reliably determined in a laboratory, and field tests should be carried out to verify the
system’s capabilities under real-life conditions. Both the direction and altitude of flight
significantly affect pose estimation accuracy.

The proposed test procedure was positively validated in the study. Considering the
safety of navigation, especially during missions, and the efficiency of data acquisition, this
research can provide a basis for developing criteria for evaluating the quality of satellite
positioning. A catalogue of features developed on the basis of empirical research would
allow the prediction of positioning accuracy problems occurring along the drone’s entire
flight trajectory, and in particular at take-off and landing moments.

In the future, the results can be used to determine the effect of waypoint location
relative to the direction of the axes in a selected coordinate system during flight missions.
In an upcoming study, the authors will analyze the accuracy with which Y-coordinates
are determined and the conversion of ellipsoidal height to orthometric height in selected
devices.
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