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We assess the validity of an extended Nijboer—Zernike approach [J. Opt. Soc. Am. A 19, 849 (2002)], based on
recently found Bessel-series representations of diffraction integrals comprising an arbitrary aberration and a
defocus part, for the computation of optical point-spread functions of circular, aberrated optical systems.
These new series representations yield a flexible means to compute optical point-spread functions, both accu-
rately and efficiently, under defocus and aberration conditions that seem to cover almost all cases of practical
interest. Because of the analytical nature of the formulas, there are no discretization effects limiting the ac-
curacy, as opposed to the more commonly used numerical packages based on strictly numerical integration
methods. Instead, we have an easily managed criterion, expressed in the number of terms to be included in
the Bessel-series representations, guaranteeing the desired accuracy. For this reason, the analytical method
can also serve as a calibration tool for the numerically based methods. The analysis is not limited to pointlike
objects but can also be used for extended objects under various illumination conditions. The calculation
schemes are simple and permit one to trace the relative strength of the various interfering complex-amplitude
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terms that contribute to the final image intensity function. © 2002 Optical Society of America
OCIS codes: 000.3860, 000.4430, 050.1960, 070.2580, 110.2990, 110.3960.

1. INTRODUCTION

In optical imaging, an exact knowledge of the optical im-
pulse response or point-spread function is required for the
calculation of the image intensity pattern in the presence
of more complicated objects. Analytical expressions for
the point-spread function are available in some simple
cases if the wave front exiting from the exit pupil is
spherical and the transmission function of the optical sys-
tem is uniform over a certain region (e.g., an annular pu-
pil). In all other cases, numerical approaches based on
integration of the complex amplitude over the exit pupil
area are used.

An analytical expression for the impulse response in
the aberration-free case for an out-of-focus position has
been provided for the first time by Lommel (see Ref. 1,
Sec. 8.8). The impulse response in the presence of
(small) aberrations has been studied by Nijboer and
Zernike, who used orthogonal expansions involving
Zernike polynomials to evaluate the impulse response.
Their approach poses problems if the wave-front aberra-
tion function W approaches values in excess of \/4, say 1\,
because of the appearance of products of Zernike polyno-
mials in the higher-order expansion terms; such products
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seemed rather intractable at that time. We remind the
reader that the Nijboer—Zernike theory is an approxima-
tion for moderate values of the numerical aperture (NA),
not significantly larger than a value of 0.60. Beyond this
value, the quadratic approximation to the path-length dif-
ference occurring in the exponential of the integrand of
the diffraction integral is questionable. In Appendix A,
we present the higher-order wave-front terms that are
needed for a correct representation of defocusing in high-
aperture systems. With this extension, the path length
due to defocusing is correctly accounted for if the NA
value approaches 0.90. However, beyond the value of
0.70, a more rigorous treatment involving the state of po-
larization of the focusing wave is needed.? The
polarization-dependent effects become clearly visible at
aperture values as large as 0.8. In this paper, we will
limit ourselves to the scalar diffraction integral, although
an extension to the vectorial case is possible along the
lines of our analysis, the number of integrals to be evalu-
ated then being six (three for each orthogonal polarization
state) instead of one.

The basic scalar diffraction integral to be evaluated for
obtaining the spatial impulse response U(x, y) in image
space reads as (see Ref. 1, Sec. 9.1)

© 2002 Optical Society of America
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1
U, y) = ;” ,_ AG, wexpli®(y, )]
vi 4 pt =

X expli(v? + u?)fJexp[i2m(vx + wy)]dvdu,

1 11
= —f p exp(ifp®)
T

0

2
X [L A(p, 0)exp[i®(p, 0)]

X exp[i2mrp cos(d — ¢)]d6}dp, (1

where v and u are the normalized coordinates of a general
point on the exit pupil sphere and (x, y) are the image-
plane coordinates (see Fig. 1); with some liberal use of no-
tation, we introduced the amplitude transmittance func-
tion A(p, #) of the optical system and the wave-front
aberration ®(p, 6), expressed in radians. The transfor-
mation from Cartesian to polar coordinates on the exit pu-
pil sphere and in the image plane is formally written as
v+iu=pexpid) and x + iy = rexp(iep).

The factor f represents the defocusing (f = 7/2 corre-
sponds to one focal depth). Within the framework of
Zernike expansions, it is possible to treat the defocusing
term and the aberration term on an equal footing. How-
ever, from the physical point of view, the aberration term
is an intrinsic error of the optical system, while the defo-
cusing is a deliberately introduced defect, which can take
on values that are relatively large with respect to the ab-
errations of the system. For this reason, a separate
treatment is commonly preferred, and in this paper we
largely adhere to this preference.

We refer to Ref. 3 and Ref. 1, Chap. 9 (Secs. 9.1-9.4)
and Appendix VII, for an extensive exposition of the
Nijboer—Zernike theory. As in Ref. 4, Sec. 1, we expand
the point-spread function U of Eq. (1) as

1.7 ik r1 2
Ulx,y) = — 2 — | pexplifp®)| | ®*p, 6+ ¢)
mh=o k! Jo 0

X exp(i2mrp cos 9)d0} dp. (2)
Blag v
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Fig. 1. Geometry of the wave propagating from the exit pupil
(center at E;) toward the image plane (center at P,). The diam-
eter of the exit pupil is 2p,, and the distance from pupil to image
plane is R. The real-space image-plane coordinates are (X, Y).
In this paper, the exit pupil coordinates are normalized to unity
by means of the value of p, and denoted by (v,u); the image-plane
coordinates are normalized with the aid of the diffraction unit
MNA and denoted by (x, y). NA (=py/R) is the image-side nu-
merical aperture of the optical system.

Vol. 19, No. 5/May 2002/dJ. Opt. Soc. Am. A 859

Here the amplitude transmission function A(p, #) has
been put equal to unity. Next, the aberration function ®
is represented as

D(p, ) = D, @RI (p)cosm, 3)

n,m

where R)'(p) are the Zernike polynomials. The expan-
sion in Eq. (3) is in terms of orthogonal functions
R (p)cosm6 on the unit circle and contains only terms
with integers n, m = 0 such that n — m is even and = 0.
When aberrations are small, so that truncation of the in-
finite series in Eq. (2) after the term with £ = 1 is al-
lowed, we get (using elementary properties of Bessel func-
tions), to a good approximation,

1

Ulx, y) ~ zfo pexp(ifp?)do(2mpr)dp

1

+ 202 i"ay, f p exp(ifp?) R (p)
n,m 0

X o, (27pr)dp cos m ¢. (4)

The reduction of the integrals in relation (4) is rather
cumbersome. The method proposed by Nijboer, see Ref. 1
(Sec. 9.4) and Ref. 3, is based on the expansion of exp(ifp?)
as a series involving Zernike polynomials. The method
requires an ad hoc procedure for representing products of
two Zernike polynomials as a finite linear combination of
Zernike polynomials with a prescribed upper index m.
Finally, the basic identity

' Jn+1(277r)
f pR™(p) pp(2mpr)dp = (—1)nm2 " (5)
0 27r

is applied. However, to the knowledge of the authors, the
method of representing products of Zernike polynomials
has remained mainly in a guess-and-try stage and thus
yields useful results only for relatively small values of n
and m. This problem becomes even more serious when
first-order considerations as in relation (4) no longer suf-
fice, so that products of more than two Zernike polynomi-
als occur, as a result of terms on the right-hand side of Eq.
(2) with £ = 2 that must be included. For these reasons,
the Nijboer—Zernike theory is not satisfactory when aber-
rations and defocus values are considered that have val-
ues of order unity or larger.

A different approach, yielding valid results when the
defocus parameter is large, consists in applying certain
methods from asymptotic analysis. These methods are of
limited use when one is interested in accurate computa-
tion of the point-spread functions, especially when f'is nei-
ther very small nor very large. For the latter cases, it
has become common practice to compute the integrals in
Eq. (1) and/or (2) by using strictly numerical integration
methods. In these numerical methods, one has inevita-
bly to cope with the problem of selecting integration grids,
preferably covering a square region in the (v, u) plane, so
as to be able to take advantage of the computational effi-
ciency of fast Fourier transforms, (FFTs), to approximate
integrals of functions that are inherently discontinuous
(viz., at the edges of the pupil »*> + u2 < 1). In the fre-
quently occurring cases in which one uses a commercial
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software package for evaluating diffraction integrals [e.g.,
SOLID-C (Ref. 5)], one has, furthermore, normally only
limited access to the source codes, and hence a quality as-
sessment of the obtained results is not feasible. More-
over, the result produced by these software packages is
the image intensity distribution, whereas a knowledge of
the complex-amplitude terms yields a more profound un-
derstanding of the final result.

In this paper, we propose to use the analytical formulas
of the Lommel type that were found in Ref. 4 for integrals
as they occur in relation (4), and for integrals similar to
those in relation (4), with R]'(p) replaced by the mono-
mial p”, where n — m = 0 and even. As explained in
Ref. 4, Sec. 3, any of the integrals involving ®* in Eq. (2)
can be reduced to a finite sum of integrals of the type just
mentioned, whence we have an analytical means to calcu-
late U(x, y). Alternatively, one may find it feasible to
develop the complete complex pupil function A exp(i®) in
Eq. (1) in terms of Zernike polynomials, and then we are
in a position similar to that of relation (4).

In this new approach, the through-focus calculation of
the point-spread function becomes feasible for much
larger values of the wave-front aberration function than
in the Nijboer—Zernike approach; both the defocus param-
eter and the aberration term may assume values compa-
rable with or even larger than 27 in terms of the induced
phase aberration without compromising the accuracy. Of
course, the analysis extensively uses the properties of
Zernike polynomials and supposes a circular geometry for
the exit pupil. However, in principle, nonuniform ampli-
tude distributions are permitted, and therefore a noncir-
cular pupil rim or a central obstruction could be accom-
modated, albeit at the expense of an increased number of
higher-order terms in the expansion. In the analysis pre-
sented in this paper, the azimuthal dependence of the
Zernike polynomials is limited to a cosine dependence.
An extension to a general orientation of the wave-front
aberration can easily be included. Even with this exten-
sion, the calculation scheme according to our analysis re-
mains very short, and its implementation into a symbolic
program is easily realized.

This paper is organized as follows. In Section 2, the
basic formulas are presented that are needed to treat the
various practical examples in the subsequent sections.
In Section 3, we present interpretations of our basic for-
mulas in optical terms; this comprises a comparison of the
formulas in the in-focus and defocused cases, symmetry
properties of the image intensity distribution, and consid-
erations about the radial extent of the impulse responses.
In Section 4, we consider computational aspects of our
method, such as a verification of the convergence analysis
developed in Appendix B and some basic problems con-
cerning Zernike expansions as in relation (4). We also
present in Section 4 a numerical comparison of our
method with strictly numerical methods, such as those
embodied by software packages. In Section 5, we study
the imaging of an extended object for various coherence
conditions; the impulse response approach clearly shows
the separate origin of the background intensity terms and
the coherence-based term of the intensity pattern. Fi-
nally, in Section 6, we apply our analysis to high-
frequency aberration terms corresponding to a scattering
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type of image blur. This type of unsharpness is present
in multicomponent optical systems with many glass—air
transitions; it also plays a role in imaging through turbu-
lent media, e.g., astronomical observation through the at-
mosphere. We will show that the impulse response ap-
proach to this type of blurred imaging is very robust and
does not suffer from the numerical stability problems as-
sociated with the standard approach. Finally, in Appen-
dix A, we analyze the defocusing term in the case of a
high-NA system, and we present the expression for the co-
efficients of higher-order radial Zernike polynomials,
which have to be included in this case. In Appendix B,
the maximum absolute value of the terms in the series ex-
pansion for the impulse response is given, and a conver-
gence criterion for the required number of terms in the se-
ries expansion is developed.

2. BASIC FORMULAS FOR THE
COMPUTATION OF U(x, y)

In this section, we present the basic formulas to be used
for the computation of U in the examples in the following
sections. We start by expanding a general pupil function
A exp(i®) in terms of Zernike polynomials as

A(p, 0)expli®(p, 0)] = D, BRI (p)cosmob, (6)

with coefficients B3,,, (n = m = 0, n — m even) that are
complex in general. The expansion in Eq. (6) of A exp(i®)
can be obtained, for instance, by a least-squares fit of a
finite series with sufficiently many terms to a (measured)
pupil function A exp(i®), a procedure that is common
practice for expanding ® itself. The efficient and reliable
calculation of the coefficients 3,,,, for a general pupil func-
tion A exp(i®) is still under study and will be treated in
more detail in a forthcoming publication. It can be
shown that the field U as defined by relation (4) is given
by

Ux, ¥) = 2, Bumi™Voum cosm e, (7

where
1
Vo = f p exp(ifp®) R} (p)d ,,(2mpr)dp 8)
0

for integers n, m = 0 with n — m = 0 and even.
The Bessel-series presentation for V,,, has been given
in Ref. 4 and reads as

© p
S 4142;(V)
Vom = exp(if)z (—2if)1712 Ulj—Jr +l] , (9
=1 j=0 lv
with v;; given by
m+j+l-1
v = (=1)P(m + 1 + 2)) 1-1
jHl-1yl-1 q+tl+j
X(l—l)(p—j cop 10

where [ = 1,2,...,j=0,...,p. In Egs. (9) and (10)

we have set
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n—m n+m

v = 2mr, p 7 q B (11)
For the number L of terms to be included in the infinite
series over /, we have the following rule. When L = 25,
the absolute truncation error is of the order of 107¢ for all
f, v, n, m specified by
lfl < 2m, v = 20, O0spsgqg<6 (12

This is shown in Appendix B; in fact, the analysis given
there can be easily adapted so as to yield a truncation cri-
terion when ranges different from those in relations (12)
or different accuracy is required. Roughly, one can say
that sufficient accuracy is attained when the number L of
included terms exceeds 3f.

Returning to the commonly considered case where A in
Eq. (6) equals unity and the aberration phase & is suffi-
ciently small, one has the first-order approximation

Ulx, y) ~ 2Voo + 20D, aymi™Vymcosmep, (13)

with «,,,, now equal to the coefficients in the Zernike ex-
pansion of @, the aberration function in the pupil [see Eq.
8.

When one tries to understand how the separate aber-
ration terms «,,,, R (p)cos m6 in the Zernike expansion of
® contribute to the higher-order terms 2 = 2,3,... in
the expansion of U in Eq. (2), it becomes awkward to use
the V,,,,, coefficients, as the result will involve products of
Zernike polynomials that should be written as linear com-
binations with an appropriate upper index m. The ap-
proach used here (Ref. 4, Sec. 3) states that any term
k = 2,3,... in the series expansion of U in Eq. (2) is a
linear combination of terms of the form

T, cosmao, (14)

with

1
T = f p" L explifp?)d o(2mpr)dp,  (15)
0

where n, m are nonnegative integers such that n — m
= 0 and even.

The Bessel-series representation of T, closely re-
sembles the expression for V,,, and is given in Ref. 4 as

m+i+2j(0)

Tom = exp(if ) D, (=2if )71 t——F—, (16)
=1 =0

!
with the coefficients ¢;; given by

m+1+ 2 p
ty = (—1>J—( )
qg+1 J

mA+jrl—1) /(q+1+j
(" )/(qﬂ)’ 4
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where [ = 1,2,...,7=0,..., p. The truncation rule
for the Bessel-series representations of 7', is the same
as that for the corresponding representations of V,,, [see
relations (12)].

For the case in which a second- or higher-order approxi-
mation of U is required, one can establish formulas that,
unfortunately, become rather complicated for increasing
values of k. In certain special cases, such as

®(p, 6) = ap?cos 6, yp? cos 26, sp*, (18)

which represent (uncorrected) coma, astigmatism, and
fourth-order spherical aberration, respectively, a consid-
erable shortcut of the general program is possible. In
Ref. 4, Sec. 4, such a thing is done for the first two cases in
Eqgs. (18), and this yields expansions

j=0 j=0

with C;, D; expressed explicitly in terms of the coeffi-
cients T',,,, in Eq. (15). In Section 4, we shall use such an
expansion for the third case (spherical aberration).

3. PHYSICAL INTERPRETATION OF THE
BASIC FORMULAS

In this section, we show, starting from the aberration-free
case, how the complex amplitude of an aberrated impulse
response is built up from various interfering terms. We
consider in this section the case in which the aberration
phase ® has been expanded in a Zernike series as in Eq.
(3), with |®| sufficiently small so that linearization as in
relation (13) is allowed. The explicit form in Eq. (9) of
the V,,, on the right-hand side of Eq. (7) shows a clear
separation between the defocusing through powers /=1 of
f and the radial dependence through finite series involv-
ing Bessel functions oJ,,;.9j(v) evaluated at the argu-
mentv = 27r. Finally, the azimuthal dependence in the
series in Eq. (7) is represented by the factors cosmd.
Evidently, a separation of variables as we have here has
advantages, both in terms of physical interpretation and
from a computational point of view.

Before presenting our observations on the through-
focus response of an aberrated optical system, we briefly
recall the relationship between our normalized image-
plane coordinates (x, y) with defocus parameter f and the
real-space image coordinates (X, Y, Z) in the lateral and
axial directions:

v=2mx? + 9y f= 2;2(1 - V1 - NA?). (20
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In Appendix A, it is shown that, in the case of systems
with a high numerical aperture the defocus term can be
thought to be composed of a quadratic term and a term,
represented by radial Zernike polynomials RY, with n
= 2, that can be incorporated into the aberration phase.

A. TImpulse Response in Focus (f = 0)
With reference to relation (4) and Eq. (5), the aberration-
free case with f = 0 leads to the well-known Airy function

J1(U)
Ulkx,y) =2 . (21)
1

The central spot is surrounded by a dark ring, corre-
sponding to the first minimum of J;(v). The in-focus
amplitude distribution in the presence of small aberra-
tions has already been given by Nijboer®: Using the
identity in Eq. (5), we obtain the following for small aber-
rations:

J1(v)
Ux,y) ~ 2
Jpi1(v)
£ e, (~ D) cosm
(22)

B. Impulse Response in the Presence of Defocus
(f#0)
In this subsection, we concentrate on the physical inter-
pretation of the quantities V,,,, when f # 0 and the aber-
ration is small.

The out-of-focus impulse response of a slightly aber-
rated optical system can be written from relation (13) as

Ux, y) ~ 2 Voo + 2, i"la,, Vo, cosme|, (23)

n,m

where, as in the series in relation (22), the summation in-
dicesn,m = 0 andn — m = 0 and even. The quantities
V.m depend on f and v as shown in Eq. (9), with appro-
priate coefficients v;; as given in Eq. (10). The close re-
semblance between relation (22) and (23) stems from the
representation of U in the defocused case in terms of the
functions V,,, that substitute for the functions
(—=1)»=m2J . (v)/v in the in-focus situation. It is eas-
ily verified [see Eqgs. (5), (9), and (10)] that for f = 0, the
functions V,,, reduce to the corresponding expressions
comprising the Bessel functions of order n + 1.

The above formulas for U(x, y) also lead to the symme-
try properties for the intensity I(x,y) = |U(x, y)|?,
which were already enumerated in Ref. 1, Chap. 9.4, and
which we briefly recall for a single aberration term
a, R (p)cos md:

e The vertical axis is an m-fold symmetry axis; in par-
ticular, for m = 0 circular symmetry is present.

e When m is odd, the plane z = 0 is a symmetry
plane.
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e When m is even, the intensity at a position given by
the cylindrical coordinates v, ¢, z, is also found at the po-
sition v, ¢ + wm, — z;.

e When m = 0, no symmetry with respect to the plane
z = 0 is observed.

e When m is even and the aberration coefficient a,,,, is
replaced by —«,,, , the intensity distribution remains the
same when f'is replaced by —f; in the case in which m is
odd and «,,, is replaced by —«,,,, the intensities at ¢
and ¢ + 7 are the same.

We finally remark that the formulas also yield a good
estimate of the radial extent of the impulse response once
the maximum order of the radial Bessel function has been
established. The first zero of the Bessel function of order
n is found at a coordinate value given by v ~ n + 3, and
this yields an estimate of the lateral extent of the aber-
rated point-spread function. For low argument values,
the function J,(v) of order n is proportional to v*. In
this respect, it is interesting to note that in the presence
of nonzero values of m, the expressions for V,,, [Eq. (9)]
and T,,, [Eq. (16)] contain Bessel functions with a mini-
mum index value of m + 1. This value m + 1 indicates
that the contribution to the total amplitude of the point-
spread function is small for low v values and that the
spread (typically to a v value of m + 4) of the impulse re-
sponse increases when the azimuthal index m of the coef-
ficients «,,,, or B,,, becomes larger.

In Fig. 2, we have presented the function V,,, for vari-
ous combinations of n and m and, in each case, for defocus
parameter values 0 and 7. Both the real and imaginary
parts of V,,,, have been displayed, as well as its modulus
squared, |V,,,|2, which corresponds to the image-space in-
tensity when only the single aberration term R} (p)cos md¢
is present.

4. COMPUTATIONAL ASPECTS AND
NUMERICAL COMPARISON

In this section, we restrict ourselves to the scalar diffrac-
tion integral with the resulting impulse response given by
Eq. (1). We first give a number of computational consid-
erations concerning the series representations in Eq. (9).
As an example, we consider the case in which the aberra-
tion A exp(i®) is given as

2
A=1, ®(p) = ayoRi(p) = ?(ep‘* —6p® + 1),

0sp=<1, (249

and we present specific convergence results for V.
Next, a comparison of our method with strictly numerical
methods is made from a numerical point of view. Again,
we take Eqs. (24) as an example. The coefficient a4 in
Eqgs. (24) is chosen to be 27/6, since this corresponds to
the “just”-diffraction-limited case in the best-focus posi-
tion.

A. Computational Aspects
We start by verifying the rule of thumb developed in Ap-
pendix B that the number L of terms that should be in-
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Fig. 2. The real part (left-hand column), the imaginary part (central column), and the squared modulus or intensity (right-hand column)
of various radial functions V,,, have been displayed, each time for two values of the defocus parameter f (drawn curve, f = 0; dashed
curve, f = ). From top to bottom, the values of the indices (n, m) are (0, 0), (2, 2), (3, 1), and (4, 0).

cluded in Eq. (9) for accuracy 10~* should be of the order
of 3f. In Table 1, we present the quantity

max||V,o(L)[? — [V40(40)[?, (25)
[v|<30

with f = 27 as a function of L. Here V, ((L) is the right-
hand-side series in Eq. (9), truncated after L terms; we
take V, ((40) as a reference.

As to the computation of the coefficients v;; and the
Bessel functions J/,(v) that occur on the right-hand side
of Eq. (9), we have the following comments. For low val-
ues of [ and j, we can use the binomial function “choose &
from n,” since we have presented the v;; as a combination
of binomials. For the case in which v;; is needed for very

Table 1. Convergence of the Analytically
Calculated Image Intensity I(x,y) = |U(x, y)|?
As a Function of the Number of Terms L
Included in the Series Expansion for the

Amplitude U (Interval |v| < 30)

L Maximum Intensity Difference
10 50 x 10°

15 15 X 1072

20 84 x 107°

25 72 x 1078

30 51 x 107"

35 77 X 107
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large values of [ and j (we have not seen such large values
in our simulations), we may note that [see Eq. (10)]

B(l; a, b, c, d)

) a+l—-1\(b+1 -1\l -1 d+1
=1 -1 1-1 ¢ ;| 26
satisfies the recursion

B(l + 1;a, b, c, d)

(L + 1)+ a)l + b)
T Ul -l +d+ 1)

B(l;a, b,c,d). (27)

For the computation of the Bessel function, one can use
the recursion formulas as given in Ref. 6, expression
9.1.27 on p. 361 (when these are not already present in
the software environment of the user).

A further issue is the computation of the coefficients
B,m in the expansion

A(p, 0)expli®(p, )] = 2 BunR](p)cosmo. (28)

We are currently in the process of investigating methods
to do this accurately and efficiently; see, for instance, Ref.
7.

Consider the example of spherical aberration in Eqs.
(24). We have an analytical expression for U(x, y), in
this case in terms of the 7,,, of Egs. (15)—(17); this ex-
pression follows, in a similar fashion, the explicit expres-
sions in Ref. 4, Sec. 4, for coma and astigmatism [also see
Eqgs. (18) and (19)]. It holds that

©

(Biay )"
Ux, y) = 2 exp(ia4,o>kE

T Tapo, (29
-0 !

where the T4, are computed with defocus parameter
f — 6ay, instead of f. Using a simple least-squares-fit
method, where we included on the right-hand side of Eq.
(28) all terms involving RY,(p) with n < N, we found the
following result. The maximum intensity deviation for
values of f equal to —2m, 0, and +2, according to

max||U|* — |Uyl?, (30)
|v]<30

where the index N refers to the number of included terms
in Eq. (28), decreases to a level of 108 for N = 6 (the
maximum degree n is limited to 12). Hence we see a
quite satisfactory 1078 accuracy with a relatively modest
number of terms on the right-hand side of Eq. (28).

B. Comparison with Strictly Numerical Methods

In this subsection, we present the results of a comparison
of our method and two purely numerical methods to
evaluate U. For this comparison, we consider the ex-
ample in Eqgs. (24), and we use the analytical formula in
Eq. (29) or the Uy of expression (30) with N = 6 (the lat-
ter Uy can be identified with the true U for the present
purposes; see the end of Subsection 4.A). A comparison
purely in terms of CPU time is not feasible at this mo-
ment, since we are still investigating methods for the ac-
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curate and efficient determination of the 8,,,. Therefore
we focus here on different aspects of such a comparison.
There are the following advantages of our method:

1. The representation of U as a series in Eq. (7) with
the V,,,, as given in Egs. (8)—(10) yields a certain physical
interpretation as well as computational advantages (see
the beginning of Section 3).

2. The U obtained in our method is the complex am-
plitude of the response of the system when a true delta
function has been presented as input. Software pack-
ages normally deliver intensities and use finite-extent
“delta” functions.

3. Aside from the issue of how many terms should be
included in the series in Eq. (7), the computation of the
terms themselves can be done with a prescribed accuracy
by using the convergence analysis (the 3f rule) of Appen-
dix B. The source codes of a (commercial) package are
normally not readily available, whence a quality assess-
ment is more difficult here.

4. Our codes are relatively simple.

We have computed I(x, y) = |U(x, y)|?> with the aber-
ration term given by Egs. (24) and f = 0 and *27 by us-
ing a typical integration procedure based on a set of grid
points on a polar mesh in the pupil. With the number of
grid points N, equal to 10%, the intensity values differed
by 5 X 107° from the true ones, proving the limitation of
the general-purpose strictly numerical method to an accu-
racy on the order of 1/N,. Figure 3 illustrates this result
by means of the dashed curve [analytical result; see Eq.
(29)] and the curve with the open circles (strictly numeri-
cal method), which both apply to the true delta function
response. The maximum difference of approximately
10* between both curves is not visible in the figure.

A second comparison was made by using the software
package SOLID-C (Ref. 5), a frequently used simulation
tool for optical imaging in lithography. As noted in ad-
vantage 2 above, we have to consider an extended object,
and for this we take a rectangular contact hole with side
lengths of 300 nm in an opaque mask. Recalling our con-
ventions as given by Eqgs. (20), we have chosen a wave-
length A\ = 248 nm, NA = 0.20, the aberration A exp(i®)
is that of Eqgs. (24), and the defocus parameter equals
f=—2m, 0, 27. In our method, we must convolve the
complex impulse response U with the step function C that
assumes the value 1 in the contact hole and 0 outside it.
We have carried out this convolution by filling the contact
hole with m? points (m = 3, 5, 9, 15, 25, and 50). The
effect of using 625 instead of 225 points was noticeable
only at the 10~® intensity level. In Fig. 3, we have dis-
played cross sections of the intensity profiles |U ® C|2,
where C is the step function describing the contact hole, ®
denotes convolution, and the intensity is obtained by the
SOLID-C software package (all intensity levels have been
normalized to unity, the on-axis value for the in-focus,
aberration-free case). Inspection of the computed data
shows that the deviations between the analytically based
calculations and the SOLID-C results are of the order of
0.001-0.002; the curves in Fig. 3 show this difference
(drawn curves for the analytically based computation and
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Fig. 3. Cross sections of the image intensity for a delta-function object (curves labeled “Extended Nijboer—Zernike” and “Numerical
integration”) and for a rectangular contact hole in the object plane (curves labeled “Extended Nijboer—Zernike, 0.3 um hole” and
“SOLID-C, 0.3 um hole”). The aberration term is fourth-order spherical aberration, and the magnitude is given by the value of a4
(271/6), corresponding to the “just”-diffraction-limited case. The deviations between the analytical computation and the strictly numeri-
cal integration method (typically 5 X 107?) are not visible in the figure; the deviations between the data obtained for the contact hole

(typically 0.001-0.002) are especially visible for low values of the radial coordinate v.

open squares for the SOLID-C results). The deviation of
the SOLID-C results is most pronounced at low v values.

5. IMAGE FORMATION BY AN EXTENDED
OBJECT

In the case of image formation by an extended object, the
illumination mode of the object plays an important role.
For the general case of an object F(x, y,), illuminated in
a partially coherent way, the intensity distribution in the
image plane is given by

I(x,y) = ffff#(xo — %0, Y0 — YO F(xq, y0)F* (x5, ¥0)
X Ulx — x9,y — yo)U*(x — xg,y
— yodxodxodyodyy , (31)

where U(x,y) is the impulse response given by, e.g., rela-
tion (23) and wu(xq,yo) is the mutual coherence function
(see Ref. 1, Sec. 10.5.3). This function is derived from the
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source intensity function with the aid of the Zernike—van
Cittert theorem, according to

m(xo, ¥o)

ffl(p, q)expli[ pxy + iqyolidpdg

ffl(p, q)dpdg

where I(p, q) is the intensity distribution of the source,
observed on the exit pupil sphere of the imaging system,;
(xg, ¥o) are general normalized coordinates in the image
plane.

In the case of a standard illumination function with cir-
cular symmetry, the coherence factor o, which gives the
ratio between the source radius and the exit pupil radius,
is commonly used. In this case, the mutual coherence
function is given by the circularly symmetric function

2J,( av)

(32)

m(v) (33)

ov

We note that other commonly used illumination modes
such as quadrupole, annular, or decentered source con-
figurations lead to comparable analytical mutual coher-
ence functions wu(xg, yo).

We will now analyze some situations that are fre-
quently encountered in optical lithography, ranging from
coherently illuminated objects to the case of full incoher-
ence in the illumination. Note that in our analysis the
value of o is not limited to unity but can be extended to
values = 1.

A. Coherent Imaging

In high-resolution optical lithography, one often enhances
the imaged features by manipulating phase structures on
the mask. In the case of a fairly coherent imaging pro-
cess (0 < 1), phase-shifting features on the mask are
most effective; the fully coherent case with o = 0 is then
a fair approximation [the source is a delta function:
I(p, q) = 6(p, g)]l. The corresponding mutual coher-
ence function u(x,, y,) equals unity, and the image-plane
intensity is given by

I(x, y) = |F(xq, y0) ® Ulxg, yo)|* (34)

B. Incoherent Imaging

In optical lithography, the imaging of a so-called binary
mask requires a value of o ~ 1, and the imaging process
can be approximated by the fully incoherent case o = «,
where the source intensity equals unity up to infinity.
The mutual coherence function now becomes a delta func-
tion, i.e., u(xg, yo) = 8(xq, ¥o), and the image intensity
distribution is given by

I(.’)C, y) = |F(x0) y0)|2 ® |U(.’)C0, y0)|2' (35)

This results in an optical system that is now linear in in-
tensity.

C. Partially Coherent Imaging

We now simulate the lithographic imaging process by
means of a sequence of spatial delta functions that have
imaging properties similar to those of contact holes. The
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exact shape of small contact holes is not very important; it
is the area that determines their relative weight in the
imaging process. Therefore we approximate an array of
contact holes by an array of delta functions, each having a
complex amplitude:

F(xg, y0) = 2 A, 8(xg —a,,yo— by). (36)

Using Eq. (31), we obtain the image-space intensity dis-
tribution

I(x,y) = >, AAbu(a, — ay, b, — b,)

XU@x = a,,y — bn)U*(x QY — bm)
(37

Here the image formation is essentially a nonlinear pro-
cess, and it cannot be written in terms of a convolution.

In Fig. 4, we present the results of applying Eq. (37) to
the configuration of two closely spaced contact holes with
a separation of 0.2 um in an opaque mask. The aerial
image intensity is depicted according to the analytical ap-
proach. One contact hole is considered to introduce a
phase shift of 7. For this reason, the intensity exactly
midway between the two holes is zero in the coherent
case. As the coherence of the imaging is decreased ( o in-
creases), the interference term weighted by w(2a, 0)
gradually vanishes and the individual intensity profiles
corresponding to each object merge. In the figure, we
have also depicted the intensity profiles produced by the
software package SOLID-C, which here used finite-size
contact holes as the input pattern (circular holes with a
diameter of 100 nm). From Fig. 4, one concludes that the
approximation of the contact holes by means of a math-
ematical delta function is fully justified here; in each fig-
ure, the deviations between the analytical and SOLID-C
curves do not exceed the typical value of 0.01. The ad-
vantage of the analytical approach is the clear relation-
ship between the interfering terms that generate the final
image intensity pattern. During the design process of,
e.g., phase- and amplitude-assisted masks, a valuable in-
sight is obtained into the relationship between the modu-
lation depth and steepness of the image intensity pattern
and the parameter choices for the mask transmission
function. The extension to larger arrays of contact holes
and the inclusion of defocus and aberrations are straight-
forward. In each case, starting with the fully coherent
case, the interference effects can be studied by using the
analytical expression for the complex amplitude. The be-
havior in the partially coherent case is then obtained as
an intermediate situation between the fully coherent and
the incoherent case.

6. IMPULSE RESPONSE IN THE PRESENCE
OF HIGH-FREQUENCY ABERRATION
TERMS

In this section, we present a computational result that is
related to a high-frequency wave-front perturbation. It
frequently occurs in practice that the wave-front aberra-
tion cannot be adequately described by the standard se-
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Fig. 4. Aerial image intensity calculation due to a mask with two contact holes (diameter 0.1 um, spacing 0.2 um). Solid curves:
calculated by using Egs. (9) and (10) for the functions V,,,, ; dashed curves: SOLID-C package, A = 0.248 um, NA = 0.6, in-focus situ-
ation. The typical difference in normalized intensity between the two resulting curves amounts to 0.01.

ries of low-frequency Zernike polynomials.® These
Zernike polynomials are capable of describing the wave
fronts emerging from an optical system toward the axial
and off-axis field points. Alternatively, if an optical sys-
tem suffers from a lack of rotational symmetry due to
minute tilting and centering errors of the constitutive el-
ements, the wave front converging to an image point on
axis shows small basic residual aberration terms that can
also be easily represented by means of lower-order
Zernike coefficients. On the other hand, manufacturing
imperfections of the optical surfaces, spherical or aspheri-
cal, may turn up in the wave front emerging from the op-
tical system as higher-frequency components in the wave-
front expansion that are outside the scope of the standard
series of Zernike polynomials.” These high-frequency
wave-front perturbations also constitute a serious prob-
lem in the frequently used numerical approach for the
calculation of the diffraction image that is based on the
FFT method. Quickly varying patterns in the pupil func-
tion of the optical system complicate the sampling of the
pupil function. Moreover, the extent of the diffraction
image in the image plane is enlarged by the high-
frequency content in the pupil function, and this requires
many more sampling points in the image plane. In prac-
tice, the number of required sampling points in pupil and
image plane may exceed practical values such as 2% or,
ultimately, 2'? in one dimension.

When using our approach based on the expansion of the
complex pupil function in terms of Zernike polynomials,
we exploit the simple relationship of Eq. (5) to translate

30F T T T =

20

_20} ]
30k I . . . L 4
-30 -20 -10 0 10 20 30

Fig. 5. Image-plane intensity distribution in the case of a set of
high-frequency Zernike coefficients that represent the result of,
e.g., manufacturing errors in the wave front exiting from an op-
tical system. A set of coefficients in the range g = 6,...,12 has
been introduced (n ranges from 6 to 24, m from 0 to 12). The
central maximum has been truncated in the plot. Note that the
diffracted intensity is concentrated within a circle given by
v =n + 3, the extent of the highest-order Bessel function
present in the image-plane intensity function. The numerals
representing the intensity in the contour plot are a measure of
the relative intensity and have to be multiplied by 1072.
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the presence of a Zernike polynomial of radial order n into
an image-plane amplitude distribution given by a func-
tion of the type J,,1(v)/v (no defocusing). In the defo-
cused case, the functions V,,, from relation (23) are
needed.

In Fig. 5, we present a calculated intensity pattern in
the presence of a set of high-frequency Zernike coeffi-
cients up to order n = 25, which, in total, produce an rms
wave-front aberration of 1/(27) = 0.159\. The low-
intensity part of the calculated pattern outside the cen-
tral lobe resembles a speckle pattern; this can be ex-
plained by the uncorrelated nature of the high-order
Zernike coefficients «,,, of each polynomial contribution
apmZi(p, 0) = a,,,R(p)cosmo.

7. CONCLUSION

We have implemented our extended Nijboer—Zernike
analysis for the calculation of the diffraction point-spread
function in the case of both small and large aberration
values. Throughout the analysis, the defocusing effect is
taken as an independent parameter that can be incre-
mented to several focal depths without any convergence
problems. The number of required terms in the series
expansion for the complex amplitude in the image space
can be estimated by means of some simple expressions
that comprise the value of the aberration terms or the de-
focusing parameter. In practice, the typical number L of
terms needed amounts to 25, yielding an accuracy of 10°
in the image-plane intensity, while an extension of L to 40
brings us below the 107! value. Various comparisons
with numerically based integration schemes have been
carried out, showing that an accuracy in intensity in the
region 107°-10"% is typical for these methods. This
demonstrates that our analytical approach also has the
capability of serving as a reference for these numerical
methods.

The application of the analysis to the impulse response
of an optical system leads to effective calculation schemes
in which one can fully exploit the separation of radial and
azimuthal dependence in the expressions. We can easily
extend our analysis to the case where the wave-front ab-
erration is accompanied by a nonuniform amplitude dis-
tribution in the exit pupil of the optical system. An ex-
tension to the vectorial treatment of diffraction
phenomena at high values of the numerical aperture has
not been carried out so far, but the basic approach can
equally be applied in this case, the main difference being
the number of diffraction integrals to be evaluated (six in-
stead of one).

We have studied not only the image of a point object
but also the imaging of extended objects that are illumi-
nated in a general, partially coherent manner. The ana-
lytical expressions permit a separate inspection of the
various terms contributing to the complex image ampli-
tude. This possibility can be exploited for the effective
design of more complicated object structures, e.g., phase-
and amplitude-shifting masks in optical microlithogra-
phy. Moreover, we think that our method presents a se-
rious advantage when dealing with high-frequency aber-
ration terms. The sampling problem in pupil and image
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plane encountered in, e.g., the FFT approach is absent
when using our analytical expressions.

APPENDIX A: DEFOCUSING TERM AS A
FUNCTION OF NUMERICAL APERTURE

In Fig. 6, a spherical wave front through P converges to-
ward the real image point My. The defocused image is
captured in a plane through M;, and the axial defocus
distance is z. The wave-front deviation W, as a function
of defocus is given by the optical distance PQ. To calcu-
late this distance, we apply the cosine rule in triangle
P M lM 9

(We+ Ry)? + 2% + 2(W, + Ry)zcosp = R}. (A1)

Using the property that, for all realistic situations, the
wave-front deviation Wy is much smaller than R;, we ob-
tain

W= 2(1 — cosp) = 2[1 — (1 — sin’p)"?]. (A2)

The normalized coordinate on the exit pupil sphere
through O and P is given by the ratio of the sine of a gen-
eral ray and the sine of the marginal ray, p = (sinp)/s,
where s, = sinp, = NA, and the wave-front deviation W,
now becomes

sin®p sin* p sin® p
+

Wf: V4 +
2 8 16
1, 2 Lo 4 1 6 6
= §zsop + gzsop + 1—6230/3 + . (A3)

The complete phase term for defocus is obtained by mul-
tiplying W, with the wave number & = 2a/\.

Equation (A3) shows that for larger values of NA = s,
at the image side, the defocusing term resulting from the
wave-front deviation W, is not well approximated by
%kzs%pz. A considerable enhancement is obtained by re-
placing 1 — (1-sin®p)"? in Eq. (A2) by its least-squares
quadratic approximation b, + b1p%. This then leads to
the optimal second-order approximation

and a corresponding approximation kz(lso + 131 p?) for the
defocusing term. It thus turns out that we obtain aver-

© R

Fig. 6. Wave-front deviation P in the case of defocusing. The
spherical wave (radius R,, center of curvature M,) is projected
onto a defocused image plane through M; and perpendicular to
the axis OM,. The aperture angle is denoted by p. The defo-
cus distance z has been heavily exaggerated in the figure.
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age approximation errors having at s, = 0.82 the same
value as that which we would obtain for s; = 0.60 when
we approximate 1 — (1—sin®p)¥? by % s%pz.

A further extension of this methodology, allowing even
higher values of s, is to develop the remaining approxi-
mation error 1 — (1—sin®p)¥2 — b, — b,p? in a series
involving the radial Zernike polynomials Rgn(p) with
n = 2,3,... and to incorporate this error into the aberra-
tion phase ®. One has, in fact, with p = (sinp)/s, as
above,

1 ” 1 1 —co\"t
1_'2 1/2:__1_
(1= sin"p) 5 CO)ZO 2n — 111 + ¢,
1 1_con+1 .
- RY.(p), (A5
27 + 311 + ¢ 2n(p) )

where ¢q = cospy. The terms with n = 3, 4,... on the
right-hand side are sufficiently small for values of
NA = s, as large as 0.90 that they can be considered
small aberrations (|f| as large as 2m).

Although the correct representation of the defocus term
at high values of NA is important, it is not a sufficient ex-
tension to correctly describe the impulse response in this
regime. The radiometric effects within the high-NA
beam have to be taken into account. By adopting a
complex-valued parameter f, we can accommodate these
radiometric amplitude variations on the pupil sphere. Of
course, in a final step, the vectorial treatment of wave
propagation as described in Ref. 2 has to be used.

APPENDIX B: ANALYSIS OF V,,, AND T,,,

1. Bounds on V,, and T,
The following hold for all £, v and all allowed n, m:

M, (v) M, (v)
|Vl < ﬁ, [T < g (B1)
where
M, (v) = max|J,,(u)] < 1. (B2)

O=u=<v

The bounds in relations (B1) follow easily from the inte-
gral representations in Egs. (8) and (15), where, for the
first bound, we also use that

1
f PR (p)|*dp = (B3)
0

2(n + 1)’
together with the Cauchy—Schwarz inequality.

2. Truncation of Infinite Series

We consider the series representations (9) and (16) of V,,,
and T,,, for the range of f, v, n, m, and (p, q) indicated
in relations (12). The main result is as follows. In the
relevant range, it is sufficient to include the first 25 terms
of the infinite series over [ to guarantee absolute accuracy
of order 107%. Moreover, the truncation errors are in all
cases of the same order of magnitude as or smaller than
the truncation error for the series
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Ji(v)

Voo = Too = explif ) >, (—2if )'™} (B4)
=1

ol
Let us first consider the convergence behavior of the se-
ries in Eq. (B4). It follows from the basic properties of
the Bessel functions, such as expression 9.1.30 in Ref. 6,
that v~%J,(v) is positive and decreasing in v e [0,20]

when [ = 20. Hence the series in Eq. (B4) exhibits
worst-case convergence behavior at v = 0, where we have

J,(v) 27t
== (B5)

v! b_o U

so that
R O
Voolv = 0) = Eexp(zf)E — (B6)
=1 !

The convergence analysis of the series in Eq. (B6) can be
given by using Stirling’s formula for /!. Thus the terms
(—if )'"Y1! have modulus of order less than unity from
[ = |ef] onward. For f = 27 we have |ef| = 17, and
(2m)!7Y1! decreases from 6 X 107 at [ =20 to 9
X 1077 at I = 25. As a rule of thumb, we get that the
number L of terms to be included should be somewhat
larger than ef; normally, L = 3f suffices.

We next compare the convergence behavior for the gen-
eral cases V,,,, , T,,,, with that of the standard series V,
Too.- Here it is enough to restrict attention to V,,,.
This is possible, since one gets from Egs. (10) and (17)
that

Ulog[ @ -1t (g +))! '
= . ’ .] = 0"")p’
| qlp! U—-1-p+))!
(B7)

and the right-hand side of Eq. (B7) =1 for all [, p, q that
satisfyl — 1 — p = gq. We shall thus consider the quan-
tity [see Eqgs. (9) and (B4)]

tlj

L7 0 s +9j(0)

s Jj=0,...,p, (B8
Jy(v)

Q=

and our aim is to bound 37_,@;; .
Noting that [ is large compared with m, j, q, we have
from Eq. (10) and the definitions of p and ¢ that

(I+m+ ) -1+ ) (p)(q +J~)

171, = - - :
U+qg+ NI —-1+5—p)\J p

~ exp[—(q + l)p/l](g)(q;J). (B9)

Furthermore, there is the inequality

J(v) v/s
< < ,
Joi(v) 1+ [1 - (v/s)%]"?

0<v =<s.
(B10)

The latter inequality follows from Ref. 6, second formula
in expression 9.1.73, for the continued-fraction expansion
of J (v)/J,_1(v), combined with the continued-fraction
expansion
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1 1 172 c ¢ ¢
——|l-=¢ = . 0<c
2 1-1—-1-

A
A

>

(B11)
Applying relation (B10) repeatedly, we thus get that

J (V)
< TR pmegj

, O0sv=<l! (B12
Jy(v)

where

5 v/(l + 1)

= . B13
1+ {1 - [v/(l + 1)]2}2 (B13)

Combining relations (B9) and (B12) and using m = q

— p, we get

p » .
+ A
E Q <exp[—(q + l)p/l]E (p)(q J)bqum].
Jj=0 =0 \J p
(B14)

The maximum over p = 0,...,q of the series on the
right-hand side of relation (B14) occurs at p = ¢. A nu-
merical inspection of the quantity

q .
expl—(q + 1)q/l]1>, (j’)(q ;J)b2j (B15)
Jj=0

for the worst case [ = 24, v = 20 (so that b = 1/2), and
p=4q = 0,1,...,6 yields a bound of order 10 for the left-
hand side of relation (B14). This is sufficient for our pur-
poses.

We have observed numerically that the absolute-
convergence behavior of the series for V,,,, is actually bet-
ter than what one might expect from the foregoing analy-
sis. The reason for this is that some of the estimates [in
particular, relation (B12)] are crude, while the various
worst cases do not occur simultaneously.

We may note that the truncation analysis can be ex-
tended to the cases of different ranges for the various pa-
rameters and variables. This is based on the observation
that

q\lga +J\, o 2
(J.)( . )bj,pqu”b)

(b + V1 + b2)2att
=~ 2(mbq) 21 + b2 (B16)

q

Jj=0
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where P, is the Legendre polynomial of degree g, with
asymptotic behavior as given in Ref. 10, theorem 8.2.1.
Accordingly, one finds that for large [ the worst-case quan-
tity in expression (B15) behaves like exp[—(q + 1/2)(q
+ 1/2 — v)/1].
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