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Quantum-chemical computational methods are benchmarked for their ability to describe conical in-
tersections in a series of organic molecules and models of biological chromophores. Reference results
for the geometries, relative energies, and branching planes of conical intersections are obtained us-
ing ab initio multireference configuration interaction with single and double excitations (MRCISD).
They are compared with the results from more approximate methods, namely, the state-interaction
state-averaged restricted ensemble-referenced Kohn-Sham method, spin-flip time-dependent den-
sity functional theory, and a semiempirical MRCISD approach using an orthogonalization-corrected
model. It is demonstrated that these approximate methods reproduce the ab initio reference data very
well, with root-mean-square deviations in the optimized geometries of the order of 0.1 Å or less and
with reasonable agreement in the computed relative energies. A detailed analysis of the branching
plane vectors shows that all currently applied methods yield similar nuclear displacements for escap-
ing the strong non-adiabatic coupling region near the conical intersections. Our comparisons support
the use of the tested quantum-chemical methods for modeling the photochemistry of large organic
and biological systems. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896372]

I. INTRODUCTION

It is widely recognized that conical intersections (CIs)
are among the most important mechanistic features in pho-
tochemistry and photobiology.1–5 They serve as efficient fun-
nels for non-adiabatic relaxation of electronically excited
states and thus often govern their lifetimes and the branch-
ing ratio of photoproducts.4–7 The topography of CIs and
the shapes of the corresponding intersecting potential energy
surfaces (PESs) are important characteristics that largely de-
termine the non-adiabatic dynamics.7–9 The most important
descriptors in this regard are the so-called branching plane
vectors,8 i.e., the atomic displacements along which the de-
generacy of the electronic states at a CI is lifted. These vec-
tors span the branching plane (BP) which comprises the pos-
sible directions for exiting the strong non-adiabatic coupling
regime at a CI.6, 7

Conceptually, multireference quantum-chemical meth-
ods of ab initio wavefunction theory are best suited to inves-
tigate CIs and non-adiabatic dynamics in molecules.10 Meth-
ods such as complete-active-space second-order perturbation
theory (CASPT2)11 and multireference configuration interac-
tion with single and double excitations (MRCISD or MRCI,
for brevity)12 are capable of providing accurate computational
results for small and mid-size molecules. With the growing
interest in photobiology and in the photochemistry of large
organic and inorganic compounds, for example, light-driven

a)Electronic mail: mike.filatov@gmail.com

artificial molecular machines,13 there is a growing demand
for simple yet sufficiently accurate computational methods for
describing CIs and their BPs.

In recent years, there has been considerable progress in
the development of such computational methods. In the do-
main of density functional theory (DFT), the use of the spin-
flip (SF) ansatz in the context of time-dependent DFT (SF-
TDDFT)14–17 allows the treatment of intersections between
ground- and excited-state PESs.18, 19 An alternative approach
based on ensemble DFT is the state-interaction state-averaged
restricted ensemble-referenced Kohn-Sham (SI-SA-REKS)
method, which has also been shown to be suited for describing
CIs in organic molecules.20 Both these DFT-based methods
have been applied to optimize CIs and to determine BPs.18–23

Semiempirical quantum-chemical methods24, 25 have become
increasingly popular for investigating the non-adiabatic
dynamics of excited states, in particular, the OM2/MRCI
approach with an orthogonalization-corrected model Hamil-
tonian (OM2).25, 26 Taking advantage of its very low compu-
tational demands, numerous on-the-fly non-adiabatic molec-
ular dynamics (MD) simulations have been performed with
OM2/MRCI for electronically excited organic molecules.27–44

Apart from a case study on adenine,45 we are not aware
of any systematic investigation on the ability of approximate
quantum-chemical methods to properly describe the CIs and
BPs of larger organic molecules (despite the growing num-
ber of such applications). This is the topic of the present
article: we compare the results obtained from SF-TDDFT,
SI-SA-REKS, and OM2/MRCI calculations with those from

0021-9606/2014/141(12)/124122/16/$30.00 © 2014 AIP Publishing LLC141, 124122-1
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high-level ab initio MRCISD calculations covering a repre-
sentative set of eight organic compounds with 12 CIs. In
Sec. II, we briefly describe some key properties of CIs as
well as the computational methods employed in this study. In
Sec. III, we specify the corresponding computational details.
In Sec. IV, we discuss the results obtained for the CIs, fo-
cusing on their geometries, relative energies, and branch-
ing planes. Our motivation is to provide guidance in se-
lecting suitable computational approaches for non-adiabatic
simulations of excited-state dynamics in photochemistry and
photobiology.

II. COMPUTATIONAL METHODOLOGY

Here we review the salient features of conical intersec-
tions as well as the computational methods used in this work.
For more detail, we refer the readers to the original publica-
tions cited below.

A. Conical intersections and branching plane vectors

Conical intersections are manifolds of molecular geome-
tries at which the Born-Oppenheimer potential energy sur-
faces of two (or more) electronic states that belong to the same
space and spin symmetry species become degenerate.46–48

Two adiabatic electronic states representing the solutions of
the secular problem

(

Hmm Hmn

Hnm Hnn

)(

�m

�n

)

=
(

Em 0

0 En

)(

�m

�n

)

(1)

become degenerate if the following conditions are
fulfilled:3, 8, 49

Hmm − Hnn = Em − En = 0, (2a)

Hmn = 〈m|Ĥ |n〉 = 〈n|Ĥ |m〉 = 0, (2b)

where Ĥ is the electronic Hamiltonian in Born-Oppenheimer
approximation, and its matrix elements Hmn are formulated in
terms of (in general, arbitrary) diabatic orthogonal states �m

and �n. As these conditions can be satisfied in the space of
N−2 internal molecular coordinates,46–48 CIs occur in poly-
atomic molecules with three or more atoms. In the space of
all nuclear coordinates, the degeneracy between the adiabatic
electronic states �m and �n is lifted along two directions
defined by the gradients of the conditions in Eqs. (2a) and
(2b),3, 8, 46–51

x1 = ∇Q(Hmm − Hnn), (3a)

x2 = ∇QHmn. (3b)

In Eq. (3), ∇Q denotes to differentiation with respect to
the nuclear coordinates. In the vicinity of a crossing point,
the adiabatic electronic states depend linearly on the displace-
ment along the x1 and x2 vectors, and therefore the PESs near
a CI have the topography of a double cone.8, 46

The x1 and x2 vectors define the so-called branching
plane of the conical intersection, which spans all the nuclear
displacements that lift the degeneracy between the adiabatic
electronic states.3, 8, 49–51 For the mechanism of photochem-
ical reactions, the branching plane spanned by x1 and x2 de-
fines all possible directions of exiting the strong non-adiabatic
coupling region and then propagating on one of the inter-
secting PES,4, 5, 50 thus playing a role similar to the transition
vector in the transition state theory of ground-state chemical
reactions.

In Eq. (3), the branching plane vectors are defined
via the diabatic states �m and �n. Alternatively, the BP
vectors can be also defined via the adiabatic states, see
Eq. (4),

x
′
1 = ∇Q(Em − En), (4a)

x
′
2 = 〈�m|∇QĤ |�n〉. (4b)

As first demonstrated by Atchity et al.,8 the orientation of the
BP vectors (4) may not coincide with the x1 and x2 vectors
of Eq. (3), even when obtained with the same computational
method. The BP vectors (4) can be changed by a rigid ro-
tation through an arbitrary angle within the branching plane
without changing the plane itself. Therefore, although the BP
remains invariant under such a transformation, it is difficult
to directly compare the individual BP vectors obtained from
different computational methods.

To simplify a visual comparison between the BP vectors
produced by the different methods employed presently, the
normalized BP vectors can be subjected to a similarity trans-
formation SRS

−1, where R is a two-dimensional (2D) orthog-
onal rotation matrix and S is a 2D shear transformation; the
latter is needed because the BP vectors are not necessarily
orthogonal. The angle of the 2D rotation is determined from
the condition to maximize the projection of the vector a

′ (see
Figure 1) onto the vector a, when the two sets of BP vectors
{a,b} and {a

′,b′} are obtained using two different computa-
tional methods labeled I and J. The shear transformation is
set up by the constraint of keeping the inner product (a · b)
between the BP vectors the same before and after the transfor-
mation. By applying the above transformation, the BP vector
pairs obtained from different methods are reoriented such that
the x1 vectors are aligned.

To facilitate a quantitative comparison between the BP
vectors from different methods, we use visual comparisons
and the following measures of consistency between the
branching planes: (1) projections of the BP vectors obtained
using method I onto the whole branching plane obtained by
method J, and (2) projection of the rectangle enveloped by
the BP vectors from method I onto that from method J, see
Figure 1.

For an arbitrary unit vector a
′, the norm of a projection

p(a′) onto a plane spanned by (generally non-orthogonal) unit
vectors a and b, see Figure 1, is given by

|p(a′)| =
√

c2 + d2 + 2cd(a · b), (5)
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FIG. 1. Projection of a plane defined by a (a′,b′) vector pair onto an (a,b)
plane.

where c and d are the coefficients in the decomposition of
p(a′) in terms of the a and b vectors

c = ((a′ · a) − (a′ · b)(a · b))

1 − (a · b)2
, (6a)

d =
(

(a′ · b) − (a′ · a)(a · b)
)

1 − (a · b)2
. (6b)

For orthogonal vectors a and b, Eq. (6) simplifies to the usual
scalar product. Note, however, that the BP vectors defined in
Eqs. (3) and (4) are not required to be orthogonal.

For a plane BPI (defined by two unit vectors, a
′ and b

′),
the projection onto the plane BPJ (defined by the vectors a

and b) can be defined via the area of a rectangle enveloped by
the projections p(a′) and p(b′) of the individual vectors. The
area of a rectangle enveloped by a

′ and b
′ on the plane BPI is

given by

sI =
√

1 − (a′ · b′)2 (7)

and the area of its projection onto the plane BPJ is given by

pJ (sI ) =
(

|p(a′)|2 |p(b′)|2

− |p(a′)| |p(b′)| (p(a′) · p(b′))2

)1/2

. (8)

As the unit vectors a
′ and b

′ are not, in general, mutually or-
thogonal, the area sI is not equal to unity. Therefore, instead
of pJ(sI), we use the ratio rIJ = pJ(sI)/sI as a measure of paral-
lelity between the planes BPI and BPJ. When the two vector
pairs (a,b) and (a′,b′) are equivalent (in the sense that the two
planes are parallel and the vector pairs may only be rigidly
rotated within the plane with respect to one another), the ratio
rIJ is equal to unity, which is its maximum attainable value.
The same is also true for rJI defined in analogy to rIJ. Obvi-
ously, the minimum possible value of rIJ (and rJI) is zero, for
two mutually orthogonal planes. As the BP-onto-BP projec-
tion can be characterized by a single number, it is the mea-
sure that we use in the remainder of the paper to compare the

branching planes produced by different methods. The projec-
tions of the individual BP vectors are documented in the sup-
plementary material.52

Optimizations of minimum-energy conical intersections
(MECIs) may result in different molecular orientations when
using different quantum-chemical methods. Therefore, the
optimized MECI geometries were aligned using the Kabsch
algorithm as implemented in the VMD suite of programs.53, 54

As discussed below in more detail, the MECI geometries ob-
tained from different quantum-chemical methods are quite
similar to each other. Hence, it can be expected that the ef-
fect of geometrical differences on the BP projections rIJ is
minimal and that differences between the BPs produced by
different quantum-chemical methods will thus mainly origi-
nate from the different shape of the intersecting PESs near
the MECI points.

B. REKS and SA-REKS

A complete description of the REKS method can be
found in the original literature, see Refs. 55–57, and thus only
its most relevant features will be repeated here. The REKS
method employs an ensemble representation for the KS refer-
ence state58, 59 to describe non-dynamic electron correlation in
the context of KS DFT.60–63 The ensemble representation for
the density leads to fractional occupation numbers (FONs) of
a few frontier KS orbitals.60, 61, 63, 64 The REKS ground-state
energy is minimized with respect to the KS orbitals and the
FONs of the frontier active orbitals. The currently employed
version of the REKS method treats two fractionally occupied
frontier orbitals, as, for example, in a diradical state resulting
from (near) degeneracy of the bonding π and the anti-bonding
π* frontier orbitals of an alkene near a ca. 90◦ twist around
the double bond.65 By analogy with the CASSCF method, the
current version of REKS is dubbed REKS(2,2) to indicate that
fractional occupations are considered for two active orbitals
which contain a total of two electrons.

Drawing an analogy with wavefunction theory,
REKS(2,2) describes a strongly correlated system for
which a model two-configuration wavefunction can be
introduced,65

�0 =
√

na

2

∣

∣. . . φaφ̄a

〉

−
√

nb

2

∣

∣. . . φbφ̄b

〉

, (9)

where ϕa and ϕb are the frontier (active) orbitals with FONs
na and nb, and the unbarred and barred orbitals are occupied
with spin-up and spin-down electrons, respectively. For such
a system, the lowest singlet excited state can be approximated
by an open-shell singlet wavefunction (10),65

�1 = 1√
2

∣

∣. . . φaφ̄b

〉

+ 1√
2

∣

∣. . . φbφ̄a

〉

. (10)

In the framework of DFT, this latter state can be accessed by
the spin-restricted open-shell KS (ROKS) method.66–68 How-
ever, direct application of the variational principle to an indi-
vidual excited state (which possesses the same spin and space
symmetry as the ground state) is not formally permitted in
DFT69 and may lead to artifacts in practical calculations.70

With the use of the ensemble formalism,71 this limitation is
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bypassed by applying the variational principle to an ensemble
of the ground state (described by REKS(2,2)) and the excited
state (described by ROKS) which leads to the state-averaged
(SA) REKS method.72 In SA-REKS, the energy of an ensem-
ble of states

ESA−REKS = C0E
REKS(2,2)
0 + C1E

ROKS
1 , C0 + C1 = 1

(11)
is minimized with respect to the KS orbitals, which are com-
mon for both states, and with respect to the FONs of the ac-
tive orbitals in the REKS(2,2) treatment. In Eq. (11), equal
weighting factors C0 and C1 are employed. Having com-
pleted the KS orbital optimization, the individual energies,
E

REKS(2,2)
0 and EROKS

1 , are calculated using these KS or-
bitals.

The SA-REKS method describes the ground state (S0)
and the lowest singlet excited (S1) state of a homosymmet-
ric biradical.65 In a heterosymmetric biradical, generated ei-
ther by chemical substitution or by an asymmetric geometric
distortion of a homosymmetric biradical, the states given in
Eqs. (9) and (10) can mix with each other. This mixing be-
comes important in the vicinity of conical intersections.73 It
can be taken into account in the SI-SA-REKS method20, 74 via
a simple 2 × 2 secular equation, as in Eq. (1), in which the
diagonal matrix elements are given by the energies E

REKS(2,2)
0

and EROKS
1 , while the off-diagonal matrix element is cal-

culated using the Lagrange multiplier Wab between the SA-
REKS active orbitals,

H01 = (
√

na − √
nb)Wab. (12)

Equation (12) has been derived20, 74 using the Slater-
Condon rules and the variational condition for the SA-REKS
orbitals.55, 67, 68 Provided that equal weighting factors are em-
ployed in Eq. (11), the SA-REKS orbitals remain unaffected
by the application of the state interaction procedure.20, 74 It is
also worth noting that the SI-SA-REKS energy expression can
be derived using the adiabatic connection argument. The in-
terested reader may refer to the recent work of Fromager and
Franck,75 in which an energy expression similar to the one
used in SI-SA-REKS was obtained by constructing a gener-
alized adiabatic connection path between non-interacting and
fully interacting ensembles of the ground and excited states
of the type (9) and (10); cf. Sec. III in Ref. 75.

In the framework of the SI-SA-REKS method, a CI oc-
curs when the energies E

REKS(2,2)
0 and EROKS

1 become equal
to one another and the coupling matrix element (12) vanishes.
Thus, the BP vectors, x1 and x2, can be formally defined
by Eq. (3), where Hmm and Hnn are replaced by E

REKS(2,2)
0

and EROKS
1 , respectively, and Hmn is replaced by H01 from

Eq. (12). Currently, analytic derivatives of the SI-SA-REKS
energies with respect to the nuclear coordinates are not yet
implemented and hence differentiation has to be carried out
numerically. The SI-SA-REKS method has been applied to
the calculation of conical intersections in a number of organic
molecules and models of biological chromophores and has
been found to be accurate and reliable in reproducing the ener-
getic and geometric characteristics of conical intersections.20

C. SF-TDDFT

Spin-flip time-dependent density-functional theory cou-
ples electronic configurations arising from excitation opera-
tors with �Ms = ±1, unlike the usual formulation of TDDFT,
in which only spin-preserving excitation operators with �Ms

= 0 are allowed. Several formulations of SF-TDDFT have
appeared in the literature.14–17 The SF-TDDFT scheme of
Ziegler and Wang relies on the non-collinear spin DFT frame-
work, which operates with KS spinors, rather than spin-free
orbitals, and where both α and β spin components

ψ(�r) =
[

φα(�r)

φβ(�r)

]

(13)

are present such that the exchange-correlation density func-
tional Exc[ραα , ρββ] depends on the diagonal part of a 2 × 2
density matrix

ρ(�r) =
[

ραα(�r) ραβ (�r)

ρβα(�r) ρββ (�r)

]

. (14)

By performing a change of variables of the type

ρ+(�r) = 1

2
(ρ(�r) + s(�r)), (15)

ρ−(�r) = 1

2
(ρ(�r) − s(�r)) , (16)

one can define the exchange correlation functional as Exc[ρ+,
ρ−], where the total density is ρ(�r) = ραα(�r) + ρββ (�r) and the
square of magnetization is

s2(�r) = (ραα(�r) − ρββ (�r))2 + 2((ραβ (�r))2 + (ρβα(�r))2).
(17)

The collinear limit can then be recovered by setting the mag-
netization to the spin-density limit, s → ραα − ρββ . In this
limit, ρ+/ − → ρα/β , thus recovering the usual functional
form.

In the non-collinear framework, the exchange-correlation
kernel of TDDFT is generalized to include both spin-
preserving and spin-flip excitations,

f̂xc[ρ, s] =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

f̂ αααα
xc f̂

ααββ
xc f̂

αααβ
xc f̂

ααβα
xc

f̂
ββαα
xc f̂

ββββ
xc f̂

ββαβ
xc f̂

βββα
xc

f̂
αβαα
xc f̂

αβββ
xc f̂

αβαβ
xc f̂

αββα
xc

f̂
βααα
xc f̂

βαββ
xc f̂

βααβ
xc f̂

βαβα
xc

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (18)

By taking the collinear limit, the surviving terms are

f̂xc[ρ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

f̂ αα
xc f̂

αβ
xc 0̂ 0

f̂
βα
xc f̂

ββ
xc 0 0

0 0 v̂α
xc−v̂

β
xc

ρ̂α−ρ̂β 0

0 0 0 v̂α
xc−v̂

β
xc

ρ̂α−ρ̂β

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (19)

In this block-diagonal kernel, one can easily recognize the
2 × 2 spin-preserving excitation block, corresponding to the
usual TDDFT excitations, and the spin-flip block.

The configurations arising from spin-flip αβ and βα ex-
citations are decoupled. Starting from an open-shell triplet

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  192.108.70.170 On: Thu, 09 Jun 2016

13:13:56



124122-5 Nikiforov et al. J. Chem. Phys. 141, 124122 (2014)

FIG. 2. Spin-flip excitations from an open-shell triplet reference.

reference in a two-electron two-orbital model, this gives
rise to two closed-shell configurations (double excitation and
ground state) and two open-shell configurations which can
be coupled to singlet and triplet configurations (see Fig. 2).
Outside this model, open-shell spin-uncompensated configu-
rations are present so that spin-contaminated excitation en-
ergies are obtained, which can be partially purified by an a

posteriori correction scheme.76

The SF-TDDFT scheme has several advantages over
regular TDDFT, especially when describing a conical in-
tersection region involving the ground state. First, the ref-
erence state is a triplet, which satisfies more easily the
non-interacting pure state v-representability requirement of
KS DFT. Second, SF-TDDFT includes some extra double-
excitation character in the excited states due to the configu-
ration arising from the a

†
β iα excitation. The coupling of this

configuration with the ground-state configuration (i†βaα ex-
citation) can give the correct dimensionality of the conical
intersection region. This is a clear advantage over the usual
spin-preserving TDDFT, in which the ground state and the ex-
cited states are decoupled.77 Recently, Truhlar and co-workers
have introduced an ad hoc coupling term between the ground
and the singly excited configurations in the context of spin-
preserving TDDFT, thus recovering the correct dimensional-
ity of the CI seam.78 However, the presence of this coupling
term violates Brillouin’s theorem for the KS orbitals used in
the configuration interaction with single excitations, which is
employed on top of the usual TDDFT formalism.78 The cou-
pling introduced in this way is in general too small, because it
does not recover the effects of doubly excited configurations
that are responsible for the interaction between the ground and
excited configurations in the context of the exact theory.79 SF-
TDDFT is able to correctly introduce the ground and excited
state coupling, albeit only within the restricted configuration
space represented in Fig. 2. In general, most CIs are well rep-
resented by SF-TDDFT, but more complicated intersections
are described only approximately.18 One of the most impor-
tant problems is that SF-TDDFT states are frequently spin-
mixed. In order to correct this problem, an a posteriori spin
purification scheme has been proposed.76 However, when us-

ing this scheme, the correct dimensionality of the CI seam is
lost.23

Within the SF-TDDFT approach, conical intersections
can be located using the branching space update method of
Maeda, Ohno, and Morokuma,80 which employs a projected
gradient algorithm for optimizing the branching plane. The
x1-vector is calculated by Eq. (4a) and the x2-vector is ap-
proximated by an iterative update scheme. Note that in this
approach the x1 and x2 vectors are defined for the adiabatic
states and are kept orthogonal, although the exact BP vectors
need not necessarily have this property.8

D. MRCISD

A detailed description of the MRCI approach can be
found, e.g., in Ref. 81; here we present a brief overview. In
MRCI, the reference wavefunction is represented as a combi-
nation of several configuration state functions (CSFs). CSFs
are linear combinations of Slater determinants with the same
spatial-orbital occupations; they are eigenfunctions of the S2

and Sz operators, where the total spin of the MRCI wave-
function defines the total spin of the CSFs. The MRCI wave-
function is expanded in terms of Nth-order excitations of each
CSF, where N electrons are promoted from occupied to vacant
orbitals, within the spin and symmetry constraints of the sys-
tem. In the presently employed MRCI approach, we allow all
single and double excitations from the multiconfigurational
reference wavefunction (MRCISD).

The CI expansion space is generated using the Graphical
Unitary Group Approach (GUGA) of Shavitt.82, 83 In GUGA,
like in any graphical representation of the CI wavefunction,82

the orbitals are distributed into groups and the occupation of
each group is restricted within the set of expansion determi-
nants. This occupation-based approach to construct the CI
wavefunction is quite convenient in multireference calcula-
tions, as the latter typically divide the orbital space into sev-
eral subsets of orbitals with restricted occupations. Moreover,
it eliminates redundancy problems that may occur in MRCI
when constructing the CI expansion space by exciting the ref-
erence CSFs.

The MRCISD treatment uses an adiabatic basis. The en-
ergy gradients, and thus the vector x1, are calculated analyt-
ically as described in Ref. 84. The vector x2 is split into two
components85, 86

x2 = x
CI
2 + x

CSF
2 . (20)

Here

x
CI
2

= 1

Em − En

〈

C
n

∣

∣

∣

∣

∂H

∂qα

C
m

〉

CSF

(21)

accounts for the change of the CI vectors Cm upon geometry
changes, and

x
CSF
2 =

∑

an
j am

i

〈

ψj

∣

∣

∣

∣

∂ψi

∂qα

〉

r

(22)

arises from the geometry dependence of the underlying CSF
expansions. The subscript CSF in Eq. (21) denotes a scalar
product in CSF space, and subscript r in Eq. (22) implies in-
tegration over electronic coordinates.
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E. OM2/MRCI

We give only a brief outline of the OM2/MRCI method
here, more details are found in Refs. 24, 25, 87, and 88. The
orthogonalization-corrected OMx methods are semiempirical
methods based on the neglect of diatomic differential overlap
(NDDO). In the variational determination of the molecular or-
bital (MO) coefficients C and MO energies E from the Fock
matrix F, the NDDO integral approximation directly leads to
the standard eigenvalue problem, FC = CE, in contrast to the
ab initio MO secular equations, FC = SCE (involving the
overlap matrix S), which need to be transformed to the eigen-
value problem by an explicit orthogonalization step. The Pauli
exchange repulsion and the asymmetric splitting of bonding
and antibonding orbitals arise from these orthogonalization
corrections in the ab initio framework. Standard MNDO-type
semiempirical methods formally neglect these and related ef-
fects, which is believed to be responsible for many deficien-
cies of these standard methods.24

The OMx methods include orthogonalization corrections
explicitly in the electronic calculation. The OM2 variant is the
most complete model of the OMx family and offers a good
compromise between accuracy and computational efficiency,
especially for excited states.89 It includes valence-shell or-
thogonalization corrections both in the one-center part87 and
in the two-center part of the core Hamiltonian.88, 90

The MOs obtained from the OM2 calculation are used as
input in a subsequent GUGA-MRCI calculation.91 Conceptu-
ally, the semiempirical OM2 MO calculation already accounts
for a large fraction of dynamical correlation, so that the MRCI
treatment mainly needs to recover non-dynamical correlation
effects. This can normally be achieved by using rather small
active spaces, a small number of reference configurations, and
only single and double excitations in the CI expansion (MR-
CISD).

The OM2/MRCI formalism uses an adiabatic basis, and
hence the BP vectors are defined by Eq. (4). The vector x

′
1

between two adiabatic states I and J is calculated using the
analytic expression

x
′q

α

1 = C
†
m

∂H

∂qα

Cm − C
†
n

∂H

∂qα

Cn, (23)

where qα represents an individual nuclear coordinate, Cm are
the CI coefficients of state m, and H is the CI electronic
Hamiltonian matrix. The x

′
2 vector is calculated using a pre-

viously implemented semi-analytic gradient module,92 which
utilizes transition density matrices according to the formula-
tion of Lengsfield III and Yarkony.93

III. COMPUTATIONAL DETAILS

The present DFT calculations employed the 6-31+G**
basis set94 and the BH&HLYP95 hybrid density functional. In
a recent study of conical intersections in organic molecules,20

it was found that the BH&HLYP functional reproduces the
geometries and relative energies of conical intersections ob-
tained from high-level ab initio MRCI calculations more ac-
curately than some other density functionals (including long-
range corrected and meta-GGA functionals).

The REKS(2,2), SA-REKS, and SI-SA-REKS calcula-
tions were performed using the COLOGNE2012 program.96

The ground-state equilibrium geometries were optimized with
the REKS(2,2) method. The geometries of conical intersec-
tions were obtained with the use of the CIOpt program,97

which employs a penalty function minimization in connec-
tion with numerically calculated gradients for the ground and
excited states. In the REKS calculations, the S0/S1 energy gap
at the optimized CI geometry was less than 0.01 kcal/mol in
each case. The numerical integrations employed grids com-
prising 75 radial points and 302 angular points per atom,
and a SCF convergence criterion of 10−8 for the density ma-
trix was applied in all REKS calculations. When computing
the BP vectors by numerical differentiation as described in
Sec. II B, the SCF convergence threshold was tightened to
10−10 and the increment in the atomic coordinates was cho-
sen to be 0.015 Å.

The SF-TDDFT calculations were done with the
GAMESS-US program98, 99 using a grid of 96 radial points
and 302 angular points for the ground-state calculations and
48 radial points and 110 angular points for the TDDFT calcu-
lations. The density convergence threshold for the density ma-
trix was set to 10−6. The ground-state equilibrium geometries
were optimized using the SF-TDDFT analytic gradients. The
conical intersections were located with the branching space
update method of Maeda, Ohno, and Morokuma.80 In this
approach, the x

′
1 vector is calculated analytically, while the

x
′
2 vector is approximated through updates. The S0/S1 energy

gap at the optimized CI geometries was always less than 0.08
kcal/mol.

The ab initio MRCISD calculations were carried out with
the COLUMBUS program system.100–104 The initial state-
averaged MCSCF calculations (with the ground and the rel-
evant excited states included into the averaging) employed
molecule-specific active spaces, namely: 2 electrons in 2 or-
bitals (2,2) for methyliminium; (4,4) for ethylene, butadi-
ene, PSB3, and styrene; and (6,5) for ketene. The large size
of stilbene and HBI forced us to restrict the MCSCF active
space to (2,2). Where available, symmetry constraints were
employed when calculating the FC conformations; for most
of the molecules, Cs symmetry was used, except for ethy-
lene (D2h), trans-butadiene (C2h), cis-butadiene (C2v), and
cis-stilbene (C1). The MRCISD calculations employed the
same active spaces as the preceding MCSCF treatments. All
the results were obtained with the 6-31+G** basis, except for
stilbene and HBI where we could not afford diffuse functions
and thus used the 6-31G** basis. In the MRCISD optimiza-
tion of conical intersections, the convergence criterion was an
energy gap of less than 10−4 Eh (ca. 0.06 kcal/mol) between
the two intersecting states. Both the x1 and x2 vectors were
calculated analytically, and the geometries were updated us-
ing a modified version of the direct inversion in the iterative
subspace (GDIIS) algorithm.85

The OM2/MRCISD calculations were performed with
the MNDO program.105 The GUGA-MRCI calculations em-
ployed three reference configurations (closed-shell, single
HOMO–LUMO excitation, and double HOMO–LUMO exci-
tation) and molecule-specific active spaces: (2,2) for ethylene
and methyliminium; (4,4) for butadiene and PSB3; (6,5) for
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ketene; (6,6) for styrene; (8,8) for stilbene; and (10,9) for the
anionic HBI chromophore. Where available, symmetry con-
straints were employed when calculating the FC conforma-
tions; for most of the molecules, Cs symmetry was used, ex-
cept for trans-butadiene (C2h), cis-butadiene (C2v), and cis-
stilbene (C1). Conical intersections were optimized using a
modified version106 of the Lagrange-Newton algorithm pro-
posed by Manaa and Yarkony,107 with a diagonal initial Hes-
sian containing empirical values for the corresponding inter-
nal coordinates.106 The x

′
1 and x

′
2 vectors were calculated an-

alytically at each optimization step, while the Hessian was
updated according to the BFGS procedure.106 The trust radius
for each geometry update was set to 0.1 Å. The final energy
gap at the optimized CI geometry was always less than 10−5

kcal/mol.
The BP vectors obtained by the methods outlined above

were normalized against their respective Frobenius norms.
The following units are adopted throughout the remainder
of this article: geometric parameters in Å, total energies in
Hartree atomic units (a.u.), and relative energies in electron
volts (eV).

IV. RESULTS AND DISCUSSION

Most of the conical intersections considered in this work
arise from crossings that occur in π -conjugated systems along
the internal coordinate that describes double bond torsion.
The S0/S1 intersections in these systems, see Figure 3, orig-
inate from crossings between the electronic states that cor-
respond to the homolytic (diradical) and heterolytic (charge
transfer, CT) breaking of the π -bond.4, 22, 108–110 These CIs can

be classified as twisted-pyramidalized (tw-pyr, for brevity)
or as twisted-bond_length_alternating (tw-BLA) depending
on the relative preference for the two bond-breaking mech-
anisms; the tw-pyr CIs are typical of molecules with domi-
nant homolytic bond breaking, while the tw-BLA CIs occur
in molecules for which both π -bond breaking processes are
nearly isoenergetic.22, 108

Another type of CIs commonly occurring in organic
molecules can be vaguely classified as n/π CIs that originate
from the crossing between an electron configuration (n2π*0)
with a doubly occupied lone pair and a singly excited (n1π*1)
configuration. In the presently studied molecules, such CIs
occur in ketene,117 ethylene (the ethylidene or methylcarbene
CI),118 and methyliminium (the methylimine CI),108, 109 see
Figure 3.

The two types of CIs probe different aspects of quantum-
chemical computations. The correct description of the CIs
occurring along the π -bond torsion coordinate requires a bal-
anced description of the relative stability of covalent (diradi-
cal) and ionic configurations, while for the n/π ’s CIs, the rel-
ative stability of configurations involving lone-pair excitation
must be treated properly.

The set of molecules shown in Figure 3 is by no means
exhaustive; for example, cyclic molecules like nucleobases
are not present. However, for such molecules, the ab initio

MRCISD reference calculations with sufficiently large active
spaces and basis sets would be computationally too demand-
ing. Even for the molecules in Figure 3, the ab initio MRCISD
calculations were carried out with the rather small 6-31+G**
basis set to make optimization of the conical intersections fea-
sible for the larger molecules. In case of the smaller molecules

FIG. 3. Superimposed geometries at the respective MECI points optimized using the methods employed in this work. Color code: solid blue – SI-SA-REKS-
BH&HLYP/6-31+G**, solid green – SF-TDDFT-BH&HLYP/6-31+G**, solid red – OM2/MRCI, standard colors – MRCISD/6-31+G** (6-31G** for stilbene
and HBI).
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TABLE I. Relative energies �E (in eV) with respect to the lowest ground-state minimum. Energies at the Franck-Condon (FC) point are vertical excitation
energies of the lowest singlet π → π* transition (best estimates given boldface in parentheses). Energies of optimized MECI structures refer to conical
intersections between the S1 and S0 states (notation see text).

Geometry MRCIa SSRb SFc OM2d Geometry MRCI SSR SF OM2

Ethylene Methyliminium
FC pointe (7.80)111 8.11 7.55 7.70 7.77 FC point 9.52 8.62 9.22 8.39
tw-pyr MECI 4.79 4.96 4.82 5.03 tw-BLA MECI 3.82 3.83 4.27 3.54
eth MECIf 4.69 3.96 4.52 4.22 meth MECIg 5.63 4.54 5.46 5.03

Styrene Penta-2,4-dieniminium cation, PSB3
FC point (4.88)112 5.76 5.10 5.29 5.15 trans-FC pointh 4.47 4.18 4.43 4.01

tw-pyr CI1
i 4.68 4.29 4.01 4.52 �E

S0
cis−trans

j 0.16 0.15 0.13 0.08
tw-pyr CI2

k 5.28 4.97 4.83 4.77 cis-FCpointl (4.20)113 4.24 4.08 4.28 4.01
tw-BLA MECI 2.38 3.00 3.08 2.46

Butadiene Ketene
trans-FC pointm (6.18)111 6.89 5.76 5.94 6.19 FC point (3.84)114 4.01 3.93 4.01 3.10

�E
S0
cis−trans

j 0.07 0.14 0.11 0.06 MECI 2.43 3.00 2.82 2.43
cis-FC pointl ,n 6.68 5.54 5.96 5.92
transoid MECI 4.89 5.58 5.19 4.77

Stilbene Anionic HBI
trans-FC pointh (4.1)115 (5.35)o 4.18 4.35 4.59 FC point (3.06)116 (3.88)o 3.00 3.14 2.90

�E
S0
cis−trans

j (0.13) 0.18 0.35 0.14 tw-pyr MECI
Im

p (2.87) 2.97 2.84 2.36
cis-FC pointl (4.6)115 (5.74) 4.54 4.49 4.83 tw-pyr MECI

Ph
q (3.20) 3.24 3.20 2.50

tw-pyr MECI (4.50) 4.26 4.20 4.33

aMRCISD/6-31+G** method.
bSI-SA-REKS-BH&HLYP/6-31+G** method.
cSF-TDDFT-BH&HLYP/6-31+G** method.
dOM2/MRCI method.
eFranck-Condon point corresponding to the S0 minimum.
fethylidene MECI.
gmethylimine MECI.
htrans-conformation.
itwisted-pyramidalized MECI1.
jenergy difference between cis- and trans-conformations in the ground state.
ktwisted-pyramidalized MECI2.
lcis-conformation.
mtrans-conformation, transition to the bright B

u
state.

ntransition to the B1 state.
o6-31G** basis set.
ptwisted-pyramidalized MECI with twisted imidazole ring.
qtwisted-pyramidalized MECI with twisted phenyl ring.

(ethylene and methyliminium), we would be able to afford ab

initio MRCISD optimizations with larger basis sets, but for
the sake of consistency, we prefer to employ the 6-31+G**
basis throughout to allow for evenhanded and unbiased com-
parisons between the methods. Given these limitations, we
emphasize that the current ab initio MRCISD/6-31+G** re-
sults cannot be regarded as having the status of highly accu-
rate benchmark data; they are used in the following as ref-
erence values obtained at a uniform and reasonably reliable
ab initio level that reflects the current state of the art.

The results of the calculations are summarized in
Figure 3 and in Tables I and II; the latter present the relevant
relative energies and comparisons between the computed CI
geometries and branching planes, respectively.

In an overall assessment, all the methods provide con-
sistent descriptions of the MECI geometries and BP vectors
for the test molecules considered presently. On average, the
RMSDs of the MECI geometries are on the order of 0.1 Å
and no conspicuous discrepancies between these geometries
are seen in Figure 3. The same is true for the BP projections
which for all pairs of methods vary between 0.7 and 0.9, thus

indicating a consistent description of the nuclear motions that
lead to an escape from the CI region. This would seem to
suggest that the methods tested in this work should show sim-
ilar behavior in non-adiabatic molecular dynamics (NAMD)
simulations. One may also expect that this will hold true for
larger molecules, for which the application of first-principles
methods becomes prohibitively costly. In the following, we
discuss the results for the individual molecules (using the ab-
breviations SSR and SF for SI-SA-REKS and SF-TDDFT, re-
spectively).

A. Ethylene

The π → π* (HOMO→LUMO) excitation of ethylene
results in rapid photoisomerization,118–120 and two distinct
MECIs can be identified along the CI seam.7, 118 The tw-
pyr MECI (see Figure 3) arises from a crossing between the
PESs of the electronic states for homolytic and heterolytic π -
bond breaking.20, 22, 73, 108, 109 The heterolytic π -bond breaking
process is much less favorable than the homolytic one.20, 22

According to a previously proposed rule,20, 22 the tw-pyr
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TABLE II. Comparisons between the methods employed in this work: Root-mean-square deviations (RMSDs) between the MECI geometries and branching
plane projections (see text). See legend to Table I for the labels of the CIs.

RMSD,a Å BP projectionb

Ethylene
MRCI SSR SF OM2 MRCI SSR SF OM2

tw-pyr MECI MRCI 0.0000 0.0312 0.0766 0.0750 MRCI 1.0000 0.9913 0.9576 0.8305
SSR 0.0312 0.0000 0.0561 0.0850 SSR 0.9912 1.0000 0.9679 0.8075
SF 0.0766 0.0561 0.0000 0.1363 SF 0.9570 0.9678 1.0000 0.7589
OM2 0.0750 0.0850 0.1363 0.0000 OM2 0.8282 0.8070 0.7595 1.0000

MRCI SSR SF OM2 MRCI SSR SF OM2
eth MECI MRCI 0.0000 0.0712 0.0164 0.0437 MRCI 1.0000 0.4512 0.9690 0.7302

SSR 0.0712 0.0000 0.0833 0.0944 SSR 0.4481 1.0000 0.4384 0.5363
SF 0.0164 0.0833 0.0000 0.0346 SF 0.9687 0.4646 1.0000 0.6740
OM2 0.0437 0.0944 0.0346 0.0000 OM2 0.7286 0.5363 0.6690 1.0000

Methyliminium
MRCI SSR SF OM2 MRCI SSR SF OM2

tw-BLA MECI MRCI 0.0000 0.0942 0.1117 0.0516 MRCI 1.0000 0.6918 0.6392 0.9058
SSR 0.0942 0.0000 0.0208 0.0554 SSR 0.6918 1.0000 0.9891 0.8468
SF 0.1117 0.0208 0.0000 0.0707 SF 0.6494 0.9891 1.0000 0.8009
OM2 0.0516 0.0554 0.0707 0.0000 OM2 0.9065 0.8479 0.8004 1.0000

MRCI SSR SF OM2 MRCI SSR SF OM2
meth MECI MRCI 0.0000 0.0523 0.0149 0.0292 MRCI 1.0000 0.3672 0.9855 0.7383

SSR 0.0523 0.0000 0.0610 0.0702 SSR 0.1329 1.0000 0.1843 0.6155
SF 0.0149 0.0610 0.0000 0.0201 SF 0.9732 0.1526 1.0000 0.5501
OM2 0.0292 0.0702 0.0201 0.0000 OM2 0.6422 0.6165 0.5546 1.0000

Styrene
MRCI SSR SF OM2 MRCI SSR SF OM2

tw-pyr CI1 MRCI 0.0000 0.0573 0.1024 0.1541 MRCI 1.0000 0.8169 0.8858 0.7675
SSR 0.0573 0.0000 0.1265 0.1567 SSR 0.8018 1.0000 0.7442 0.6553
SF 0.1024 0.1265 0.0000 0.1087 SF 0.8756 0.7444 1.0000 0.8654
OM2 0.1541 0.1567 0.1087 0.0000 OM2 0.7507 0.6567 0.8660 1.0000

MRCI SSR SF OM2 MRCI SSR SF OM2
tw-pyr CI2 MRCI 0.0000 0.0640 0.0274 0.0563 MRCI 1.0000 0.9267 0.9773 0.8009

SSR 0.0640 0.0000 0.0626 0.0788 SSR 0.9186 1.0000 0.9594 0.6906
SF 0.0274 0.0626 0.0000 0.0687 SF 0.9748 0.9594 1.0000 0.7622
OM2 0.0563 0.0788 0.0687 0.0000 OM2 0.7902 0.6923 0.7643 1.0000

Penta-2,4-dieniminium cation, PSB3
MRCI SSR SF OM2 MRCI SSR SF OM2

twisted MECI MRCI 0.0000 0.0567 0.2400 0.0814 MRCI 1.0000 0.8921 0.6466 0.8210
SSR 0.0567 0.0000 0.2094 0.0980 SSR 0.8875 1.0000 0.8914 0.6121
SF 0.2400 0.2094 0.0000 0.2797 SF 0.6580 0.8913 1.0000 0.4080
OM2 0.0814 0.0980 0.2797 0.0000 OM2 0.8194 0.6117 0.3725 1.0000

Butadiene
MRCI SSR SF OM2 MRCI SSR SF OM2

transoid MECI MRCI 0.0000 0.0752 0.0560 0.1033 MRCI 1.0000 0.9065 0.9305 0.8847
SSR 0.0752 0.0000 0.0517 0.0574 SSR 0.9187 1.0000 0.9696 0.8415
SF 0.0560 0.0517 0.0000 0.0923 SF 0.9268 0.9599 1.0000 0.7883
OM2 0.1033 0.0574 0.0923 0.0000 OM2 0.9162 0.8554 0.8440 1.0000

Ketene
MRCI SSR SF OM2 MRCI SSR SF OM2

MECI MRCI 0.0000 0.0192 0.0124 0.0862 MRCI 1.0000 0.9778 0.9675 0.9110
SSR 0.0192 0.0000 0.0197 0.0876 SSR 0.9746 1.0000 0.9882 0.8389
SF 0.0124 0.0197 0.0000 0.0773 SF 0.9631 0.9882 1.0000 0.8301
OM2 0.0862 0.0876 0.0773 0.0000 OM2 0.9063 0.8498 0.8421 1.0000

Stilbene
MRCI SSR SF OM2 MRCI SSR SF OM2

tw-pyr MECI MRCI 0.0000 0.1012 0.0515 0.2581 MRCI 1.0000 0.8562 0.9440 0.8513
SSR 0.1012 0.0000 0.0861 0.3040 SSR 0.8572 1.0000 0.8101 0.8349
SF 0.0515 0.0861 0.0000 0.2768 SF 0.9415 0.8020 1.0000 0.8640
OM2 0.2581 0.3040 0.2768 0.0000 OM2 0.8471 0.8304 0.8660 1.0000
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TABLE II. (Continued.)

RMSD,a Å BP projectionb

anionic HBI
MRCI SSR SF OM2 MRCI SSR SF OM2

tw-pyr MECI
Im

MRCI 0.0000 0.0268 0.0468 0.2051 MRCI 1.0000 0.9787 0.9590 0.6243
SSR 0.0268 0.0000 0.0377 0.2164 SSR 0.9745 1.0000 0.9758 0.6561
SF 0.0468 0.0377 0.0000 0.2388 SF 0.9517 0.9758 1.0000 0.6443
OM2 0.2051 0.2164 0.2388 0.0000 OM2 0.6203 0.6676 0.6526 1.0000

MRCI SSR SF OM2 MRCI SSR SF OM2
tw-pyr MECI

Ph
MRCI 0.0000 0.0818 0.0812 0.2116 MRCI 1.0000 0.8143 0.9630 0.6415
SSR 0.0818 0.0000 0.0397 0.1759 SSR 0.8175 1.0000 0.7889 0.5248
SF 0.0812 0.0397 0.0000 0.1944 SF 0.9624 0.7825 1.0000 0.5689
OM2 0.2116 0.1759 0.1944 0.0000 OM2 0.6370 0.5227 0.5714 1.0000

Average RMSD Average BP projection
MRCI SSR SF OM2 MRCI SSR SF OM2

MRCI 0.0000 0.0609 0.0698 0.1129 MRCI 1.0000 0.8059 0.9021 0.7923
SSR 0.0609 0.0000 0.0712 0.1233 SSR 0.7845 1.0000 0.8089 0.7050
SF 0.0698 0.0712 0.0000 0.1332 SF 0.9002 0.8064 1.0000 0.7096
OM2 0.1129 0.1233 0.1332 0.0000 OM2 0.7827 0.7078 0.7135 1.0000

aRMSD’s are given as a matrix with the off-diagonal elements corresponding to the values for methods I and J.
bBP projections are given as a matrix with the off-diagonal elements r

IJ
representing the projection of the BP obtained using method I onto the BP obtained using method J.

MECI occurs in the proximity of a ground-state conformation
that corresponds to heterolytic π -bond breaking and features
strong pyramidalization to stabilize the shift of the π electron
pair toward one of the carbon atoms.

The best estimate of the π → π* vertical excitation en-
ergy of ethylene is 7.8 eV.111 The energy of the tw-pyr MECI
with respect to the ground-state minimum is much lower: the
values currently predicted by the different methods lie in a
narrow energy range between 4.8 and 5.0 eV. The BP vec-
tors of this MECI are shown in Figure 4, where the MRCISD,
SF, and OM2/MRCI vectors are aligned with the SSR vectors
as described in Sec. II. The x1 vector mainly corresponds to
the pyramidalization of one of the carbon atoms and points
into the direction that connects the transition states of the het-
erolytic and homolytic π -bond breaking on the S0 surface.4, 22

The x2 vector reflects the torsion of the π -bond and is thus
associated with the photoisomerization reaction.4, 22 The char-
acter of the two BP vectors is consistently reproduced by all
the methods, and the overlaps between the BPs (i.e., the rIJ

projections) are rather large, on the order of 0.8–0.9, see Ta-
ble II. The tw-pyr MECI geometries produced by the differ-
ent methods agree well with each other, as evidenced by the
RMSDs in Table II; compared with the reference ab initio

MRCISD geometry, the RMSDs for SSR, SF, and OM2 are
0.0312, 0.0766, and 0.0750 Å, respectively.

The n/π -type MECI along the CI seam of ethylene oc-
curs near the ethylidene (or methylcarbene) geometry that re-
sults from a H-atom transfer from one carbon to the other
one.118 Under the constraint of Cs symmetry, this MECI arises
from a crossing between the 1A′ and 1A′′ states of ethylidene,
which would be linear in Cs symmetry but becomes conical
in the unsymmetrical C1 case.117 The x1 and x2 vectors of this
MECI correspond to an a′ mode (bending of the H–C–C va-
lence angle) and an a′′ mode (wagging the terminal H atom),
respectively.117 All the currently applied methods consistently
reproduce the ethylidene MECI geometry: the RMSDs are

typically below 0.1 Å, and the BP vectors are qualitatively
consistent with each other. The numerical values of the BP
projections rIJ are however somewhat lower than in the case
of the tw-pyr MECI. As shown in Table II of the supplemen-
tary material,52 it is the projections of the x2 vector that are re-
sponsible for the decreased overlap between the BPs produced
by different methods. Most likely, this is caused by rather flat
S0 and S1 PESs in the direction of this vector. For instance, in
the case of the SSR method, the norm of the x2 vector (0.0010
Hartree/Bohr) is ca. 40 times smaller than that for the tw-pyr
MECI (0.0443 Hartree/Bohr); this implies that the derivatives,
Eq. (3), in this direction are small, and any tiny differences are
amplified when normalizing the BP vectors. Nevertheless, in
spite of the existing quantitative discrepancies, the BP vectors

FIG. 4. BP vectors of twisted-pyramidalized (upper panel) and ethylidene
(lower panel) MECIs of ethylene calculated using the methods employed in
this work and aligned using the similarity transformation described in Sec. II.
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TABLE III. Relative energies �E (in eV) with respect to the ground-state
minimum: ab initio MRCISD results for ethylene with different active spaces
and basis sets.

(2,2) (4,4)

6-31+G** 6-311+G** 6-31+G** 6-311+G**
FC point 8.10 8.10 8.11 8.08
tw-pyr MECI 4.86 4.74 4.79 4.67
eth MECI 4.53 4.45 4.69 4.60

of the ethylidene MECI produced by the different methods
are qualitatively similar. It is also noteworthy that the ethyli-
dene MECI does not play an important mechanistic role in the
photoisomerization, as it is only very rarely visited by nuclear
trajectories initiated at the FC point.7 Therefore, the discrep-
ancies observed for this MECI should not lead to any signif-
icant consequences for the dynamic description of ethylene
photoisomerization.

In our calculations, we employ a relatively modest 6-
31+G** basis set, and it is thus of interest to check the ef-
fects of basis set extension on the computed MECI geome-
tries and relative energies. In Ref. 20, the sensitivity of the
SSR method to basis set extension was studied, and only mi-
nor changes were found in the geometries and energies of
the tw-pyr MECI of ethylene and stilbene. Here, we report
the effect of basis extension and active-space variation on the
geometry and relative energy of the tw-pyr MECI of ethy-
lene obtained by the ab initio MRCISD method, see Table
III. Evidently, enlarging the active space from (2,2) to (4,4)
only leads to slight changes of the MECI energies (tw-pyr
MECI, decrease by 0.07 eV; eth MECI, increase by 0.15 eV),
while basis set extension from 6-31+G** (double-ξ quality)
to 6-311+G** (triple-ξ quality)94 causes a slight decrease by
ca. 0.1 eV. Overall the variations in the MECI energies re-
main below 0.2 eV. The optimized MECI geometries show
almost no dependence on the chosen basis set and active space
for both MECIs; the largest RMSD observed in any of these
calculations is as small as 0.0042 Å. These findings suggest
that the use of a double-ξ quality basis set in ab initio MR-
CISD calculations provides a description of MECIs, which is
not substantially altered by moderate basis set extensions that
keep the computational effort within reasonable bounds. The
use of much larger basis sets for ab initio MRCISD MECI
optimizations is currently not feasible (especially not for the
larger molecules of our test set).

B. Methyliminium

Methyliminium CH2NH+
2 differs from ethylene by the

presence of a strong electron-withdrawing substituent, the
cationic nitrogen atom. The heterolytic C=N π -bond break-
ing becomes nearly isoenergetic with the homolytic bond
breaking and the tw-pyr MECI changes its character to tw-
BLA.20, 22 The tw-BLA MECI occurs at an energy ca. 1 eV
lower than the tw-pyr MECI of ethylene (see Table I). Due
to the stabilization of the CT configuration (C+–N0), the
tw-BLA MECI lies even lower than the methylimine MECI

FIG. 5. BP vectors of the twisted-BLA (upper panel) and methylimine
(lower panel) MECIs of methyliminium cation.

which has very little ionic character and thus does not benefit
from the stabilization of the CT configuration.

All methods predict the BLA mode (coupled with some
pyramidalization at the carbon end) for the x1 vector and
the twist mode for the x2 vector, see Figure 5. OM2/MRCI,
SSR, and SF yield some pyramidalization of the carbon
atom, which is smallest for the OM2/MRCI method and
largest for the SF method. The ab initio MRCISD tw-BLA
MECI does not feature any pyramidalization. These differ-
ences between the methods arise from differences in the pre-
dicted relative stabilities of the ionic and covalent electronic
configurations.20, 74 The DFT-based methods tend to some-
what overestimate the stability of the CT configurations, and
hence they invoke a moderate pyramidalization at the carbon
atom to destabilize the CT configuration.20

The methylimine MECI of CH2NH+
2 is qualitatively sim-

ilar to the ethylidene MECI of ethylene and occurs at a ge-
ometry with one of the amine hydrogen atoms transferred to
the carbon atom, see Figures 3 and 5. Similar to ethylene,
the x1 vector of this MECI corresponds to H–N–C bending
(a′ mode in Cs symmetry) and the x2 vector describes a wag-
ging motion of the NH+ group (a′′ mode in Cs symmetry).
The S0 and S1 energy profiles in the direction of the x2 vec-
tor are quite flat (e.g., the norm of the SSR x2 vector is only
0.0040 Hartree/Bohr as compared to the norm of the x1 vector
of 0.1118 Hartree/Bohr); this leads to a large relative variation
of the x2 vectors across the methods. The MECI geometries
obtained from the different methods agree with one another
within 0.08 Å, and the branching planes from different meth-
ods are qualitatively similar (see lower panel of Figure 5).

C. Styrene

The presence of a phenyl group at one end of the
ethylenic moiety in styrene leads to the occurrence of two
non-equivalent tw-pyr MECIs, which differ in the pyramidal-
ization of the methylenic carbon atom (MECI1) and of the
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FIG. 6. BP vectors of MECI1 (upper panel) and MECI2 (lower panel) of
styrene.

benzylic carbon atom (MECI2). Qualitatively, the two MECIs
are similar to the tw-pyr MECI of ethylene; however, the
weak electron-donating character of the aryl group slightly
stabilizes the ionic configurations originating from the het-
erolytic breaking of the ethylenic π -bond and the two MECIs
thus occur at a slightly lower energy with respect to the S0
minimum than in ethylene. MECI1 experiences a somewhat
stronger stabilization than MECI2, because, in the CT config-
uration, the positive charge can be delocalized into the aryl
ring.20, 22

For both tw-pyr MECIs of styrene, the x1 vector cor-
responds to pyramidalization of one of the ethylenic car-
bons, the methylenic carbon (MECI1) or the benzylic car-
bon (MECI2), and the x2 vector describes torsion about the
ethylenic C=C bond (see Fig. 6). This picture is very simi-
lar to ethylene, and all methods yield similar geometries and
BPs for the two MECIs, see Table II. The OM2/MRCI, SSR,
and SF calculations give similar relative energies for the two
MECIs, while the ab initio MRCISD MECIs lie ca. 0.4 eV
higher in energy (Table I). It is conceivable that the use of a
more extended basis set (larger than 6-31+G**) might bring
the ab initio MRCISD results into better agreement with the
results from the approximate methods.

D. Stilbene

The tw-pyr MECI of stilbene is qualitatively quite sim-
ilar to the tw-pyr MECIs of ethylene and styrene, see Fig-
ures 3 and 7. The presence of the second phenyl ring does
not result in a noticeable alteration of the energy level of
the tw-pyr MECI, e.g., as compared to MECI1 of styrene; all
methods predict this MECI to lie at ca. 4.2–4.5 eV above the
S0 minimum (trans-conformation). We note that the ab ini-

tio MRCISD calculations of stilbene employed the smaller
6-31G** basis set; hence, the MRCISD energies may be less
reliable than for the other test molecules. For instance, the

FIG. 7. BP vectors of the twisted-pyramidalized MECI of stilbene.

MRCISD vertical excitation energies for the trans- and cis-
isomers of stilbene are 5.3 and 5.7 eV, respectively, and thus
much higher than the experimental values (measured in n-
hexane) of 4.1 and 4.6 eV, respectively.115 By contrast, the
OM2/MRCI, SSR, and SF vertical excitation energies for
the two isomers agree reasonably well with the experimental
figures.

Despite the use of the smaller 6-31G** basis set, the ab

initio MRCISD MECI geometry agrees with the SSR and SF
geometries to within 0.1 Å, see Table II. The OM2/MRCI
method yields a larger RMSD for the tw-pyr MECI geome-
try, which is due to a somewhat greater torsion of the phenyl
ring attached to the pyramidalized C atom (see Figure 3). At
any rate, the BPs produced by all the methods are qualitatively
similar, with projections rIJ on the order of 0.9 (see Table II).
Similar to ethylene and styrene, the x1 vector of stilbene cor-
responds to the pyramidalization mode and the x2 vector to
the ethylenic bond torsion mode, see Figure 7.

E. Penta-2,4-dieniminium cation, PSB3

The presence of a very strong electron-withdrawing cen-
ter such as the cationic nitrogen in PSB3 leads to a tw-
BLA MECI that corresponds to a crossing between the di-
radical and closed-shell CT configurations, which occurs in
the course of the breaking of the central π -bond by torsion.
PSB3 is perhaps one of the most studied molecular systems,
for which the MECI point was obtained by a variety of meth-
ods, see Refs. 23, 74, 76, 121 and references cited therein.
The tw-BLA character of its MECI has been unambiguously
established,22, 23, 121 and the methods employed in this work
support this assignment.

As shown in Figure 8, the x1 vector corresponds to
the BLA mode, while the x2 vector describes torsion about
the central C–C bond. The MECI geometries optimized at

FIG. 8. BP vectors of the twisted-BLA MECI of penta-2,4-dieniminium
cation, PSB3.
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the MRCISD, SSR, and OM2/MRCI levels agree with each
other to within 0.06–0.09 Å (RMSD), whereas the SF geom-
etry deviates from the others by a wider margin, ca. 0.2–0.35
Å. This discrepancy is caused by an excessive pyramidaliza-
tion of one of the allylic carbon atoms in the SF calculations,
which is caused by an overestimation of the relative stabil-
ity of the ionic configuration resulting from the heterolytic
breaking of the central π -bond. A similar overestimation has
also been observed for the methyliminium cation, for which
the SF method yields a pronounced pyramidalization of the
carbon atom at the MECI geometry (see Figure 5).

Both DFT-based methods, SSR and SF, place the tw-BLA
MECI ca. 0.6 eV higher than MRCISD and OM2/MRCI (3.0
vs. 2.4 eV). This can again be explained by a greater pref-
erence of the DFT-based methods for the ionic configura-
tion relative to the covalent one, which makes a somewhat
stronger BLA distortion necessary to reach the S0/S1 crossing
point.20, 22, 23, 74 As pointed out before,74 the ionic configura-
tion benefits from a more complete inclusion of dynamic elec-
tron correlation, and hence this configuration may become
more important upon extending the basis set and the level of
correlation treatment in the ab initio MRCI calculations. This
may have the effect of increasing the current ab initio MECI
energy (2.4 eV) and moving it closer to the current DFT-based
values (3.0 eV).

F. Buta-1,3-diene

Butadiene is the simplest conjugated polyene. It has
a transoid MECI with a –(CH3)– kink of the carbon
backbone.4, 122 Electronically, this transoid MECI (see Fig-
ures 3 and 9) contains a kinked allylic fragment coupled to a
terminal methylene radical. It was originally believed to pro-
vide the major non-adiabatic decay channel,4, 122 but this con-
jecture has recently been challenged.123

The superimposed optimized geometries of the transoid
MECI (see Figure 3) and the corresponding RMSDs of the

FIG. 9. BP vectors of the transoid MECI of butadiene (upper panel) and the
MECI of ketene (lower panel).

MECI geometries (see Table II) indicate a good agreement
between the methods used presently. The largest deviation is
observed for the MRCISD–OM2/MRCI pair with a RMSD
of 0.10 Å. The BPs from the different methods agree very
well with each other as confirmed by their projections rIJ in
Table II and the visual representations in Figure 9. The x1
vector describes a cyclization motion (with a σ -bond between
the C2 and C4 atoms being formed or broken), while the x2
vector corresponds to a BLA motion (stretching of the for-
mal double bonds and contraction of the formal single bond
and vice versa) coupled with a weak torsion of the C1 methyl
group. The transoid MECI lies between ca. 4.8 eV and 5.6
eV above the S0 minimum (see Table I). The computed verti-
cal excitation energies of the trans-conformer (best estimate:
6.18 eV111) cover an energy range of almost 1 eV; the ab ini-

tio MRCISD value is clearly too high, which is likely due to
an insufficient treatment of dynamic electron correlation.

G. Ketene

Ketene is a paradigmatic example of an n/π conical in-
tersection, which is associated with a crossing between the
1A′ and 1A′′ states along the O–C–C bending mode.117 This
crossing is linear in Cs symmetry and becomes conical in C1
symmetry, since upon symmetry lowering there emerges an-
other direction along which the degeneracy of the electronic
states can be lifted.117 As shown in Figure 9 (lower panel),
all the methods used presently consistently give x1 and x2
vectors that describe an O–C–C bending mode and an out-
of-plane O–C–C–H mode, respectively. The MECI energy is
computed to be close to 3.0 eV by the DFT-based methods,
significantly higher than the OM2/MRCI values of 2.43 eV,
see Table I. The latter is believed to be too low, in view of
the fact that OM2/MRCI underestimates the vertical excita-
tion energy of ketene by ca. 0.7 eV (experimental value: 3.84
eV114).

H. p-Hydroxybenzylideneimidazolinone anion, HBI

The lowest points on the CI seam of HBI are charac-
terized by a torsion of the imidazole ring (MECIIm) or the
phenyl ring (MECIPh) accompanied by a mild pyramidaliza-
tion of the methine bridge,20, 124 see Figures 3 and 10. These

FIG. 10. BP vectors of MECI
Im

(upper panel) and MECI
Ph

(lower panel) of
anionic HBI.
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distortions lead to a breaking of the exocyclic π -bond, and the
MECIs arise from a crossing between the respective diradical
state (homolytic breaking) featuring a phenoxide anion radi-
cal (MECIIm) or a imidazolinone anion radical (MECIPh) and
the respective CT state (heterolytic breaking).20 As a result
of the greater electron affinity of oxybenzyl as compared to
imidazolinone, the MECIIm point lies ca. 0.3–0.4 eV lower in
energy than the MECIPh point.20, 124

The results for the FC point and the two MECI points
of HBI are presented in Tables I and II and in Figures 3
and 10. The ab initio MRCISD calculations of anionic HBI
could be carried out only with the smaller 6-31G** basis set,
which causes a relatively large deviation of the vertical ex-
citation energy (3.88 eV) at the FC point from the accurate
quantum Monte-Carlo result of 3.06 eV.116 It is probably the
insufficient treatment of dynamic electron correlation at the
MRCISD/6-31G** level that is to blame for the overestima-
tion of the excitation energy. The DFT-based methods, SSR
and SF, accurately predict the vertical excitation energy in
the range of 3.0–3.1 eV, and the OM2/MRCI value is only
slightly lower at 2.90 eV. The MECIIm point is predicted by
the two DFT-based methods to lie 0.1–0.3 eV below the S1 FC
point, while the ab initio MRCISD and OM2/MRCI calcula-
tions give significantly larger gaps of 1.0 and 0.5 eV, respec-
tively; however, all four methods agree that the MECIPh point
lies ca. 0.1–0.3 eV above the MECIIm point, see Table I. The
computed MECI geometries agree fairly well with each other,
except that OM2/MRCI gives a much smaller pyramidaliza-
tion at the methine carbon atom. The agreement between the
BPs from the three first-principles methods is good with rIJ

projections between 0.8 and 1.0, whereas the projections in-
volving OM2/MRCI are lower (0.5–0.7, Table II). For the two
MECIs, the x1 vector always features pyramidalization of the
methine bridge coupled with BLA distortion of the two rings,
while the x2 vector mainly corresponds to torsion of the imi-
dazolinone ring (MECIIm) or of the phenoxy ring (MECIPh),
see Figure 10.

V. CONCLUSIONS

The most important result of this work is that the cur-
rently applied methods yield a consistent description of the
geometries and branching planes of the conical intersections
over the whole range of organic molecules studied presently.
The ab initio MRCISD method, the DFT-based approaches,
SI-SA-REKS and SF-TDDFT, as well as the semiempiri-
cal OM2/MRCI method yield very similar geometries of the
MECI points, with root-mean-square deviations between the
different optimized MECI geometries of the order of 0.1 Å
or even less. The branching planes produced by the different
methods were compared using the BP-onto-BP projection rIJ

(see Sec. II) which indicated very good agreement between
the methods, with rIJ values varying in the range of 0.8–0.9.

A straightforward visual comparison between the BP
vectors produced by two different methods is not feasible
as the vectors may be rigidly rotated within the respective
branching plane while leaving the latter unchanged.8 The sim-
ilarity transformation of the BP vectors introduced in this
work enables an alignment of the vectors obtained from dif-

ferent calculations in such a way that their mutual spatial co-
incidence is maximized. The BP vectors obtained from SI-
SA-REKS calculations refer to diabatic states, see Eq. (3),
which allows for a chemically sensible interpretation of the
nuclear motions that lead away from the CI region.22 There-
fore, the BP vectors from other methods were pegged to the
SI-SA-REKS vectors. Visual inspection of the transformed
BP vectors does confirm that the methods used here yield very
similar branching planes. They should thus all be suitable for
studying the non-adiabatic dynamics of a wide variety of or-
ganic molecules.

Although the ab initio MRCISD calculations employed
in this work cannot be regarded as converged with respect to
the basis set size and the treatment of dynamic electron corre-
lation, the good agreement between the results from MRCISD
and the other methods gives us confidence that these other
more approximate methods should perform well in modeling
the non-adiabatic dynamics of photoexcited systems. It is par-
ticularly gratifying that a very simple semiempirical method,
OM2/MRCI, which is several orders of magnitude less time
consuming than the first-principles methods, yields MECI ge-
ometries and branching planes in close correspondence with
the other methods.

Interestingly, at the DFT level, there is generally good
agreement between the MECI geometries and BP vectors ob-
tained from the spin-pure SI-SA-REKS method and the spin-
contaminated SF-TDDFT approach. Spin-contamination of
SF-TDDFT S0 and S1 states varies for different molecules
from very weak (0.01) to rather strong (0.93), as observed
for MECIs in ethylene and styrene, respectively. Table XXVI
of the supplementary material52 lists the S2 expectation val-
ues obtained for the SF-TDDFT S0 and S1 states at the MECI
points. Although an a posteriori spin purification of the SF-
TDDFT energies has been proposed,76 its use lifts the degen-
eracy of the S0 and S1 energies at the CI point obtained in the
spin-contaminated SF-TDDFT optimization (see Table XXVI
of the supplementary material52 for the energy gaps). Further-
more, as was recently observed by Gozem et al.,23 the use of
the a posteriori spin purification destroys the correct dimen-
sionality of the intersection seam, leading to linear rather than
conical intersections.

Yet another word of caution concerns the widespread use
of conventional spin-conserving linear-response TDDFT for
modeling the ground- and excited-state PESs of photoactive
systems. As conventional TDDFT does not give the correct
dimensionality of the crossing seam,23, 77 it leads to certain
artifacts in NAMD simulations of photoreactions.45 By con-
trast, the approximate methods used in this work yield the
correct CI dimensionality. Their use is further encouraged by
the present comparisons for a variety of organic molecules
showing that they provide energies, geometries, and topolo-
gies of conical intersections that are in good agreement with
each other, with ab initio MRCISD results, and with chemical
intuition.
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