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Assessment of artificial intelligence models for

calculating optimum properties of lined channels

Majid Niazkar
ABSTRACT
Lined channels with trapezoidal, rectangular and triangular sections are the most commonmanmade

canals in practice. Since the construction cost plays a key role in water conveyance projects, it has

been considered as the prominent factor in optimum channel designs. In this study, artificial neural

networks (ANN) and genetic programming (GP) are used to determine optimum channel geometries

for trapezoidal-family cross sections. For this purpose, the problem statement is treated as an

optimization problem whose objective function and constraint are earthwork and lining costs and

Manning’s equation, respectively. The comparison remarkably demonstrates that the applied

artificial intelligence (AI) models achieved much closer results to the numerical benchmark solutions

than the available explicit equations for optimum design of lined channels with trapezoidal,

rectangular and triangular sections. Also, investigating the average of absolute relative errors

obtained for determination of dimensionless geometries of trapezoidal-family channels using AI

models shows that this criterion will not be more than 0.0013 for the worst case, which indicates the

high accuracy of AI models in optimum design of trapezoidal channels.

Key words | artificial neural network, genetic programming, optimum design, rectangular channels,

trapezoidal channels, triangular channels

HIGHLIGHTS

• In this study, ANN and GP has been applied to optimum design of lined channels for the first

time.

• Canals with three common shapes including trapezoidal, rectangular and triangular were

designed.

• Also, three new regression-based models were proposed for calculating optimum channel

properties.

• The obtained results were compared with that of available models in the literature.

• The comparison indicates the superiority of the two AI models for this purpose.
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INTRODUCTION
Water conveyance projects including construction of man-

made canals are generally inevitable as water resources
are not necessarily close to consumers’ locations. The

main concern in most of these projects is the budget

required for construction cost. In this perspective, optimal

design of canals may be interpreted as the most cost-

beneficial one. This optimum design not only takes into

account a hydraulically feasible condition for flow passing

through the channel but also minimizes the construction
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cost. This reality-based interpretation of optimum design of

manmade canals has provided an active research field in

water resource management (Reddy & Adarsh ; Tabari

et al. ; Swamee & Chahar ; Roushangar et al. ).

These studies may be classified based on the shape of

canals under investigation (Easa ): (1) linear (trapezoi-

dal-family) sections; (2) curved (circular, parabolic and

power-law) sections; and (3) linear-curved sections like

horizontal bottom and parabolic sides (Das ). Among

these different canal shapes, the most common cross

sections in practice are trapezoidal-family (trapezoidal, rec-

tangular and triangular) and circular sections (Niazkar &

Afzali ), while the former is the focus of this study.

For optimum design of trapezoidal channels, many studies

have been conducted in the literature. These studies can be

reviewed based on defining the problem statement including

objective functions and constraints, optimization algorithms

used for solving the problem of optimum channel design,

and their recommendations for calculating channel geome-

tries. Regarding the objective function, Swamee et al. ()

presented a general construction cost including earthwork

and lining costs, which has been used in several studies

(Aksoy &Altan-Sakarya ; Niazkar &Afzali ). Further-

more, considered hydraulic constraints of the design problem

are Swamee’s resistance equation (Swamee et al. ), Man-

ning’s equation (Aksoy & Altan-Sakarya ; Bhattacharjya

; Bhattacharjya & Satish ; Easa et al. ; Vatankhah

& Easa ; Niazkar & Afzali ), a flooding probability

(Das ), a minimum value of the freeboard (Bhattacharjya

& Satish ), and a minimum safety factor (Easa et al. ).

Moreover, various optimization algorithms have been applied

to optimum channel designs, and they include a grid search

optimization algorithm (Swamee et al. ), the Lagrange

multiplier method (Aksoy & Altan-Sakarya ; Das ;

Han et al. , ), the sequential quadratic programming

method (Bhattacharjya ), a hybrid optimization technique

(Bhattacharjya & Satish ), nondominated sorting genetic

algorithm (Bhattacharjya & Satish ), ant colony optimiz-

ation (Nourani et al. ), Genetic Algorithm and Particle

Swarm Optimization (Reddy & Adarsh ), the generalized

reduced gradient algorithm (Easa et al. ; Froehlich ),

the Modified Honey Bee Mating Optimization (MHBMO)

algorithm (Niazkar & Afzali ), the shuffled frog-leaping

algorithm (Orouji et al. ), and the cat swarm optimization
://iwaponline.com/jh/article-pdf/22/5/1410/763791/jh0221410.pdf
(Liu et al. ). Finally, equations were proposed for direct

(Swamee et al. ; Aksoy & Altan-Sakarya ; Niazkar

& Afzali ) and iterative (Han et al. ) computation of

optimum geometries of trapezoidal channels.

Based on the literature review conducted, the optimal

design of trapezoidal channels has been treated as an

optimization problem consisting of a construction-cost

function and a hydraulic constraint. Furthermore, different

types of solutions including design curves and explicit or

implicit equations have been recommended based on the

results obtained for the optimization-based design problems.

Although artificial intelligence (AI) models have been

successfully applied to solving various problems in water

resources management (Babovic & Keijzer ; Giustolisi

; Xu et al. ; Rodríguez-Vázquez et al. ;

Pourzangbar et al. ), they have not been implemented

for optimum design of trapezoidal-family canals.

In this study, the generalized construction cost including

earthwork and lining costs, which has been previously con-

sidered in several studies (Swamee et al. ; Aksoy &

Altan-Sakarya ; Niazkar & Afzali ), was minimized

using the MHBMO algorithm. This design problem was

solved for a variety of values of parameters involved in the

design problem of trapezoidal-family channels. Based on the

large database provided, two AI models including artificial

neural networks (ANN) and genetic programming (GP) were

applied to optimize the design of lined channels with trapezoi-

dal, rectangular and triangular sections. To the author’s

knowledge, it is the first time that these two AI models have

been implemented for optimum design of lined trapezoidal-

family channels. Finally, the performances of these AI models

were compared with those of the explicit design equations,

which are present in the current literature (Swamee et al.

; Aksoy & Altan-Sakarya ; Niazkar & Afzali ).
METHODS AND MATERIALS

Problem statement of optimum channel design

Design of a man-made canal is to determine its geometries.

In essence, channel geometries play the role of objectives of

the problem statement when a canal shape is assumed.

Nevertheless, it is not practically possible to take into
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account all factors involved in the optimal design of an open

channel while the most prominent ones need to be con-

sidered. Generally, an optimum channel design not only

supposes to convey an expected amount of water but also

is required to be cost beneficial, particularly when the

canal is constructed over a large distance. Hence, the pro-

blem of optimum design of open channels may be treated

as an optimization problem while the objective function

defines a construction cost.

One of the most generalized forms of construction cost of

a typical lined channel (C) is comprised of three components

(Swamee et al. ; Aksoy & Altan-Sakarya ; Niazkar

& Afzali ; Niazkar et al. ). The first cost is the earth-

work cost per unit area (βE) while the second one is the lining

cost (βL). An additional earthwork cost that takes into

account different costs of earthwork in different depths (βA)

is the third component. The algebraic summation of these

three cost components consists of the objective function of

the design problem while a resistance equation is required

to be set as a constraint. For the latter, Manning’s coefficient,

which is the most resistance equation widely used in open

channel hydraulics (Niazkar et al. a), may be used to pre-

serve a hydraulically viable flow passing through the channel:

Q ¼ 1
n
AR2=3

ffiffiffi
S

p
(1)

where Q is discharge, n is Manning’s coefficient, A is channel

cross section area, R ¼ A
P

is hydraulic radius, P is wetted per-

imeter and S is channel slope. Among these parameters, A, P

and R are shape-dependent functions of channel geometries.

Additionally, S may be replaced with the bottom channel

slope, while this substitution gives the normal water depth in

Manning’s equation. Moreover, n may be estimated using

one of the bed roughness predictors available in the literature

(Niazkar et al. b), while a flow-independent n is utilized

for simplification purposes in the literature (Swamee et al.

; Aksoy & Altan-Sakarya ; Tabari & Mari ). In

order to enhance the generality of the final solutions, the

parameters involved in the objective function and constraint

are all turned into unitless parameters using a length-scale

parameter:

λ ¼ Qnffiffiffi
S

p
� �3=8

(2)
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The dimensionless Manning’s equation and objective

functions for optimum design of trapezoidal, rectangular

and triangular channels are presented in Equations (3)–(6),

respectively:

A�R2=3
� � 1 ¼ 0 (3)

C� ¼ βL�(2y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p
þ b�)þ βA� 0:5b�y2� þ

my3�
3

� �
þ b�y� þmy2� (4)

C� ¼ βL�(2y� þ b�)þ 0:5b�y2�βA� þ b�y� (5)

C� ¼ 2βL�y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p
þ βA�

my3�
3

þmy2� (6)

where subscript * denotes the dimensionless form of a vari-

able, A� ¼ A
λ2
, R� ¼ R

λ
, βL� ¼

βL
βEλ

, βA� ¼
βA
βEλ

, C� ¼ C
βEλ

2 is the

total dimensionless cost of constructing a lined channel per

unit length, y� is dimensionless water depth, m is side slope

and b� is dimensionless bottom width of the channel under

construction.

Equations (5) and (6) can be determined by substituting

m ¼ 1 and b ¼ 0 into Equation (4), respectively. Moreover,

Equations (3) and (4) are the governing equations for opti-

mum design of trapezoidal channels, while the problem

statement of design of rectangular channels consists of

Equations (3) and (5). Finally, Equations (3) and (6) can

be used for the design of lined triangular channels.
Explicit relations for optimum design of trapezoidal-

family channels

The problem statement described in the previous section has

been solved in the literature. In this regard, several explicit

equations have been recommended for the design of opti-

mum lined channels. Tables 1–3 list the explicit equations

previously suggested for trapezoidal, rectangular and tri-

angular channels, respectively. As shown, four different

models have already been proposed for the optimum

design of lined channels (Swamee et al. ; Aksoy &



Table 1 | Chronological review of explicit relations available for optimum design of trapezoidal channels

Models Equation no. Relations

Swamee et al. () (7) m ¼ 0:57735þ 0:12485 βAL2

βELþ 14:2772 βL

(8) b ¼ 0:43407Lþ 0:15121 βAL3

βELþ 14:2425 βL

(9) y ¼ 0:37592L 1þ 0:22332 βAL2

βELþ 14:2274 βL

� ��1

Aksoy & Altan-Sakarya () – First model (10) m ¼ 0:577þ 0:065 βA�
βL�

(11) b� ¼ 1:118þ 0:177 βA�
βL�

(12) y� ¼ 0:968 1þ 0:104 βA�
βL�

� ��1

Aksoy & Altan-Sakarya () – Second model (13) m ¼ 0:577þ 0:331 βA�
1þ 4:994 βL�

(14) b� ¼ 1:118þ 0:938 βA�
1þ 5:200 βL�

(15) y� ¼ 0:968 1þ 0:541 βA�
1þ 5:101 βL�

� ��1

Niazkar & Afzali () (16) m ¼ 0:5774þ 0:062 β0:9219A� β�0:7096
L�

(17) b� ¼ 1:1175þ 0:1502 β1:0611A� β�0:8094
L�

(18) y� ¼ 0:9678 (1:0018þ 0:7401 β1:1482A� β�0:9071
L� )�0:1589

Table 2 | Chronological review of explicit relations available for optimum design of rectangular channels

Models Equation no. Relations

Swamee et al. () (19) b ¼ 0:71136Lþ 0:22772 βAL3

βELþ 15:0284 βL

(20) y ¼ 0:35568L 1þ 0:30657 βAL2

βELþ 15:0234 βL

� ��1

Aksoy & Altan-Sakarya () – First model (21) b� ¼ 1:834þ 0:246 βA�
βL�

(22) y� ¼ 0:917 1þ 0:129 βA�
βL�

� ��1

Aksoy & Altan-Sakarya () – Second model (23) b� ¼ 1:834þ 1:347 βA�
1þ 5:359 βL�

(24) y� ¼ 0:917 1þ 0:695 βA�
1þ 5:272 βL�

� ��1

Niazkar & Afzali () (25) b� ¼ 1:834þ 0:2227 β0:9861A� β�0:7636
L�

(26) y� ¼ 0:917(1:0091þ 0:9838β1:1369A� β�0:9151
L� )�0:163
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Altan-Sakarya ; Niazkar & Afzali ). In Tables 1–3,

L ¼ λ32=30

n0:4g0:2
://iwaponline.com/jh/article-pdf/22/5/1410/763791/jh0221410.pdf
where g is the gravitational acceleration. Furthermore, geo-

metries for trapezoidal-family channels can be computed

by knowing three parameters: (1) βL�, (2) βA� and (3) λ.

Hence, the relations presented in Tables 1–3 can be used



Table 3 | Chronological review of explicit relations available for optimum design of triangular channels

Models Equation no. Relations

Swamee et al. () (27) m ¼ 1:0þ 0:30389 βAL2

βELþ 15:0491 βL

(28) y ¼ 0:50301L 1þ 0:13973 βAL2

βELþ 15:0389 βL

� ��1

Aksoy & Altan-Sakarya () – First model (29) m ¼ 1:0þ 0:135 βA�
βL�

(30) y� ¼ 1:297 1þ 0:063 βA�
βL�

� ��1

Aksoy & Altan-Sakarya () – Second model (31) m ¼ 1:0þ 0:741 βA�
1þ 5:375 βL�

(32) y� ¼ 1:297 1þ 0:342 βA�
1þ 5:298 βL�

� ��1

Niazkar & Afzali () (33) m ¼ 1:0þ 0:2885 β0:9034A� β�0:7034
L�

(34) y� ¼ 1:2968(1:0018þ 1:8568 β1:0955A� β�0:9007
L� )�0:1168
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for any hydraulically possible conditions while the exclusive

limitation of these empirical formulas is 0<
βA�
βL�

< 2 (Aksoy

& Altan-Sakarya ; Niazkar & Afzali ).
Artificial intelligence models

Two AI models (ANN and GP) were used to design lined

channels with optimum trapezoidal, rectangular and tri-

angular shapes. To the author’s knowledge, this is the first

time that these AI models has been used for the optimum

design of open channels while they have been utilized for

various applications in water resources (Babovic & Keijzer

; Niazkar ; Niazkar et al. b, ). A brief sum-

mary of these models are presented below.

Generally, ANNs consist of several layers while each

layer has some neurons. The interconnection between neur-

ons in different layers builds a flexible architecture. This

characteristic basically enables the prediction of a relation

between a vector of input and a vector of output data. In

this study, a three-layered (input, hidden and output) feed-

forward network was used to predict optimum channel geo-

metries. Each row of the input layer has two normalized

values of βL� and βA�, while the output vector includes a nor-

malized channel geometry.

GP is an AI model which not only adopts genetic algor-

ithm characteristics but also extends them to improve the
om http://iwaponline.com/jh/article-pdf/22/5/1410/763791/jh0221410.pdf
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prediction capability of this well-known optimization algor-

ithm. To be more specific, GP uses initialization, mutation,

reproduction, and survival principles not only to find an

optimum relation between known input and output vectors,

but also to estimate an unknown output vector for a vector

of input values. This AI model consists of functions and

terminals. The former are mathematical and logical oper-

ators and logical conditions while the latter includes

variables and coefficients. The tree-structure between the

functions and terminals typically creates not only powerful

but also flexible estimators. In this study, Discipulus

(Francone ) software, which has been successfully uti-

lized for solving other hydraulic engineering problems

(Niazkar et al. ), was used to employ GP for the optimal

design of trapezoidal-family channels.

New regression-based explicit relations for optimum

design of trapezoidal-family channels

The solutions of the optimum design of trapezoidal-family

channels were used to develop three types of regression-

based explicit equations using MATLAB, which has been

successfully used for numerical modeling and solving engin-

eering problems (Niazkar & Afzali c, d; Motaman

et al. ). The proposed relations include (1) linear, (2)

the second-order polynomial and (3) the third-order poly-

nomial equations. Because of the nonlinear relations



Table 4 | New second-order nonlinear explicit relations developed by regression for optimum design of lined channels

Channel type Equation no. Relations

Trapezoidal channel (35)
m ¼ 0:5954� 0:0165 βL� þ 0:08641 βA� þ 0:002831 β2L�

� 0:01313 βL�βA� � 0:01345 β2A�

(36)
b� ¼ 1:161� 0:04151 βL� þ 0:1975 βA� þ 0:007338 β2L�

� 0:03368 βL�βA� � 0:02153 β2A�

(37)
y� ¼ 0:9444þ 0:02165 βL� � 0:1114 βA� � 0:003735 β2L�

þ 0:01729 βL�βA� þ 0:01646 β2A�

Rectangular channel (38)
b� ¼ 1:899� 0:06121 βL� þ 0:3019 βA� þ 0:01065 β2L�

� 0:04859 βL�βA� � 0:04081 β2A�

(39)
y� ¼ 0:8888þ 0:0256 βL� � 0:135 βA� � 0:004363 β2L�

þ 0:02004 βL�βA� þ 0:02252 β2A�

Triangular channel (40)
m ¼ 1:085� 0:07673 βL� þ 0:4048 βA� þ 0:01309 β2L�

� 0:05977 βL�βA� � 0:06905 β2A�

(41)
y� ¼ 1:253þ 0:03746 βL� � 0:2207 βA� � 0:006158 β2L�

þ 0:0283 βL�βA� þ 0:04899 β2A�
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between channel geometries, βL� and βA�, the linear

equations may have relatively large errors in the direct cal-

culation of channel properties, while the third-order

polynomial equations have relatively more terms than the

explicit equations available in the literature. Thus, these

two regression-based equations and their performances are

presented in the Appendix, while the second-order

regression-based equations, as a suitable choice between a

trade-off between accuracy and formula complexity, are

shown in Table 4 for trapezoidal-family channels. Although

the regression-based explicit equations enable direct calcu-

lation of channel geometries, it requires specifying the type

of relation before curve fitting. However, the AI models,

like ANN and GP, do not require not only coefficient

values, but also the type of formulation in advance, which

is considered as one of the advantages of AI models over

regression analysis (Niazkar & Niazkar ). The advan-

tage of explicit equations, which are available in the

literature and shown in Tables 1–3, to the proposed

regression-based models is that the former, unlike the

latter, can give the exact optimum solutions for βA� ¼ 0,

which is a simplified channel-construction condition

(Niazkar & Afzali ).
://iwaponline.com/jh/article-pdf/22/5/1410/763791/jh0221410.pdf
Performance evaluation metrics

For comparison purposes, five criteria were adopted from

the literature (Niazkar & Afzali ; Niazkar et al. c).

These performance evaluation metrics are: (1) Root Mean

Square Error (RMSE), (2) mean absolute error (MAE), (3)

mean Absolute Relative Error (MARE), (4) Relative Error

(RE), and (5) coefficient of determination (R2). Lower

values of the first four of these metrics indicate better results,

whereas the higher the value of R2, the closer the results to

the benchmark solutions. Furthermore, RMSE, MAE,

MARE and R2 compare the results for the whole test data

while RE is a local criterion that needs to be computed for

each data point. The five criteria can be calculated for

each channel geometry, and they are written for y� in the fol-

lowing equations, respectively:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

(y�,database � y�,estimated)
2

vuut (42)

MAE ¼ 1
N

XN
i¼1

jy�,database � y�,estimatedj (43)
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MARE ¼ 1XN j y�,database � y�,estimated j × 100 (44)

N

i¼1
y�,database

RE ¼ y�,estimated � y�,database
y�,database

(45)

R2¼

PN
i¼1

y�,database�
PN

i¼1y�,database
N

 !
y�,estimated�

PN
i¼1y�,estimated

N

 !" #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where y�,database and y�,estimated are dimensionless water

depths which are the final solution and predicted results,

respectively.
RESULTS AND DISCUSSION

The problems of optimum design of lined trapezoidal-family

channels were separately solved by the MHBMO algorithm.

This algorithm has been successfully used for the optimum

design of lined channels (Niazkar & Afzali ; Niazkar

et al. ) and other optimization problems in hydraulic

and water resources engineering (Niazkar & Afzali ,

, a, b). The design problem for each channel

shape (trapezoidal, rectangular and triangular) was solved

for 146 pairs of different values βA� and βL�. Hence, one

set of data (146 data points) for the optimum design of trape-

zoidal channels, one set of data (146 data points) for the

optimum design of rectangular channels and one set of

data (146 data points) for the optimum design of triangular

channels were developed.

The bound considered for βA� and βL�

0<
βA�
βL�

< 2
� �

was adopted from previous studies in the literature (Aksoy

& Altan-Sakarya ; Niazkar & Afzali ). The upper

bound of this range is applicable for Q¼ 100 m3/s, n¼
0.033 and S¼ 0.0002 (λ ¼ 7:727). These data were used to

either develop equations or were used by AI models for cal-

culating each channel geometry, like b�, while each row of
om http://iwaponline.com/jh/article-pdf/22/5/1410/763791/jh0221410.pdf
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data consists of three values: (1) βA�, (2) βL�, and (3) b�.

Thus, each row of data is not designated to a set of specific

values of Q, b, S0, n, and y, whereas it corresponds to a set

dimensionless parameters (βA�, βL�, and b�). This dimension-

less set of parameters can cover many combinations of Q, b,

S0, n, and y, while each combination can have a different

set of values for Q, b, S0, n, and y. Therefore, the 146 data

used for each channel property can cover a wide range of

values.

Each one of the data sets was normalized using the

maximum and minimum values of each dataset. Afterwards,

each one of these three datasets was randomly divided into

two parts. The first part, which includes 110 data points, was

applied to train the AI models, while the rest (36 data points

in each one of the three data sets) was utilized as the test

data. The latter provides an opportunity to compare the per-

formance of AI models with those of explicit equations

available in the literature.

The solutions proposed by the explicit equations shown

in Tables 1–4, the ones in the Appendix and those by ANN

and GP are applicable to the problem statement defined in

Equations (3)–(6). They are valid when the parameters

involved in this problem satisfy 0<
βA�
βL�

< 2. Obviously,

any change in either problem constraints or the factors

that play the key role in the cost function yield to a new pro-

blem with a different governing equation. In that case, the

aforementioned solutions need to be revised.

Results for optimum design of trapezoidal channels

The performances of the two AI models for the optimum

design of trapezoidal channels are compared with those of

nonlinear regression-based models and four models avail-

able in the literature. Table 5 indicates that two AI models

employed in this study outperformed other explicit models

for calculating optimum m of trapezoidal channels in

terms of all four criteria considered. Among the explicit

equations listed in Table 5, Equation (16) reached the closest

values to the final solutions for computing m for trapezoidal

channels. The comparison carried out in Table 5 demon-

strates that ANN is the best model whereas GP did not

achieve better results than available explicit equations for

predicting optimum b� of trapezoidal channels. Further-

more, the second best model in Table 5 is Equation (14) in



Table 5 | Comparison of different models for optimum design of lined trapezoidal channels

Model Equation no. RMSE MAE R2 MARE

(a) For calculating optimum m

Swamee et al. () (7) 0.0079 0.0064 0.9881 0.0104

Aksoy & Altan-Sakarya () – First model (10) 0.0091 0.0055 0.9581 0.0087

Aksoy & Altan-Sakarya () – Second model (13) 0.0091 0.0055 0.9581 0.0087

Niazkar & Afzali () (16) 0.0015 0.0011 0.9960 0.0018

Nonlinear regression (this study) (35) 0.0065 0.0041 0.9390 0.0067

ANN (this study) – 0.0001 0.0001 1.0000 0.0001

GP (this study) – 0.0000 0.0000 1.0000 0.0000

(b) For calculating optimum b�

Swamee et al. () (8) 0.0030 0.0029 0.9998 0.0025

Aksoy & Altan-Sakarya () – First model (11) 0.0271 0.0109 0.9837 0.0084

Aksoy & Altan-Sakarya () – Second model (14) 0.0009 0.0007 0.9999 0.0006

Niazkar & Afzali () (17) 0.0026 0.0019 0.9982 0.0016

Nonlinear regression (this study) (36) 0.0208 0.0124 0.9105 0.0101

ANN (this study) – 0.0006 0.0002 0.9999 0.0001

GP (this study) – 0.0043 0.0011 0.9975 0.0008

(c) For calculating optimum y�

Swamee et al. () (9) 0.0019 0.0016 0.9975 0.0017

Aksoy & Altan-Sakarya () – First model (12) 0.0110 0.0048 0.9789 0.0054

Aksoy & Altan-Sakarya () – Second model (15) 0.0030 0.0026 0.9981 0.0028

Niazkar & Afzali () (18) 0.0012 0.0009 0.9987 0.0009

Nonlinear regression (this study) (37) 0.0089 0.0056 0.9340 0.0062

ANN (this study) – 0.0028 0.0010 0.9948 0.0012

GP (this study) – 0.0005 0.0002 0.9998 0.0003
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terms of RMSE, MAE, R2 and MARE. For calculating

optimum y� of trapezoidal channels, Table 5 obviously

shows that GP yielded to the best results comparing to

other models, while Equation (13) obtains the best second

results in this table. Also, ANN may be recognized as the

third best model in Table 5 based on RMSE, MAE and

MARE.

The relative errors of trapezoidal geometries predicted

by the AI models are depicted in Figure 1 for the test data.

As shown, RE values of y� predicted by ANN and GP are

placed within [–0.0035, 0.0179] and [–0.0022, 0.0010],

respectively. Additionally, the averages of absolute RE for

y� calculated by ANN and GP are 0.0012 and 0.0003,

respectively. These results confirm the ones reported in

Table 5 which indicate that GP estimated y� values closer
://iwaponline.com/jh/article-pdf/22/5/1410/763791/jh0221410.pdf
to the final solutions than ANN. According to Figure 1,

the bounds of RE values for b� obtained by ANN and GP

are [–0.0024, 0.0003] and [–0.0150, 0.0003], respectively.

Furthermore, the averages of absolute RE for y� computed

by ANN and GP are 0.0001 and 0.0008, respectively.

These results are in line with those shown in Table 5 indicat-

ing that ANN performs better than GP in predicting

optimum b� for trapezoidal channels. Also, the RE values

of optimum m achieved by ANN and GP vary within

[–0.0005, 0. 0005] and [–0.0001, 0.0001], respectively, while

the averages of absolute RE obtained by ANN and GP are

0.0001 and zero. Based on these results, GP performs

better than ANN in the computation of optimum m of trape-

zoidal channels while they both reach very close results to

the final solution. Comparing different bounds of RE



Figure 1 | Relative errors computed for optimum trapezoidal channels predicted by ANN and GP: (a) y� , (b) b� and (c) m.
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values shown in Figure 1 reveals that the AI models

achieved much closer results for optimum m than y� and b�.

Results for optimum design of rectangular channels

The performances of five explicit equations, ANN and GP

are compared for predicting optimum b� and y� of rectangu-

lar channels in Table 6, respectively. In Table 6 both AI

models performed not only quite the same but also much

better than other explicit models for calculating optimum

b� in terms of all four criteria considered. Likewise,

Table 6 indicates that both AI models applied in this study

outperformed explicit equations available for predicting

optimum y� of rectangular channels. Among the explicit

equations compared in Table 6, Equations (25) and (26)

achieved the highest R2 and the lowest RMSE, MAE and
om http://iwaponline.com/jh/article-pdf/22/5/1410/763791/jh0221410.pdf
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MARE for optimum b� and y�, respectively. Finally,

Table 6 shows that both ANN and GP significantly

improved the accuracy of predicting b� and y� in the opti-

mum design of rectangular channels.

Figure 2 shows the RE values of estimated y� and b� of

rectangular channels for 36 test data points. Based on

Figure 2, the optimum values of y� predicted by ANN and

GP result to RE values placed within [–0.0009, 0.0] and

[–0.0005, 0.0021], respectively. Furthermore, the averages

of absolute RE for y� computed by ANN and GP are

0.0001 and 0.0003, respectively. These results are consistent

with the ones mentioned in Table 6 which shows that ANN

obtained optimum y� values much closer to the final sol-

utions than GP, while they both have increased the

accuracy of available explicit equations. According to

Figure 2, the boundaries of RE values for calculating



Table 6 | Comparison of different models for optimum design of lined rectangular channels

Model Equation no. RMSE MAE R2 MARE

(a) For calculating optimum b�

Swamee et al. () (19) 0.0129 0.0121 0.9966 0.0063

Aksoy & Altan-Sakarya () – First model (21) 0.0335 0.0144 0.9754 0.0070

Aksoy & Altan-Sakarya () – Second model (23) 0.0099 0.0082 0.9972 0.0042

Niazkar & Afzali () (25) 0.0041 0.0030 0.9977 0.0015

Nonlinear regression (this study) (38) 0.0276 0.0169 0.9234 0.0085

ANN (this study) – 0.0002 0.0001 1.0000 0.0000

GP (this study) – 0.0002 0.0001 1.0000 0.0001

(b) For calculating optimum y�

Swamee et al. () (20) 0.0026 0.0022 0.9948 0.0025

Aksoy & Altan-Sakarya () – First model (22) 0.0116 0.0058 0.9749 0.0071

Aksoy & Altan-Sakarya () – Second model (24) 0.0050 0.0042 0.9955 0.0048

Niazkar & Afzali () (26) 0.0013 0.0010 0.9988 0.0011

Nonlinear regression (this study) (39) 0.0089 0.0063 0.9412 0.0074

ANN (this study) – 0.0002 0.0001 1.0000 0.0001

GP (this study) – 0.0004 0.0003 0.9999 0.0003

Figure 2 | Relative errors computed for optimum rectangular channels predicted by ANN and GP: (a) y� and (b) b�.
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optimum b� achieved by ANN and GP vary within [–0.0002,

0.0005] and [–0.0006, 0.0], respectively. Furthermore, the

averages of absolute RE for y� computed by ANN and GP

are zero and 0.0001, respectively. These results align with

those shown in Table 6 obviously indicate that both AI

models improve the results of optimum b� predicted for rec-

tangular channels. Finally, investigating the variation of RE

values achieved by the AI models indicate that they can

improve the prediction of optimum geometries of lined
://iwaponline.com/jh/article-pdf/22/5/1410/763791/jh0221410.pdf
rectangular channels in comparison with the available expli-

cit models.

Results for optimum design of triangular channels

Table 7 compares the performances of the AI models with

those of available explicit equations for predicting optimum

m of lined triangular channels. As shown, ANN outper-

formed other models for calculating optimum m, while GP



Table 7 | Comparison of different models for optimum design of lined triangular channels

Model Equation no. RMSE MAE R2 MARE

(a) For calculating optimum m

Swamee et al. () (27) 0.0947 0.0699 0.9878 0.0585

Aksoy & Altan-Sakarya () – First model (29) 0.0777 0.0608 0.9594 0.0515

Aksoy & Altan-Sakarya () – Second model (31) 0.0931 0.0687 0.9893 0.0575

Niazkar & Afzali () (33) 0.0059 0.0043 0.9972 0.0038

Nonlinear regression (this study) (40) 0.0308 0.0194 0.9365 0.0163

ANN (this study) – 0.0005 0.0002 1.0000 0.0001

GP (this study) – 0.0027 0.0011 0.9997 0.0008

(b) For calculating optimum y�

Swamee et al. () (28) 0.0442 0.0347 0.9664 0.0291

Aksoy & Altan-Sakarya () – First model (30) 0.0394 0.0327 0.9315 0.0272

Aksoy & Altan-Sakarya () – Second model (32) 0.1167 0.0842 0.9600 0.0712

Niazkar & Afzali () (34) 0.0017 0.0013 0.9990 0.0011

Nonlinear regression (this study) (41) 0.0120 0.0080 0.9569 0.0067

ANN (this study) – 0.0030 0.0010 0.9987 0.0009

GP (this study) – 0.0018 0.0007 0.9990 0.0006
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is the second best model in terms of all four criteria con-

sidered. Among the explicit equations in Table 7, Equation

(33) achieved the best results. Additionally, Table 7 indicates

that GP yielded to the best optimum y� values for lined tri-

angular channels, while ANN obtained the second best

values of RMSE, MAE and MARE for optimum y�. Among

the explicit equations in Table 7, Equation (34) reached

the closest optimum y� to the final solutions compared

with other models. Finally, Table 7 demonstrates the super-

iority of ANN and GP in the estimation of optimum m and

y� in the design of lined triangular channels.

The variations of RE values of y�and m of lined triangu-

lar channels predicted by ANN and GP are shown in

Figure 3 for the test data. According to Figure 2, RE

values of the optimum y� predicted by ANN and GP are

within [–0.0105, 0.0014] and [–0.0093, 0.0026], respectively.

Moreover, the averages of absolute RE for y� obtained by

ANN and GP are 0.0009 and 0.0006, respectively. These

results are in agreement with those mentioned in Table 7

that implies the superiority of the AI models in the predic-

tion of optimum y� in the design of lined channels with

triangular shapes. Additionally, Figure 3 shows that the vari-

ations of RE values for optimum m estimated by ANN and

GP are placed within [–0.0002, 0.0018] and [–0.0017,
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0.0085], respectively. In addition, the averages of absolute

RE for m calculated by ANN and GP are 0.0001 and

0.0008, respectively. These results and those shown in

Table 7 clearly indicate that ANN and GP are the first and

second best models in the prediction of optimum m for the

design of lined triangular channels. Finally, the comparison

made between the performances of different models for the

optimum design of trapezoidal-family channels clearly indi-

cate that the AI models considerably improved such designs.

Comparison of dimensionless cost for optimum design

of lined channels

Based on the channel geometries obtained by ANN, GP and

five explicit equations, the dimensionless costs were calculated

for trapezoidal, rectangular and triangular canals using

Equations (4)–(6), respectively. The dimensionless costs com-

puted for the test data are compared in Table 8 using the

four metrics considered. For trapezoidal canals, the second-

order regression-based model resulted in the lowest RMSE,

while GP yielded to the best MAE value and the second

lowest MARE. Among the different models shown in

Table 8, GP achieved the lowest dimensionless costs for

triangular channels based on three metrics, while ANN



Figure 3 | Relative errors computed for optimum rectangular channels predicted by ANN and GP: (a) y� and (b) m.

Table 8 | Comparison of different models for dimensionless cost of lined channels

Model RMSE MAE R2 MARE

(a) Trapezoidal channels

Swamee et al. () 0.0072 0.0059 1.0000 0.0008

Aksoy & Altan-Sakarya () – First model 0.0262 0.0247 1.0000 0.0025

Aksoy & Altan-Sakarya () – Second model 0.0066 0.0059 1.0000 0.0006

Niazkar & Afzali () 0.0066 0.0058 1.0000 0.0006

Nonlinear regression – the 2nd-order polynomial (this study) 0.0064 0.0047 1.0000 0.0006

ANN (this study) 0.0136 0.0061 1.0000 0.0012

GP (this study) 0.0077 0.0030 1.0000 0.0007

(b) Rectangular channels

Swamee et al. () 0.0459 0.0428 1.0000 0.0040

Aksoy & Altan-Sakarya () – First model 0.0060 0.0050 1.0000 0.0006

Aksoy & Altan-Sakarya () – Second model 0.0059 0.0048 1.0000 0.0005

Niazkar & Afzali () 0.0085 0.0070 1.0000 0.0008

Nonlinear regression – the 2nd-order polynomial (this study) 0.0082 0.0065 1.0000 0.0007

ANN (this study) 0.0005 0.0003 1.0000 0.0001

GP (this study) 0.0024 0.0017 1.0000 0.0002

(c) Triangular channels

Swamee et al. () 0.0239 0.0192 1.0000 0.0022

Aksoy & Altan-Sakarya () – First model 0.0495 0.0471 1.0000 0.0046

Aksoy & Altan-Sakarya () – Second model 0.0107 0.0063 1.0000 0.0010

Niazkar & Afzali () 0.5368 0.4135 0.9958 0.0577

Nonlinear regression – the 2nd-order polynomial (this study) 0.0289 0.0225 1.0000 0.0026

ANN (this study) 0.0174 0.0066 1.0000 0.0014

GP (this study) 0.0099 0.0068 1.0000 0.0010
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outperformed others in the calculation of dimensionless costs

for the rectangular channels. Therefore, Table 8 demonstrates

that AI models achieved the lowest dimensionless costs of tra-

pezoidal-family lined channels in ten out of twelve scenarios.
CONCLUSIONS

One of the important challenges facing engineers in water

resources management is the design of manmade canals

for cost-effective water conveyance. Since the water

resources are not necessarily close to where water is in

need, water conveyance through artificial and mostly lined

canals are practically inevitable. In the hydraulic viewpoint,

optimum channel design has been treated as an optimiz-

ation problem, which comprises a channel cost and a

resistance equation as the objective function and constraint,

respectively. Evidently, each and every variable that plays a

role in real-life projects cannot be considered in the channel

cost. However, the most prominent factors such as earth-

work and lining costs have been taken into account in

previous studies. In this regard, a well-established design

optimization problem adopted from the literature was

solved to determine optimal dimensions of three widely-

common channels shapes: trapezoidal, rectangular and tri-

angular sections. The main contribution of this study is the

application of two AI models (ANN and GP) to design opti-

mum trapezoidal-family lined channels. For each

dimensionless property of these channels, the design pro-

blem was solved for 146 different conditions, while these

data were randomly divided into two parts. The first 110

data were used to train the two AI models, while the rest

was utilized for comparison purposes. Additionally, three

regression-based explicit models were developed for each

of the channel’s properties. The performances of ANN and

GP were compared with those of new regression-based

relations and explicit equations available in the literature.

The comparison, which was carried out for five performance

evaluation criteria, indicates that the AI models outper-

formed both the previously recommended explicit

formulas and the new regression-based models. Moreover,

the range of relative errors achieved by the AI models for

dimensionless channel geometries placed within [–0.0150,

0.0179] for the trapezoidal section, [–0.0009, 0.0021] for
om http://iwaponline.com/jh/article-pdf/22/5/1410/763791/jh0221410.pdf
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the rectangular section, and [–0.0105, 0.0085] for the

triangular section for the test data, respectively. These

error bounds obviously demonstrate the high precision of

AI models in the optimum design of trapezoidal-family

channels. Finally, comparison of dimensionless costs of

different models demonstrates that the AI models achieved

the lowest dimensionless costs of the trapezoidal-family

lined channels in ten out of twelve scenarios.
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