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Abstract: Geopolymers might be the superlative alternative to conventional cement because it
is produced from aluminosilicate-rich waste sources to eliminate the issues associated with its
manufacture and use. Geopolymer composites (GPCs) are gaining popularity, and their research is
expanding. However, casting, curing, and testing specimens requires significant effort, price, and
time. For research to be efficient, it is essential to apply novel approaches to the said objective. In this
study, compressive strength (CS) of GPCs was anticipated using machine learning (ML) approaches,
i.e., one single method (support vector machine (SVM)) and two ensembled algorithms (gradient
boosting (GB) and extreme gradient boosting (XGB)). All models’ validity and comparability were
tested using the coefficient of determination (R2), statistical tests, and k-fold analysis. In addition,
a model-independent post hoc approach known as SHapley Additive exPlanations (SHAP) was
employed to investigate the impact of input factors on the CS of GPCs. In predicting the CS of GPCs,
it was observed that ensembled ML strategies performed better than the single ML technique. The
R2 for the SVM, GB, and XGB models were 0.98, 0.97, and 0.93, respectively. The lowered error
values of the models, including mean absolute and root mean square errors, further verified the
enhanced precision of the ensembled ML approaches. The SHAP analysis revealed a stronger positive
correlation between GGBS and GPC′s CS. The effects of NaOH molarity, NaOH, and Na2SiO3 were
also observed as more positive. Fly ash and gravel size: 10/20 mm have both beneficial and negative
impacts on the GPC′s CS. Raising the concentration of these ingredients enhances the CS, whereas
increasing the concentration of GPC reduces it. Gravel size: 4/10 mm has less favorable and more
negative effects. ML techniques will benefit the construction sector by offering rapid and cost-efficient
solutions for assessing material characteristics.

Keywords: alternative binder; geopolymers; compressive strength; artificial intelligence; machine
learning; modeling; SHAP plots

1. Introduction

Ordinary Portland cement (OPC), the extensively utilized cementitious ingredient
in concrete globally, is connected with high energy demand and significant CO2 dis-
charges as a result of the manufacturing processes [1–6]. OPC manufacturing emits around
4 billion tons of CO2 annually and emits nearly 5–7% of overall CO2 worldwide [7,8].
Numerous measures have been attempted to mitigate the effects of OPC production and
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consumption in response to growing concerns about environmental protection and climate
change [9–13]. These consist of the use of supplementary cementitious materials (SCMs),
as well as the recycling of waste materials, in order to decrease the dependency on OPC
in construction [14–20]. However, the percentages of these SCMs utilized in place of OPC
are frequently regulated [21–23]. Using fly ash as an example, while it exhibits pozzolanic
properties at various phases of OPC hydration, it plays a minor influence in early strength
development [24–29]. The inclusion of fly ash can decrease the rate of initial hydration
and lengthen the time of setting [30–32], limiting their application in large contents. Using
alkali activation to create more ecologically friendly cementitious binders is one of the
most researched ways of completely replacing OPC [33–36]. Alkali-activated materials
(AAMs) do not require the elevated-temperature, high-energy calcination method used to
produce OPC clinker [37–39]. AAMs, also known as geopolymers, are polymeric alumi-
nosilicate cementing ingredients with three-dimensional spatial complex topologies that
are mostly composed of industrial wastes (e.g., fly ash) and activated with an alkaline
agent (e.g., NaOH, Na2SiO3) [40–42]. Due to their unique chemical composition, geopoly-
mers have advantageous mechanical performance and durability. From environmental
aspects, these methods are more appealing than OPC-based mixes due to the reuse of waste
materials as the primary binder component [43–45].

Predictive models for material strength are being developed to eliminate needless
experimental repeats and ingredient wastages. Numerous common models are used to
simulate the properties of concrete, including best-fit curves (established on regression
evaluation). Nevertheless, due to the nonlinear character of cementitious materials [46,47],
regression techniques created in this manner might not sufficiently reflect the material′s
basic behavior. Furthermore, regression approaches may overestimate the contribution of
certain elements [48]. Artificial intelligence methods, such as supervised machine learning
(ML), are among the most refined modeling methods used in the present study area [49–53].
These methods utilize input variables to model responses, and the yield models are sup-
ported by testing. ML techniques are used to anticipate concrete and bituminous mixtures
characteristics [54–62]. Most previous ML-based studies have concentrated on predict-
ing the compressive strength (CS) of OPC-based materials [63–69]; only a few articles
concentrated on predicting the characteristics of geopolymer composites.

This study focuses on the application of ML techniques to assess the CS of GPCs.
Three distinct ML techniques were employed: support vector machine (SVM), gradient
boosting (GB), and extreme gradient boosting (XGB), and their performance was evaluated
using coefficients of determination (R2), k-fold, statistical tests, and divergence of estimated
results (errors) from those of experimental. SVM is a single ML method, while GB and XGB
are ensemble ML methods [70]. This study is noteworthy because it predicts the CS of GPC
by applying both single and ensemble ML algorithms. However, experimental researches
require considerable human effort, experimental expenses, and time for ingredients collec-
tion, casting, curing, and testing. By addressing the aforementioned challenges through
the use of new methods such as ML, the building industry will obtain an advantage. Due
to the fact that a range of elements, such as precursors, activators, aggregates, etc., affect
GPC’s CS, it is hard to investigate their collective effect using experimental methods. With
minimum effort, ML methods are adept at determining the collective impact of their com-
ponents in a single study. A data set is required for ML methods, which might be acquired
from the literature since various experimental studies have been undertaken to establish
the CS of GPC. The collected data may subsequently be utilized to train ML algorithms
and forecast material attributes. Previous research used ML algorithms to predict the
GPC′s mechanical strength using a reduced quantity of input factors and data samples.
For instance, Dao et al. [71] used ML methods to predict the CS of GPC using three input
factors and 210 data points. Similar to the previous study, another employed four input
factors and 210 data samples [72]. The current research employed nine input factors and
371 data samples to anticipate the CS of GPCs and evaluate the effectiveness of several ML
approaches. It is believed that increasing the number of input factors and data samples
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would improve the accuracy of ML approaches. The purpose of this work is to discover the
best suitable ML technique for predicting the CS of GPC and the effect of several parameters
on GPC strength.

This study is also novel in that it involves the comparative study of the employed
ML algorithms for recommending the high-precision approach in the further studies for
predicting the CS of GPC. These approaches are also beneficial for the researchers and the
construction industries to minimize the experimental efforts, cost, and time of the project.

2. Methods
2.1. Data Retrieval and Analysis

SML methods require a wide variety of input variables in order to produce the desired
output [73]. The CS of GPC was calculated using data from the scientific literature (see
Table S1 in supplementary materials). In order to prevent bias, experimental data were
selected at random from the published literature. This study gathered CS-based data points
to run the algorithms, whereas the majority of articles studied additional aspects of GPC.
Fine aggregate, GGBS, fly ash, NaOH molarity, NaOH, water/solids ratio, Na2SiO3, and
gravel size: 10/20 and 4/10 mm were included as input variables in the algorithms, with CS
serving as the output parameter. The number of inputs and datasets has a major effect on
the output of the model [41]. In the present study, 371 data points were utilized to execute
ML algorithms (see Supplementary Materials). The data were retrieved by keeping the mix
proportions and required outcome in consideration as models required a similar number of
input parameters for each mix to run it for the required output. The data used in this study
were retrieved from the literature, so many of the tests were performed in the different
zones, testing setups, and geometry setups. However, this variation in different testing
setups, arrangements, or geometry of samples does not affect the study’s main findings, as
the models required only input variables and outcomes, irrespective of the testing setup
and arrangements. Each input variable′s descriptive statistics are summarized in Table 1.
The normalization process was also adopted for the selected data. Normalization is the
process of structuring data in a database. This entails constructing tables and developing
links between those tables according to rules designed both to safeguard the data and to
make the database more adaptable by removing redundancy and inconsistent reliance. The
word “descriptive statistics” refers to a collection of short, factual measures that yield an
outcome, which may be the entire population or a subset of it. The mean, median, and
mode variables show fundamental tendencies, whereas the maximum, minimum, and
standard deviation variables represent variation. Table 1 contains all the mathematical
terms for the input variables of the model. The distribution of each input factor with CS
is depicted in Figure 1. The frequency distribution is shown diagonally, along with the
correlation between each input and output parameter. The growing trend of the line graph
for each x-axis input/output parameter indicates a positive/negative connection with the
y-axis input/output parameter under consideration. The straight line, on the other hand,
demonstrates no link between the parameters. The correlation pattern of input parameters
with the CS is depicted in Figure 2.

2.2. Machine Learning Algorithms Employed

In order to meet the study′s aims, an individual ML method (SVM) and ensemble
ML approaches (GB and XGB) were employed in conjunction with Python coding using
the Anaconda Navigator package. Spyder (version 4.3.5) was used to run the SVM, GB,
and XGB models. These techniques are frequently used to forecast desired outcomes in the
presence of input parameters. These techniques can anticipate the temperature impacts,
the strength characteristics, and the material′s durability, among other things [74,75]. Nine
input factors and one output (CS) were used throughout the modeling phase. The projected
result’s R2 value reflects the performance of the models employed. The R2 value indicates
the degree of divergence; a value near zero indicates greater divergence, while a value
near one indicates that the model and experimental data are nearly perfectly fit [40]. The
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subsequent sub-segments describe the ML approaches used in this study. Moreover, k-fold,
statistical, as well as error evaluations were performed on all models involving root mean
square error (RMSE) and mean absolute error (MAE). Additionally, a model-independent
post hoc procedure called SHapley Additive exPlanations (SHAP) was used to examine the
impact of input factors on the CS of GPCs. The research plan is depicted in Figure 3.

Table 1. Descriptive measurements of input and output variables.

Parameter
Fine

Aggregate
(kg/m3)

GGBS
(kg/m3)

Fly Ash
(kg/m3)

NaOH
Molarity

Water/Solids
Ratio

Na2SiO3
(kg/m3)

NaOH
(kg/m3)

Gravel
Size:

4/10 mm
(kg/m3)

Gravel
Size:

10/20 mm
(kg/m3)

CS
(MPa)

Mean 729.88 225.15 174.34 8.14 0.34 111.66 53.74 288.39 737.37 43.28
Mode 651 0 0 10 0.53 108 64 0 0 56.00

Median 728 300 120 9.2 0.34 108 56 208 789 42.10
Maximum 1360 450 523 20 0.63 342 147 1293.4 1298 86.08
Minimum 459 0 0 1 0 18 3.5 0 0 8.00
Standard
Deviation 130.97 162.27 167.95 4.56 0.11 48.16 31.91 372.31 358.55 17.87

Sum 26,4947.79 81,728.05 63,286.04 2955.11 124.78 40,532.68 19,508.75 104,684.28 267,664.93 15,710.40
Range 901 450 523 19 0.63 324 143.5 1293.4 1298 78.08

Standard
Error 6.87 8.52 8.82 0.24 0.01 2.53 1.67 19.54 18.82 0.94
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2.2.1. Support Vector Machine

SVM is a term that refers to supervised learning algorithms and related learning
algorithms employed to evaluate data for classification and regression evaluation. An
SVM technique is a description of the samples as points in space that have been plotted
in such a manner that the patterns of the distinct classifications are split by a distinct
vector (line/plane) with a gap as large as feasible. Other instances are then overlaid into
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that similar space and classified according to which side of the vector they lie on, as seen
in Figure 4. Figure 5 depicts the SVM model’s implementation method. The material
strength was estimated using this model, which takes into consideration the combined
influence of several elements. The optimization technique was utilized to ascertain the
SVM model’s parameters.
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2.2.2. Gradient Boosting

In 1999, Friedman [77] proposed GB as a classification and regression ensemble ap-
proach. GB is useful exclusively for regression. Figure 6 depicts that the GB method relates
every single repetition of the arbitrarily selected training dataset to the base model. By
arbitrarily subsampling the training dataset, which also prevents overfitting, execution
time may be sped up, and accuracy can be raised. The less the amount of training dataset,
the quicker the regression since each iteration of the model must include minimal data. GB
technique involves modification parameters, comprising n-trees and shrinkage rate, where
n-trees are the number of trees to be formed; n-trees must not be maintained too small, and
the shrinkage factor, also known as the learning rate, applied to all trees in progress, must
not be kept too high [78].



Polymers 2022, 14, 2509 8 of 22

Polymers 2022, 14, x 8 of 25 
 

 

 

Figure 5. Support vector machine algorithm schematic representation. 

2.2.2. Gradient Boosting 

In 1999, Friedman [77] proposed GB as a classification and regression ensemble ap-

proach. GB is useful exclusively for regression. Figure 6 depicts that the GB method relates 

every single repetition of the arbitrarily selected training dataset to the base model. By 

arbitrarily subsampling the training dataset, which also prevents overfitting, execution 

time may be sped up, and accuracy can be raised. The less the amount of training dataset, 

the quicker the regression since each iteration of the model must include minimal data. 

GB technique involves modification parameters, comprising n-trees and shrinkage rate, 

where n-trees are the number of trees to be formed; n-trees must not be maintained too 

small, and the shrinkage factor, also known as the learning rate, applied to all trees in 

progress, must not be kept too high [78]. 

 

Figure 6. Schematic representation of gradient boosting technique [79]. 

2.2.3. Extreme Gradient Boosting 

The fundamental concept underlying the projected XGB model is to construct an op-

timization job utilizing a genetic algorithm on top of the classifier in order to improve the 

classification precision of smaller groups, devoid of substantially compromising the 

Data collection

Testing data

SVM
Save mode 

parameters

Crossover

Results 

comparison

Training 

data

Final SVM 

model

Poor Good

80% 20%

1st tree
• Calculate residuals

2nd tree
• Tree after adjusting for residuals

Nth tree

• Final tree after adjusting residuals 
multiple times

Figure 6. Schematic representation of gradient boosting technique [79].

2.2.3. Extreme Gradient Boosting

The fundamental concept underlying the projected XGB model is to construct an
optimization job utilizing a genetic algorithm on top of the classifier in order to improve
the classification precision of smaller groups, devoid of substantially compromising the
classification precision of other groups. The genetic algorithm creates arbitrary estimates
for the XGB in order to establish a new decision threshold with the greatest genetic fitness
rate [80]. Particularly, the XGB model consists of the following four phases: producing the
population of parameter values, choosing the population of parameter values, training the
decision function, and assessing the fitness function. Figure 7 depicts the XGB flowchart.
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3. Analysis of Results
3.1. Support Vector Machine Model

Figure 8 depicts the findings of the SVM method for GPC’s CS. Figure 8a illustrates
the relationship between actual data (experimental) and forecasted results. The SVM
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method yielded outcomes with a fair degree of precision and a minor discrepancy between
actual and forecasted findings. The R2 value of 0.93 demonstrates the higher accuracy
of the SVM technique in predicting the CS of GPC. Figure 8b depicts the scattering of
experimental, projected, and divergence values (errors) for the SVM model. After analyzing
the error values, it was discovered that the minimum, mean, and maximum values were
0.20 MPa, 4.04 MPa, and 8.39 MPa, respectively. In addition, the proportion dissemination
of divergence values was established, and it was observed that 37% were lying below
3 MPa, 37% were in the range of 3–6 MPa, and 26% were greater than 6 MPa. In addition,
the variance of diverged values suggests that the SVM technique performed adequately in
predicting the CS of GPC.
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3.2. Gradient Boosting Model

Figure 9a,b present an evaluation of the actual and estimated findings of the GB model.
Figure 9a illustrates the correlation between actual and forecasted results, with an R2 of
0.97 indicating that the GB technique is more accurate than the SVM in forecasting the
CS of GPC. The scattering of experimental, projected, and diverged values (errors) for
the GB technique are depicted in Figure 9b. It was determined that the lowest, average,
and maximum errors were 0.23 MPa, 2.27 MPa, and 6.30 MPa, respectively. The error
distribution was 16.4% below 1 MPa, 60.3% between 1 and 3 MPa, and 23.3% above 3 MPa.
In addition, these decreased error levels suggest that the GB model is more accurate than
the SVM model. The improved accuracy of the GB model is due to the formation of twenty
sub-models and using the one with the optimized R2 value.
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3.3. Extreme Gradient Boosting Model

Figure 10 displays the outcomes of the XGB method for predicting the GPC’s CS.
Figure 10a depicts the connection between actual and forecasted findings. The XGB method
yielded output with the best precision and the smallest deviation between experimental
and predicted results. The XGB model is highly good at predicting the CS of GPC, with an
R2 of 0.98. The scattering of experimental, forecasted, and diverged values (errors) for the
XGB method is depicted in Figure 10b. The minimum, average, and highest error values
were analyzed to be 0.44 MPa, 2.08 MPa, and 4.98 MPa, respectively. The error division
was 10.0% below 1 MPa, 75.5% between 1 and 3 MPa, and 14.5% above 3 MPa. In addition,
the division of errors reveals that the XGB model has the best predicting precision.
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4. Models’ Validation

Methods of k-fold and statistical tests were utilized to validate the employed ML
methods. Frequently, the k-fold approach [81] was used to determine the validity of a
strategy by arbitrarily scattering and dividing pertinent data into 10 groups. As displayed
in Figure 11, nine groups were utilized for training ML models, whereas one was to validate
it. When the errors (MAE and RMSE) are small, and R2 is superior, the ML method is more
precise. Moreover, the procedure must be repeated 10 times in order to obtain a satisfactory
result. This substantial effort considerably adds to the exceptional accuracy of the model.
In addition, as indicated in Table 2, each model was statistically tested for inaccuracy (MAE
and RMSE). The MAE values for SVM, GB, and XGB were determined to be 4.03, 2.26, and
2.01 MPa, respectively. Similarly, the RMSE values for SVM, GB, and XGB were identified
as 4.62, 2.59, and 2.18 MPa, respectively. These evaluations also suggested that the XGB
model is more accurate than the other techniques because of its reduced errors. By using
Equations (1) and (2), which were acquired from earlier studies [82,83], the prediction
performance of the approaches was measured statistically.

MAE =
1
n

n

∑
i=1
|Pi − Ti|, (1)

RMSE =

√
∑

(Pi − Ti)
2

n
, (2)

where n = total number of data samples, Pi = forecasted values, and Ti = actual values from
the data sample.

Table 2. Statistical assessments of the ML methods employed.

Machine Learning Model MAE (MPa) RMSE (MPa)

Support vector machine 4.03 4.62
Gradient boosting 2.26 2.59

Extreme gradient boosting 2.01 2.18
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In order to determine the efficacy of the k-fold assessment, R2, RMSE, and MAE were
computed, and their readings are listed in Table 3. In order to compare the outcomes of
k-fold analysis for each ML method, Figures 12–14 were constructed. As shown in Figure 12,
the MAE values of the SVM technique varied from 4.03 to 18.73 MPa with an average of
10.06 MPa. The MAE readings for the GB model ranged from 2.26 to 12.84 MPa, with an
average of 8.16 MPa. Moreover, the MAE readings for the XGB technique varied between
2.01 and 11.22 MPa, with an average of 7.92 MPa. Similarly, the average RMSE readings for
the SVM, GB, and XGB models are 13.29, 10.81, and 10.24 MPa, respectively (Figure 13).
However, the average R2 for SVM, GB, and XGB were 0.75, 0.82, and 0.85, respectively
(Figure 14). Compared to the other models, the XGB model with the lowermost error values
and the greatest R2 is the most exact in forecasting the CS of GPC.

Table 3. Results of k-fold evaluation.

K-Fold

Support Vector Machine Gradient Boosting Extreme Gradient Boosting

MAE
(MPa)

RMSE
(MPa) R2 MAE

(MPa)
RMSE
(MPa) R2 MAE

(MPa)
RMSE
(MPa) R2

1 9.48 11.47 0.58 9.64 11.54 0.74 9.38 12.33 0.76
2 18.73 25.48 0.66 12.84 14.23 0.59 11.22 5.45 0.61
3 11.27 17.38 0.91 9.38 11.14 0.93 9.00 12.61 0.86
4 11.28 14.38 0.93 11.23 13.28 0.86 11.10 13.00 0.88
5 5.82 4.62 0.88 8.30 12.48 0.95 5.45 11.19 0.80
6 4.03 10.38 0.73 5.89 9.84 0.82 6.11 9.30 0.94
7 6.22 8.63 0.61 7.12 9.48 0.97 7.25 10.55 0.93
8 10.38 11.83 0.52 2.26 2.59 0.77 2.01 12.61 0.98
9 13.82 19.38 0.90 8.48 12.45 0.68 10.15 13.18 0.83

10 9.58 9.37 0.76 6.46 11.10 0.90 7.49 2.18 0.92

Polymers 2022, 14, x 15 of 25 
 

 

Table 3. Results of k-fold evaluation. 

K-Fold 

Support Vector Machine Gradient Boosting Extreme Gradient Boosting 

MAE 

(MPa) 
RMSE (MPa) R2 

MAE 

(MPa) 
RMSE (MPa)  R2 

MAE 

(MPa) 
RMSE (MPa) R2 

1 9.48 11.47 0.58 9.64 11.54 0.74 9.38 12.33 0.76 

2 18.73 25.48 0.66 12.84 14.23 0.59 11.22 5.45 0.61 

3 11.27 17.38 0.91 9.38 11.14 0.93 9.00 12.61 0.86 

4 11.28 14.38 0.93 11.23 13.28 0.86 11.10 13.00 0.88 

5 5.82 4.62 0.88 8.30 12.48 0.95 5.45 11.19 0.80 

6 4.03 10.38 0.73 5.89 9.84 0.82 6.11 9.30 0.94 

7 6.22 8.63 0.61 7.12 9.48 0.97 7.25 10.55 0.93 

8 10.38 11.83 0.52 2.26 2.59 0.77 2.01 12.61 0.98 

9 13.82 19.38 0.90 8.48 12.45 0.68 10.15 13.18 0.83 

10 9.58 9.37 0.76 6.46 11.10 0.90 7.49 2.18 0.92 

 

Figure 12. Mean absolute error distribution from k-fold analysis. 

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

M
A

E
 (

M
P

a
)

K-fold

SVM GB XGB

Figure 12. Mean absolute error distribution from k-fold analysis.



Polymers 2022, 14, 2509 14 of 22
Polymers 2022, 14, x 16 of 25 
 

 

 

Figure 13. Root mean square error distribution from k-fold analysis. 

 

Figure 14. Coefficient of determination (R2) distribution from the k-fold analysis. 

5. Influence of Input Parameters 

In this study, the impact of input factors on the ML technique′s performance was 

determined. SHAP tree explainer is originally applied over the whole database in order 

to offer a more accurate description of global feature impacts by combining local SHAP 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

R
M

S
E

 (
M

P
a

)

K-fold

SVM GB XGB

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10

R
2

K-fold

SVM GB XGB

Figure 13. Root mean square error distribution from k-fold analysis.

Polymers 2022, 14, x 16 of 25 
 

 

 

Figure 13. Root mean square error distribution from k-fold analysis. 

 

Figure 14. Coefficient of determination (R2) distribution from the k-fold analysis. 

5. Influence of Input Parameters 

In this study, the impact of input factors on the ML technique′s performance was 

determined. SHAP tree explainer is originally applied over the whole database in order 

to offer a more accurate description of global feature impacts by combining local SHAP 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

R
M

S
E

 (
M

P
a

)

K-fold

SVM GB XGB

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10

R
2

K-fold

SVM GB XGB

Figure 14. Coefficient of determination (R2) distribution from the k-fold analysis.

5. Influence of Input Parameters

In this study, the impact of input factors on the ML technique′s performance was deter-
mined. SHAP tree explainer is originally applied over the whole database in order to offer a
more accurate description of global feature impacts by combining local SHAP explanations.
The “TreeExplainer” technique of tree-like SHAP approximation was implemented [85].
This approach evaluates the internal structure of tree-based models, i.e., the summation of a
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series of computations associated with the tree model′s leaf node, which leads to low-order
complexity. Figure 15 displays the results on the violin SHAP plot for all the characteristics
used to predict the CS of GPC. In this plot, each feature value is represented by a distinct
color, and the corresponding SHAP value on the x-axis indicates the contribution output.
As an example, GGBS is an input characteristic with a greater impact, illustrating the greater
positive link between this characteristic and the CS of GPC. This indicates that an increase
in GGBS would mostly lead to an increase in CS. A comparable impact of NaOH molarity,
NaOH, and Na2SiO3 was also indicated on the CS prediction of GPC. The water/solids
ratio, Gravel 10/10 mm, and fly ash have both beneficial and negative effects on the GPC’s
CS. This signifies that using these ingredients up to optimal contents improves the CS,
while at higher contents, the CS of GPC decreases. On the other hand, the fine aggregate
and gravel size, 4/10 mm, have a less positive influence and more negative influence (more
red dots on the negative side). This evaluation is based on a database suggested by current
research, and more data points may yield more accurate results.
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Figure 16 depicts the relationship between the input parameters and the GPC’s CS.
Figure 16a depicts the interaction of the GGBS. The scatter plot reveals that, among other
parameters, GGBS has the highest impact on the CS of GPC, which is increasing with
increasing GGBS quantity and is mainly interacting with the water/solids ratio. By increas-
ing the GGBS quantity from 0 to 300 kg/m3, the CS of GPC improves incessantly, while
above that value, its impact becomes constant. In this circumstance, the quantity of GGBS
in the range of 300–400 kg/m3 is favorable in achieving high CS for GPCs, while using
the same ingredients considered in the present study. Similarly, NaOH molarity, NaOH,
and Na2SiO3 have a favorable impact on the CS of GPC with increasing amounts up to an
optimal content (Figure 16b–d). For example, increasing NaOH molarity up to eight has a
positive influence, while further increase causes a negative impact (Figure 16b). However,
the impact of fly ash on the CS of GPC is different. Using fly ash below 400 kg/m3 has a
detrimental influence while using fly ash in higher amounts has a favorable impact on the
CS of GPC. It is important to mention here that these observations are based on the types
of ingredients and the number of data samples considered in this study. Using distinct
ingredients as input parameters and datasets might yield different outputs.
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6. Discussion

The purpose of this research was to contribute to the current body of knowledge
concerning the application of modern methods for measuring the CS of GPC. This study
will benefit the construction industry by providing quick and cost-effective methods for
predicting material properties. In addition, the acceptance and usage of GPC in the building
sector will be hastened by employing these measures to encourage eco-friendly building. As
GPC might be produced from aluminosilicate-containing wastes, its usage in the building
sector will offer many benefits, as shown in Figure 17. This research illustrates how ML
techniques may be utilized to predict the CS of GPC. The study employed three ML
methods: one individual (SVM) and two ensembled (GB and XGB). The accuracy of each
approach was evaluated to determine the highly effective forecaster. In comparison with
the GB and SVM techniques, which provided R2 of 0.97 and 0.93, respectively, the XGB
technique produced a more accurate result with an R2 of 0.98. In comparison, Wang
et al. [84] also anticipated the CS of geopolymer concrete by using the AdaBoost, random
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forest, and decision tree algorithms and reported the R2 value equal to 0.90, 0.90, and
0.83, respectively. Cao et al. [86] also employed SVM and MLP approaches for the CS
of geopolymer concrete and reported the R2 result as 0.91 and 0.88, respectively. It also
indicates that the selected algorithms in the present study performed better than the
approaches used in the previous studies. In addition, the correctness of each model was
tested using the k-fold and statistical methods. The greater the model’s precision, the
fewer errors it contains. Nevertheless, establishing and suggesting the ideal ML method
for anticipating findings in a range of domains is challenging since the performance of an
ML method is highly dependent on the quantity of input variables dataset used to run
algorithms. In contrast, ensembled ML techniques frequently utilize the weak learner by
building sub-models that might be trained on the dataset and optimized to maximize the R2.
Figure 18 depicts the distribution of R2 for the GB and XGB submodels. Figure 18a depicts
the R2 values for GB sub-models with the lowest, mean, and maximum R2 values of 0.902,
0.919, and 0.973, respectively. Nonetheless, the lowest, mean, and maximum R2 values
for XGB submodels were 0.901, 0.927, and 0.980, respectively (Figure 18b). These results
indicate that both the GB and XGB submodels have similar readings and a superior degree
of accuracy when predicting the GPC’s CS. Additionally, SHAP was used to investigate the
effect of input factors on the CS of GPCs. GGBS was determined to be an input feature with
a bigger influence, indicating a stronger positive relationship between this characteristic
and GPC’s CS. On the CS prediction of GPC, a comparable effect of NaOH molarity, NaOH,
and Na2SiO3 was also revealed. Gravel size: 10/20 mm, the water/solids ratio, and
fly ash have both positive and negative influences on the GPC’s CS. This indicates that
employing these substances up to the ideal concentration enhances the CS, but the CS of
GPC diminishes at greater concentrations. In contrast, the fine aggregate and gravel size of
4/10 mm have a lesser beneficial impact and a greater negative impact.
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7. Conclusions

This research aimed to utilize both individual and ensemble machine learning (ML)
methods to predict the compressive strength (CS) of geopolymer composites (GPCs). One
individual approach, support vector machine (SVM), and two ensemble strategies, gradient
boosting (GB) and extreme gradient boosting (XGB), were employed to predict outcomes.
As a consequence of this investigation, the following findings were drawn:
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• Ensemble ML methods fared better at predicting the CS of GPCs than individual
machine learning techniques, with the XGB model doing the best. For the XGB, GB,
and SVM models, the coefficients of determination (R2) were 0.98, 0.97, and 0.93,
respectively. All the employed techniques yielded results within a satisfactory limit
and with little deviation from the experimental findings;

• These error readings also proved the best performance of the XGB method in forecast-
ing the CS of GPC;

• Statistical tests and k-fold analysis validated the performance of the employed models.
The smaller errors and greater R2 resulting from k-fold analysis suggested the higher
precision of the ML model. These analyses indicated that the XGB model outperformed
the other investigated models;

• Based on the results of the SHAP analysis, GGBS was considered to be a more influen-
tial input feature, showing a larger positive association between this characteristic and
GPC’s CS;

• This nature of research will help the construction industry by facilitating the de-
velopment of fast and cost-efficient methods for forecasting material characteristics.
Moreover, by supporting eco-friendly construction, these initiatives will hasten the
acceptance and application of GPC in the building sector.

Further studies can also include the other experimental factors, such as the geometry of
the sample testing, strain rate, and temperature effect. The other ensemble ML approaches
can also be employed to check the precision level of the results, such as random forest,
bagging, and boosting.
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