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Abstract

Background

The coexistence of obstructive sleep apnea syndrome (OSAS) and chronic obstructive pul-

monary disease (COPD) leads to increased morbidity and mortality. The development of

home-based screening tests is essential to expedite diagnosis. Nevertheless, there is still

very limited evidence on the effectiveness of portable monitoring to diagnose OSAS in

patients with pulmonary comorbidities.

Objective

To assess the influence of suffering from COPD in the performance of an oximetry-based

screening test for moderate-to-severe OSAS, both in the hospital and at home.

Methods

A total of 407 patients showing moderate-to-high clinical suspicion of OSAS were involved

in the study. All subjects underwent (i) supervised portable oximetry simultaneously to in-

hospital polysomnography (PSG) and (ii) unsupervised portable oximetry at home. A regres-

sion-based multilayer perceptron (MLP) artificial neural network (ANN) was trained to esti-

mate the apnea-hypopnea index (AHI) from portable oximetry recordings. Two independent

validation datasets were analyzed: COPD versus non-COPD.

Results

The portable oximetry-based MLP ANN reached similar intra-class correlation coefficient

(ICC) values between the estimated AHI and the actual AHI for the non-COPD and the

COPD groups either in the hospital (non-COPD: 0.937, 0.909–0.956 CI95%; COPD: 0.936,

0.899–0.960 CI95%) and at home (non-COPD: 0.731, 0.631–0.808 CI95%; COPD: 0.788,

0.678–0.864 CI95%). Regarding the area under the receiver operating characteristics curve
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(AUC), no statistically significant differences (p >0.01) between COPD and non-COPD

groups were found in both settings, particularly for severe OSAS (AHI�30 events/h): 0.97

(0.92–0.99 CI95%) non-COPD vs. 0.98 (0.92–1.0 CI95%) COPD in the hospital, and 0.87

(0.79–0.92 CI95%) non-COPD vs. 0.86 (0.75–0.93 CI95%) COPD at home.

Conclusion

The agreement and the diagnostic performance of the estimated AHI from automated analy-

sis of portable oximetry were similar regardless of the presence of COPD both in-lab and at-

home. Particularly, portable oximetry could be used as an abbreviated screening test for

moderate-to-severe OSAS in patients with COPD.

Introduction

Obstructive sleep apnea syndrome (OSAS) patients suffer from recurrent episodes of airflow

limitation due to intermittent complete or partial collapse of the upper airway while sleeping,

leading to non-restful sleep and diminished quality of life [1, 2]. The burden of OSAS is con-

tinuously increasing mainly due to the drawbacks of the standard diagnostic methodology, i.e.

in-hospital polysomnography (PSG). While being effective, the availability and accessibility of

PSG is very limited and it is considered labor-intensive and expensive [3–5]. In order to over-

come these limitations, several abbreviated tests for OSAS detection have been proposed

during the last years. The use of portable monitors at home focused the attention of many

researchers due to their readiness, simplicity, efficiency, and lower cost [4, 6–10]. Nevertheless,

most researchers exclude patients with significant cardiovascular and pulmonary comorbidi-

ties from the population under study, which is an important limitation in order to generalize

the results. In fact, a recent report of the American Academy of Sleep Medicine (AASM) does

not recommend the use of portable monitoring for OSAS screening in such patients because

there is still little if any evidence on its effectiveness [11]. However, it is known that the preva-

lence of both cardiovascular and pulmonary comorbidities is high among sleep apnea patients

[12, 13]. Moreover, sleep apnea has been closely related with significant decreased health status

and quality of life in the presence of such conditions [12–15]. Therefore, there is currently an

increasing demand for studies focusing on the assessment of home testing algorithms in

patients showing significant comorbidities, especially chronic obstructive pulmonary disease

(COPD) [10, 16, 17].

The coexistence of OSAS and COPD, the so-called overlap syndrome, leads to major social

and healthcare-related consequences, mostly in the context of cardiovascular disease [15].

Patients showing both conditions simultaneously suffer from more severe oxygen desatura-

tions during sleep than those with either COPD or OSAS alone, as well as worse daytime hyp-

oxemia and hypercapnia [13, 15]. Therefore, an early diagnosis of OSAS is essential in order to

receive an effective treatment and reduce mortality. The revised Global Initiative for Chronic

Obstructive Lung Disease (GOLD) guidelines highlight the need for controlling the impact of

comorbid conditions [18]. Particularly, screening for sleep-related breathing disorders is

strongly recommended in COPD patients showing common daytime and/or night symptoms,

such as hypersomnolence and frequent sleep arousals [13, 15, 19].

There are very few studies focused on the evaluation of portable oximetry as an abbreviated

test for OSAS detection among patients with concomitant COPD [20–22]. These studies
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analyzed small datasets using substantially different methodologies and settings. As a result,

contradictory findings are reported. Therefore, further research is needed.

Artificial neural networks (ANNs) have demonstrated to be very useful in many applica-

tions of medicine and, particularly, in the field of OSAS diagnosis [23–27]. In a previous study

by our group, we assessed the diagnostic performance of an ANN trained to estimate the

apnea-hypopnea index (AHI) of patients suspected of suffering from OSAS using the oximetry

signal from a controlled PSG carried out in the hospital [26]. In the present study, we propose

to use an ANN to estimate the AHI from portable nocturnal oximetry in the presence of

COPD. Accordingly, our main goal was to design and exhaustively validate the effectiveness of

an ANN-based automated test, assessing how the presence of COPD influences the diagnostic

performance of portable oximetry monitoring.

Materials andmethods

Population under study

Fig 1 shows the detailed flowchart of the study. Three patient groups were recruited from June

2013 to January 2015 in order to develop our research. Firstly, consecutive patients referred to

the sleep unit and regardless of suffering from COPD composed our initial training dataset.

Fig 1. Patient recruitment flowchart. PSG: polysomnography; TST: total sleep time.

https://doi.org/10.1371/journal.pone.0188094.g001
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Secondly, consecutive patients without COPD referred to the sleep unit composed the non-

COPD validation dataset. Finally, consecutive patients referred to the Pneumology outpatient

facilities due to COPD and also showing clinical suspicion of OSAS composed the COPD vali-

dation dataset. Regarding COPD patients, subjects aged�35 years old, current or ex-smokers

with a smoking history of at least 10 pack/years were considered. At the time of COPD diagno-

sis, complete pulmonary function evaluation (Master screen PFT, Jaeger) was conducted to

confirm the disease, including pre- and post-bronchodilator spirometry, lung volumes, and

lung diffusion capacity. According to GOLD [18], patients showing a post-bronchodilator spi-

rometry with forced expired volume in 1 second to forced vital capacity ratio (FEV1/FVC)

<70% were involved in the study. Patients with a previous diagnosis and/or treatment for

OSAS, additional sleep disorders, and severe cardiovascular diseases were excluded.

The Ethics Committee of the Rı́o Hortega University Hospital approved the study (approval

number: CEIC 7/13), which was conducted according to the principles expressed in the Decla-

ration of Helsinki. All patients were informed to participate in the study and signed an

informed consent.

Data collection protocol and sleep studies

All subjects underwent two sleep studies during consecutive nights: (i) supervised portable

oximetry simultaneously to in-hospital PSG and (ii) unsupervised portable oximetry at home.

The sequence of the attended/unattended sleep studies was determined randomly. The AHI

from in-lab PSG (AHIPSG) was used to confirm OSAS. In addition, two different estimations

of the AHI were computed from portable oximetry using the proposed ANN: (i) estimated

AHI from supervised oximetry in the sleep laboratory (AHIOX-LAB) and (ii) estimated AHI

from unattended oximetry at home (AHIOX-HOME).

Standard in-lab PSG was carried out using a polysomnograph E-series by Compumedics

(Compumedics Limited, Victoria, Australia). Electroencephalogram (F3-A2, F4-A1, C3-A2,

C4-A1, Cz-A2, O1-A2, O2-A1), electrooculogram (right and left), electromyogram (chin and

both tibias), electrocardiogram, respiratory effort (chest and abdominal), respiration (thermis-

tor and nasal pressure), oximetry (SpO2 and pulse rate), body position, snoring sounds, and

video were recorded and stored for offline inspection by a single trained specialist. The AASM

rules were used to score sleep studies and derive the AHI from each PSG [28]. All PSGs with a

total sleep time (TST)<3 h due to significant signal loss (artifacts), voluntary termination of

the study by the patient, or insufficient data to assess sleep (low sleep efficiency and/or no

REM sleep), were withdrawn from the study [29].

The Nonin WristOx2 3150 (Nonin Medical, Inc., Plymouth, MI, USA) was used to perform

portable oximetry both in the hospital facilities and at patients’ home. The SpO2 signal were

recorded using a finger probe at a sampling rate of 1 sample per second (1 Hz). Both oximetry

probes, the one corresponding to the PSG and that corresponding to the portable device, were

placed on consecutive fingers of the same hand. Previously to the unsupervised recording at

home, all participants received both verbal and written instructions on how to use the oxime-

ter. All portable SpO2 recordings with a total recording time (TRT)<4 h due to significant sig-

nal loss (artifacts), premature battery depletion, or voluntary termination of the recording by

the patient, were discarded [30]. Additionally, patients who did not complete both in-hospital

and at-home studies were also withdrawn from the study.

Automated analysis of SpO2 from oximetry

Pre-processing. SpO2 recordings were downloaded from the portable oximeter and pro-

cessed offline. Each recording was scanned and all zero samples and transient deeps due to
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patient’s movements were removed. Additionally, all changes between consecutive samples

greater than or equal to 4%/s as well as saturation samples below 20% were considered artifacts

and removed from the signal [31]. When large segments of consecutive artifacts were removed,

the remaining valid sections were linked. Linear interpolation was applied if the difference

between concatenated samples was�4%/s in order to avoid the inclusion of non-natural

changes in the SpO2 time series.

Feature extraction. Every overnight oximetric profile was characterized using an initial

set of features from complementary approaches (time vs. frequency and linear vs. nonlinear),

which has demonstrated to be very useful in the context of automated OSAS diagnosis [26,

32–34]. A total of 16 variables arranged into 4 feature subsets were computed: time-domain

statistics, frequency-domain statistics, conventional spectral measures, and nonlinear mea-

sures. Statistics and nonlinear methods in the time domain were applied to non-overlapping

512-sample length segments. Statistics and conventional measures in the frequency domain

were derived from the power spectral density (PSD) function. The widely applied Welch’s

method (512-sample Hanning window, 50% overlapping, 1024-sample fast Fourier transform)

were used to estimate the spectral content of each recording [35].

Time-domain statistics. The position (central tendency) and shape (width, asymmetry,

and peakedness) of the normalized data histogram of saturation amplitudes from each oxi-

metric time series were parameterized by means of the 1st- to 4th-order statistical moments

[36], i.e., mean (M1t), variance (M2t), skewness (M3t), and kurtosis (M4t).

Frequency-domain statistics. Similarly, the data histogram of amplitudes from each nor-

malized PSD function was characterized using the 1st- to 4th-order statistical moments, i.e.,

mean (M1f), variance (M2f), skewness (M3f), and kurtosis (M4f) in the frequency domain. In

addition, the median frequency (MF) and the spectral entropy (SE) [37] of each PSD were also

computed to further characterize the power distribution of the spectrum.

Conventional spectral measures. Common amplitude- and power-based measures were

also computed to characterize the severity and recurrence of desaturations. The total signal

power (PT) as well as the peak amplitude (PA) and relative power (PR) in the frequency band

of interest for adult sleep apnea (0.014–0.033 Hz) were obtained [29].

Nonlinear measures. Sample entropy (SampEn) [38], central tendency measure (CTM)

[39], and Lempel-Ziv complexity (LZC) [40] were applied to quantify the irregularity, variabil-

ity, and complexity of each SpO2 recording, respectively.

Feature selection. The 16 features derived from every oximetric recording compose a fea-

ture pattern that characterizes the presence of OSAS on each subject. As mentioned, this initial

feature set comprises valuable information linked with the disease. Nevertheless, an improved

as well as reduced feature subset can be derived by applying a feature selection algorithm. Pre-

vious works have shown that dimensionality reduction algorithms enhances the prediction

ability of oximetric features in the context of OSAS diagnosis [32–34].

In this study, the fast correlation-based filter (FCBF), a filter methodology for feature selec-

tion independent of the pattern recognition technique, is applied [41]. FCBF has been previ-

ously assessed in the context of automated analysis of supervised airflow recordings for OSAS

detection [42, 43]. FCBF identifies automatically the most relevant and non-redundant fea-

tures in terms of the symmetrical uncertainty (SU) [41]. SU is a normalization of the so-called

information gain (IG), which is a measure of predictability based on the information shared

between variables. Two main variable filtering stages are involved: (i) relevance- and (ii)

redundancy-based feature selection. Regarding the relevance analysis, the association between

each input feature and the severity of the disease was estimated. To achieve this goal, the SU
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between each feature (Xi) and the standard AHI from PSG (Y) was computed as follows [41]:

SUiðXi;YÞ ¼ 2
IGiðXi;YÞ

HðXiÞ þ HðYÞ
; i ¼ 1; . . . ; p; ð1Þ

whereH refers to the widely known Shannon’s entropy. According to their degree of rele-

vance, original input features are ranked from the most (higher SUi) to the less (lower SUi) rel-

evant. Then, in order to implement the redundancy analysis, SUi,j is computed between each

pair of ranked features starting from the most relevant one (i, j = 1, . . ., p; i> j in the ranking).

When SUi,j � SUi, the feature j is removed due to redundancy. Hence, the final optimum fea-

ture subset was composed of the most relevant and non-redundant variables from portable

oximetry.

Pattern recognition. ANNs are composed of multiple interconnected nodes, the so-called

neurons, arranged in consecutive levels (layers) leading to a highly parallel structure [44]. In

the OSAS framework, a regression-based ANN is able to estimate the AHI, which is a continu-

ous scalar positive magnitude. Accordingly, a single output neuron is used to approximate the

target AHI and a linear activation function ranging [0,1) is applied to model the regression

problem. Therefore, the output of a regression MLP ANN is given by [45]:

y ¼ f ðx;wÞ ¼
X

NH

j¼1

ojgt
X

d

i¼1

oijxi þ bj

 !

þ b

" #

; ð2Þ

where d is the number of features in the optimum input pattern from the previous feature

selection process, NH is the number of neurons in the hidden layer, ωj is the weight connecting

the hidden neuron hj and the output, b is a bias term linked with the output of the network, ωij

is the weight connecting the feature i from the input pattern vector with the hidden neuron hj,

bj is the bias of the neuron hj in the hidden layer, and gt(�) is the activation function of the neu-

rons in the hidden layer. Weights and biases are determined automatically during the iterative

learning process according to the maximum likelihood principle [44]. In order to avoid over-

fitting, the widely known weight decay regularization technique was applied [44].

Model selection, i.e., optimization of the user-dependent input parameters (number of hid-

den neurons and regularization), was accomplished by leave-one-out cross-validation (loo-cv)

in the training dataset. The loo-cv procedure was repeated 100 times to avoid a potential bias

linked with the random initialization of weights. The average intra-class correlation coefficient

(ICC) between the estimated AHI and the actual AHI from PSG was used as the metric for

model selection. Next, the whole training set was used to carry out the learning process.

Finally, the trained MLP ANN was further assessed using two independent test datasets com-

posed of unseen patients: the non-COPD group and the COPD group.

Statistical analysis

The software tools Matlab version R2014a and IBM SPSS version 19 were used for performing

signal processing and statistical analyses, respectively. A descriptive analysis of clinical and

polysomnographic variables of the population under study was accomplished by computing

the median and interquartile range (IQR). The non-parametric Kruskal-Wallis test was used

to search for significant differences among the 3 groups under study for continuous variables,

whereas the Chi2 test was used for the categorical ones. A p-value<0.01 was considered signif-

icant. The ICC was computed to measure quantitatively the agreement between the estimated

AHI and the actual AHI from PSG. In addition, Bland-Altman and Mountain plots were used
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to assess qualitatively the agreement between both indices taking into account the groups

(COPD and non-COPD) and the settings (in-hospital and at-home) under study.

Regarding diagnostic performance assessment, common cutoffs for moderate (AHI�15

events/h) and severe (AHI�30 events/h) OSAS were studied. The following widely known

metrics were computed for each cutoff in the independent test datasets: sensitivity (Se), speci-

ficity (Sp), positive predictive value (PPV), negative predictive value (NPV), positive likelihood

ratio (LR+), negative likelihood ratio (LR-), and accuracy (Acc). Additionally, the area under

the receiving operating characteristics curve (AUC) was computed as overall performance

measure independent of a particular cutoff. The 95% confidence interval (CI95%) was com-

puted for every metric. The recommendations of the STARD task force for reporting diagnos-

tic performance measures in medical research were taken into account [46]. Conventional

oxygen desaturation indices (ODIs) of 3% (ODI3) and 4% (ODI4) were assessed for compari-

son purposes.

Results

A total of 407 eligible patients were involved in the study. Fig 1 shows a detailed description of

the recruitment process. Regarding patients withdrawn from the study, 12 PSGs (2.95%) were

discarded due to insufficient total sleep time (TST<3 hours), uncompleted PSG (the patient

left the study or did not attend to the sleep unit), or because files were corrupted. Similarly, 14

portable SpO2 recordings (3.44%) were removed due to reasons (either technical or human)

linked with portable oximetry: 6 supervised in-hospital oximetry (1.45%) and 8 unsupervised

at home (1.97%). Finally, 193 patients with suspicion of suffering from OSAS and regardless of

COPD composed the training dataset, whereas 110 patients composed the non-COPD test set

and 68 patients composed the COPD test group.

Anthropometric and clinical characteristics of the population under study are summarized

in Table 1. Table 2 shows the polysomnographic variables of every group under study. Signifi-

cant statistical differences between groups were found for CT90, basal, minimum, and average

saturation, whereas no significant differences were identified for the ODI3. Regarding sleep

staging and respiratory-related events, no significant statistical differences were found among

patient groups.

Table 3 summarizes the characteristics from spirometry of the COPD group. According to

GOLD stages [18], 23.5% were categorized as GOLD1, 57.4% as GOLD2, 17.6% as GOLD3,

and 1.5% as GOLD4.

Table 1. Demographic and clinical characteristics of the patient groups under study.

Feature Training Test 1: non-COPD Test 2: COPD p-value

Subjects (n) 193 110 68 -

Age (years) 55.0 [18.2] 55.0 [18.0] 64.5 [11.0] <0.01
Males (n) 148 (76.7%) 76 (69.1%) 60 (88.2%) <0.01
BMI (Kg/m2) 28.3 [6.2] 28.6 [5.8] 29.0 [5.4] 0.739

AHI (events/h) 33.6 [43.8] 33.8 [41.1] 37.8 [45.1] 0.609

AHI�5 events/h (n) 174 (90.2%) 101 (91.8%) 67 (98.5%) 0.085

AHI�15 events/h (n) 143 (74.1%) 81 (73.6%) 52 (76.5%) 0.907

AHI�30 events/h (n) 108 (56.0%) 63 (57.3%) 39 (57.4%) 0.966

Data are presented as median [interquartile range] for quantitative variables whereas n(%) is used for categorical variables. Non-COPD: test dataset

composed of patients without chronic obstructive pulmonary disease; COPD: test dataset composed of chronic obstructive pulmonary disease patients;

BMI: body mass index; AHI: apnea-hypopnea index.

https://doi.org/10.1371/journal.pone.0188094.t001

Portable oximetry for OSAS screening in COPD patients

PLOSONE | https://doi.org/10.1371/journal.pone.0188094 November 27, 2017 7 / 21

https://doi.org/10.1371/journal.pone.0188094.t001
https://doi.org/10.1371/journal.pone.0188094


ANN design in the training dataset

In-hospital supervised setting. A total of 9 features were automatically selected from in-

lab attended recordings:M1t,M2t,M3t,M4t,MF, PR, SampEn, CTM, and LZC. Fig 2A shows

the model selection process for the ANN in the training set using these features. The number

of neurons in the hidden layer of the optimum ANN from supervised oximetry was NH = 12

and the regularization parameter was set to ν = 1. The proposed ANN achieved 0.96 ICC (0.95,

0.97 CI95%) in the whole training dataset.

At-home unsupervised setting. Similarly, a total of 8 features composed the optimum

feature subset from unattended recordings at home:M1t,M3t,M4t, SE, PR, SampEn, CTM,

and LZC. Fig 2B shows the model selection procedure. The optimum ANN from unsupervised

oximetry contained NH = 12 hidden neurons and the regularization parameters was ν = 4. The

proposed ANN reached 0.80 ICC (0.75, 0.85 CI95%) in the whole training set.

Table 2. Polysomnographic variables of the groups under study: Sleep staging, respiratory related events, and oximetric indexes.

Feature Training Test 1: non-COPD Test 2: COPD p-value

Sleep efficiency (%) 83.7 [16.6] 84.9 [16.9] 77.1 [23.5] 0.011

Stage N1 (%) 14.4 [9.7] 12.8 [15.2] 16.2 [14.2] 0.076

Stage N2 (%) 32.1 [13.4] 32.4 [14.5] 28.6 [12.4] 0.053

Stage N3 (%) 35.8 [17.6] 35.2 [21.7] 39.0 [17.8] 0.337

REM sleep (%) 15.4 [9.6] 14.4 [8.9] 14.6 [9.3] 0.665

Arousal index (events/h) 30.5 [22.0] 25.8 [22.9] 30.7 [15.6] 0.061

AHI (events/h) 33.6 [43.8] 33.8 [41.1] 37.8 [45.1] 0.609

AI (events/h) 10.9 [30.8] 10.6 [27.9] 9.0 [28.1] 0.934

ODI3 (events/h) 32.7 [41.3] 35.5 [38.2] 38.3 [43.1] 0.509

CT90 (%) 10.5 [25.2] 10.1 [29.9] 46.2 [66.0] <<0.01
SpO2 basal 94.0 [2.0] 94.0 [2.0] 91.0 [3.0] <<0.01
SpO2 min 82.0 [13.0] 81.0 [10.0] 78.0 [11.0] <0.01
SpO2 mean 93.0 [3.0] 93.0 [3.0] 90.0 [4.0] <<0.01

Data are presented as median [interquartile range]. Non-COPD: test dataset composed of patients without chronic obstructive pulmonary disease; COPD:

test dataset composed of chronic obstructive pulmonary disease patients; REM: rapid eye movement sleep; AHI: apnea-hypopnea index; ODI3: oxygen

desaturation index of 3% in the PSG; CT90: percentage of the total sleep time in the PSG with a saturation below 90%; SpO2: blood oxygen saturation; min:

minimum value in the overall recording.

https://doi.org/10.1371/journal.pone.0188094.t002

Table 3. Common pulmonary functional measures of COPD patients derived from post-bronchodila-
tor spirometry.

Measure from post-bronchodilator spirometry Median [IQR]

FVC (L) 2.9 [1.4]

FVC (%) 81.8 [27.4]

FEV1 (liters) 1.7 [0.9]

FEV1 (%) 63.7 [24.4]

FEV1/FVC 60.6 [14.6]

FVC improvement 4.0 [7.9]

FEV1 improvement 4.0 [8.3]

Data are presented as median [interquartile range]. IQR: interquartile range; FEV1: forced expiratory volume

in one second; FVC: forced vital capacity.

https://doi.org/10.1371/journal.pone.0188094.t003
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Performance assessment in the test datasets

Agreement with AHI from PSG. Table 4 shows the ICC values achieved by the proposed

oximetry-based ANNs and conventional ODI3 and ODI4. Regarding the AHIOX-LAB from

portable oximetry in the hospital setting, ICC values were very similar in the non-COPD

(0.937, CI95% 0.909–0.956) and in the COPD (0.936, CI95% 0.899–0.960) groups (S1 and S2

Tables). In the same way, ICC values corresponding to AHIOX-HOME from at-home recordings

were again similar among non-COPD (0.731, CI95% 0.631–0.808) and COPD (0.788, CI95%

0.678–0.864) patients (S1 and S2 Tables). It is important to note that the estimated AHIOX-LAB
and AHIOX-HOME reached notably higher agreement with the actual AHI from PSG than con-

ventional ODIs in both settings.

Fig 3A–3D depict the Bland-Altman agreement plots for the estimated AHI and the stan-

dard AHI for the groups under study. In the hospital, we can observe in Fig 3A and 3B that the

AHIOX-LAB presented a symmetrical behavior and similar dispersion (limits of agreement) in

Fig 2. Optimization (model selection) of the MLP ANN in the training set. (A) In-hospital supervisedmonitoring. (B) At-home
unattended monitoring. ICC: intra-class correlation coefficient; NH: number of neurons in the hidden layer; ν: regularization
parameter.

https://doi.org/10.1371/journal.pone.0188094.g002

Table 4. Agreement between estimated AHI using the proposed ANN and conventional ODIs with actual AHI from PSG for the groups and settings
under study.

Setting In-laboratory At-home

Group non-COPD COPD non-COPD COPD

Estimated AHI 0.937 0.936 0.731 0.788

(0.909, 0.956) (0.899, 0.960) (0.631, 0.808) (0.678, 0.864)

ODI3 0.904 0.892 0.536 0.670

(0.634, 0.960) (0.664, 0.952) (0.100, 0.751) (0.126, 0.856)

ODI4 0.745 0.693 0.403 0.518

(0, 0.911) (0, 0.819) (0, 0.676) (0, 0.788)

Data are presented as magnitude and 95% confidence interval. non-COPD: test dataset composed of patients without chronic obstructive pulmonary

disease; COPD: test dataset composed of chronic obstructive pulmonary disease patients; AHI: apnea-hypopnea index; ODI3: oxygen desaturation index

of 3% from portable oximetry; ODI4: oxygen desaturation index of 4% from portable oximetry.

https://doi.org/10.1371/journal.pone.0188094.t004
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the non-COPD group (confidence interval = 39.12) and in the COPD dataset (confidence

interval = 39.24). In addition, the AHIOX-LAB showed low bias, i.e., mean difference with the

actual AHI, in both groups (non-COPD: 1.30; COPD: 1.60). Regarding the data derived from

unsupervised recordings at home, the Bland-Altman agreement plots in Fig 3C and 3D show

similar dispersion in both datasets (confidence interval: 76.37 in non-COPD and 72.68 in

COPD) as well as comparable low bias (averaged mean differences: 0.61 in non-COPD and

0.73 in COPD) for the AHIOX-HOME. It is important to highlight that no significant differences

were found between non-COPD and COPD groups neither in the hospital (p = 0.33) nor at

home (p = 0.48). Mountain plots depicted in Fig 4A and 4B confirm these findings.

Diagnostic performance as a screening test for OSAS. Regarding differences between

non-COPD and COPD patients in terms of the effectiveness of the simplified oximetry-based

test for OSAS, Fig 5 shows the ROC curves for both groups in the hospital and in the unsuper-

vised setting at home. Notice that no significant differences were found between the curves of

both groups for the cutoffs under study.

Tables 5 and 6 summarize the performance assessment of the MLPOX-LAB and conventional

ODIs for the groups under study in the hospital setting. For each individual cutoff, the esti-

mated AHIOX-LAB using the proposed MLP ANN reached high similar accuracy both in the

non-COPD and the COPD groups (87.3% vs. 86.8%, and 92.7% vs. 91.2% for 15 and 30 events/

Fig 3. Bland-Altman plots showing agreement between estimated AHI from nocturnal oximetry and actual AHI from PSG.
(A) Supervised oximetry in the laboratory for non-COPD subjects. (B) Supervised oximetry in the laboratory for COPD patients. (C)
Unattended oximetry at home for non-COPD subjects. (D) Unattended oximetry at home for COPD patients. AHIOX-LAB: apnea-
hypopnea index from in-hospital oximetry; PSG: polysomnography; in-LAB: supervised setting in the hospital; non-COPD: patients
without chronic obstructive pulmonary disease; COPD: patients with chronic obstructive pulmonary disease; AHIOX-HOME: apnea-
hypopnea index from at-home oximetry; at-HOME: supervised setting at home.

https://doi.org/10.1371/journal.pone.0188094.g003
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h, respectively). On the other hand, conventional ODIs showed notably higher variability

between non-COPD and COPD groups.

Tables 7 and 8 summarize the diagnostic assessment of the MLPOX-HOME and conventional

ODIs in the unattended setting at home. Regarding the estimated AHI using the proposed

MLP ANN, moderate accuracies were achieved in both populations: 78.2% vs. 75.0%, and

76.4% vs. 77.9% in non-COPD and COPD groups for cutoffs of 15 and 30 events/h, respec-

tively. Imbalance in the sensitivity–specificity pair increased compared to the hospital setting

thought remained similar in both patient groups. On the other hand, conventional ODI3 and

ODI4 showed the common higher specificity inherent to oximetry as well as a notably higher

variability between patients with and without COPD.

Discussion

In the present study, portable oximetry was assessed as a simplified tool for OSAS diagnosis in

COPD patients. In order to carry out a thorough analysis, portable oximetry was tested both in

the hospital and at home. In addition, two independent populations were assessed: (i) non-

COPD subjects and (ii) COPD patients. Our results revealed that no significant differences

exist between COPD and non-COPD patients concerning the capability of the proposed ANN

from portable oximetry as a screening test for OSAS.

In our aim to maximize the diagnostic ability of portable oximetry, we proposed the auto-

mated analysis of oximetric recordings by means of a regression MLP ANN. In this regard,

ANNs have been widely applied in medical applications to expedite decisions and avoid misdi-

agnosis. Particularly, MLP is probably the most popular ANN and it has demonstrated to be

very useful in the framework of OSAS management [23, 24, 26, 47, 48]. The study by Marcos

et al. [26] supports the usefulness of a regression-based MLP ANN for estimating the AHI

using supervised SpO2 recordings from in-hospital PSG. In the present study, we assessed the

accurateness and reliability of portable oximetry and ANNs to screen for OSAS at COPD

patients’ home.

Fig 4. Mountain plots showing differences between the reference AHI from PSG and the estimated AHI of non-COPD and
COPD groups. (A) Supervised portable oximetry in the hospital simultaneous to PSG. (B) Unattended portable oximetry at home in
a different night. AHIOX-LAB: apnea-hypopnea index from in-hospital oximetry; PSG: polysomnography; non-COPD: patients without
chronic obstructive pulmonary disease; COPD: patients with chronic obstructive pulmonary disease; AHIOX-HOME: apnea-hypopnea
index from at-home oximetry.

https://doi.org/10.1371/journal.pone.0188094.g004
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In the context of OSAS detection from oximetry, simpler oximetric indices, such as the

average number of desaturations (conventional ODIs), have been proposed [31, 49, 50]. Nev-

ertheless, a systematic underestimation of the disease has been reported and the performance

notably varies among studies [4, 51, 52]. In the present research, we proposed a complex

approach based on ANNs. Our experiments found that the estimated AHI from the MLP

ANN significantly outperformed conventional ODIs in terms of agreement with actual AHI

from PSG both in the hospital and at home. Furthermore, the ANN reached similar diagnostic

performance in non-COPD and COPD groups in both settings (87.3% vs. 86.8% Acc for AHI

Fig 5. Receiver operating characteristics curves of the estimated AHI. (A) Supervised portable oximetry in the hospital using
a cutoff of AHI�15 events/h. (B) Supervised portable oximetry in the hospital using a cutoff of AHI�30 events/h. (C) Unattended
portable oximetry at home using a cutoff of AHI�15 events/h. (D) Unattended portable oximetry at home using a cutoff of AHI�30
events/h. AHI: apnea-hypopnea index from standard PSG; non-COPD: patients without chronic obstructive pulmonary disease;
COPD: patients with chronic obstructive pulmonary disease; AUC: area under the ROC curve.

https://doi.org/10.1371/journal.pone.0188094.g005
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Table 5. Diagnostic performance of the proposed MLPOX-LAB and conventional ODIs from in-laboratory portable oximetry (simultaneously to the
PSG) in the non-COPD test group.

Moderate OSAS (AHI�15 events/h)

Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%)

AHIOX-LAB 97.5 58.6 86.8 89.5 2.36 0.04 87.3

(91.4–99.7) (38.9–76.5) (78.1–93.0) (66.9–98.7) (1.5–3.6) (0.01–0.2) (80.0–92.7)

ODI3 91.4 100 100 80.6 NAa 0.09 93.6

(83.2–99.0) (-) (-) (63.4–97.5) (-) (0.01–0.17) (87.6–99.3)

ODI4 69.1 100 100 53.7 NAa 0.31 77.3

(56.6–81.5) (-) (-) (38.0–69.7) (-) (0.19–0.43) (67.7–86.5)

Severe OSAS (AHI�30 events/h)

Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%)

AHIOX-LAB 95.2 89.4 92.3 93.3 8.95 0.05 92.7

(86.7–99.0) (76.9–96.5) (83.0–97.5) (81.7–98.6) (3.9–20.5) (0.02–0.2) (86.4–96.4)

ODI3 76.2 100 100 75.8 NAa 0.24 86.4

(62.5–88.7) (-) (-) (61.7–87.8) (-) (0.11–0.38) (78.2–93.9)

ODI4 41.3 100 100 56.0 NAa 0.59 66.4

(26.4–56.6) (-) (-) (42.8–68.4) (-) (0.43–0.74) (55.2–76.7)

Data are presented as magnitude and 95% confidence interval. AHI: apnea-hypopnea index; Se: sensitivity; Sp: specificity; PPV: positive predictive value;

NPV: negative predictive value; LR+: positive likelihood ratio; LR-: negative likelihood ratio; Acc: accuracy; AHIOX-LAB: estimated AHI from in-laboratory

nocturnal oximetry; ODI3: oxygen desaturation index of 3%; ODI4: oxygen desaturation index of 4%.
a NA: if Sp = 100%, then LR+ is not defined.

https://doi.org/10.1371/journal.pone.0188094.t005

Table 6. Diagnostic performance of the proposed MLPOX-LAB and conventional ODIs from in-laboratory portable oximetry (simultaneously to the
PSG) in the COPD test group.

Moderate OSAS (AHI�15 events/h)

Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%)

AHIOX-LAB 96.2 56.3 87.7 81.8 2.20 0.07 86.8

(86.8–99.5) (29.9–80.2) (76.3–94.9) (48.2–97.7) (1.3–3.8) (0.02–0.3) (76.5–94.1)

ODI3 88.5 87.5 95.8 70.0 7.08 0.13 88.2

(77.5–98.6) (66.7–100) (88.2–100) (43.7–96.3) (2.42–12.13) (0.02–0.27) (79.1–96.1)

ODI4 73.1 100 100 53.3 NAa 0.27 79.4

(58.8–87.2) (-) (-) (30.5–75.3) (-) (0.13–0.41) (68.1–90.4)

Severe OSAS (AHI�30 events/h)

Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%)

AHIOX-LAB 97.4 82.8 88.4 96.0 5.65 0.03 91.2

(86.5–99.9) (64.2–94.2) (74.9–96.1) (79.6–99.9) (2.5–12.6) (0.004–0.2) (80.9–95.6)

ODI3 92.3 93.1 94.7 90.0 13.39 0.08 92.7

(81.2–100) (80.8–100) (85.2–100) (75.6–100) (4.50–20.30) (0–0.20) (84.6–99.5)

ODI4 53.9 100 100 61.7 NAa 0.46 73.5

(33.5–74.0) (-) (-) (43.4–79.5) (-) (0.26–0.67) (59.2–86.5)

Data are presented as magnitude and 95% confidence interval. AHI: apnea-hypopnea index; Se: sensitivity; Sp: specificity; PPV: positive predictive value;

NPV: negative predictive value; LR+: positive likelihood ratio; LR-: negative likelihood ratio; Acc: accuracy; AHIOX-LAB: estimated AHI from in-laboratory

nocturnal oximetry; ODI3: oxygen desaturation index of 3%; ODI4: oxygen desaturation index of 4%.
a NA: if Sp = 100%, then LR+ is not defined.

https://doi.org/10.1371/journal.pone.0188094.t006
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Table 7. Diagnostic performance of the proposed MLPOX-HOME and conventional ODIs from portable oximetry at home (unattended in a different
preceding/consecutive night to PSG) in the non-COPD test group.

Moderate OSAS (AHI�15 events/h)

Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%)

AHIOX-HOME 97.5 24.1 78.2 77.8 1.29 0.10 78.2

(91.4–99.7) (10.3–43.5) (68.9–85.8) (40.0–97.2) (1.0–1.6) (0.02–0.5) (69.1–84.6)

ODI3 59.3 93.1 96.0 45.0 8.59 0.44 68.2

(46.4–71.9) (80.7–100) (88.3–100) (30.2–60.1) (2.81–13.66) (0.30–0.60) (57.6–78.3)

ODI4 45.7 100 100 39.7 NAa 0.54 60.0

(32.7–58.6) (-) (-) (26.7–52.3) (-) (0.41–0.67) (49.2–70.4)

Severe OSAS (AHI�30 events/h)

Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%)

AHIOX-HOME 81.0 70.2 78.5 73.3 2.72 0.27 76.4

(69.1–89.8) (55.1–82.7) (66.5–87.7) (58.1–85.4) (1.7–4.3) (0.2–0.5) (67.3–83.6)

ODI3 44.4 97.9 96.6 56.8 20.89 0.57 67.3

(29.3–59.0) (92.9–100) (86.9–100) (43.5–69.3) (4.84–18.42) (0.42–0.73) (56.3–77.1)

ODI4 23.8 97.9 93.8 48.9 11.19 0.78 55.5

(12.0–36.2) (92.9–100) (76.8–100) (36.6–61.2) (2.12–11.99) (0.65–0.91) (44.4–66.8)

Data are presented as magnitude and 95% confidence interval. AHI: apnea-hypopnea index; Se: sensitivity; Sp: specificity; PPV: positive predictive value;

NPV: negative predictive value; LR+: positive likelihood ratio; LR-: negative likelihood ratio; Acc: accuracy; AHIOX-HOME: estimated AHI from at-home

nocturnal oximetry; ODI3: oxygen desaturation index of 3%; ODI4: oxygen desaturation index of 4%.
a NA: if Sp = 100%, then LR+ is not defined.

https://doi.org/10.1371/journal.pone.0188094.t007

Table 8. Diagnostic performance of the proposed MLPOX-HOME and conventional ODIs from portable oximetry at home (unattended in a different
preceding/consecutive night to PSG) in the COPD test group.

Moderate OSAS (AHI�15 events/h)

Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%)

AHIOX-HOME 86.5 37.5 81.8 46.2 1.39 0.36 75.0

(74.2–94.4) (15.2–64.6) (69.1–90.9) (19.2–74.9) (0.9–2.1) (0.1–0.9) (63.2–83.8)

ODI3 69.2 93.8 97.3 48.4 11.08 0.33 75.0

(54.2–84.5) (76.8–100) (90.4–100) (26.5–70.5) (2.44–11.36) (0.16–0.52) (62.7–87.2)

ODI4 48.1 93.8 96.2 35.7 7.69 0.55 58.8

(31.3–65.9) (76.8–100) (85.6–100) (18.2–54.2) (1.68–7.80) (0.36–0.77) (44.8–73.4)

Severe OSAS (AHI�30 events/h)

Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%)

AHIOX-HOME 84.6 69.0 78.6 76.9 2.73 0.22 77.9

(69.5–94.1) (49.2–84.7) (63.2–89.7) (56.4–91.0) (1.6–4.8) (0.1–0.5) (67.0–86.8)

ODI3 61.5 96.6 96.0 65.1 17.85 0.40 76.5

(42.0–80.0) (88.0–100) (84.9–100) (47.2–82.8) (4.15–18.10) (0.21–0.61) (63.9–87.8)

ODI4 35.9 96.6 93.3 52.8 10.41 0.66 61.8

(17.5–55.0) (88.0–100) (76.3–100) (36.6–69.2) (1.99–10.50) (0.46–0.87) (47.4–75.9)

Data are presented as magnitude and 95% confidence interval. AHI: apnea-hypopnea index; Se: sensitivity; Sp: specificity; PPV: positive predictive value;

NPV: negative predictive value; LR+: positive likelihood ratio; LR-: negative likelihood ratio; Acc: accuracy; AHIOX-HOME: estimated AHI from at-home

nocturnal oximetry; ODI3: oxygen desaturation index of 3%; ODI4: oxygen desaturation index of 4%.

https://doi.org/10.1371/journal.pone.0188094.t008
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�15 events/h and 92.7% vs. 91.2% Acc for AHI�30 events/h in the hospital; 78.2% vs. 75.0%

Acc for AHI�15 events/h and 76.4% vs. 77.9% Acc for AHI�30 events/h at home), notably

more consistent than conventional ODI3 (93.6% vs. 88.2% Acc for AHI�15 events/h and

86.4% vs. 92.7% Acc for AHI�30 events/h in the hospital; 68.2% vs. 75.0% Acc for AHI�15

events/h and 67.3% vs. 76.5% Acc for AHI�30 events/h at home) and ODI4 (77.3% vs. 79.4%

Acc for AHI�15 events/h and 66.4% vs. 73.5% Acc for AHI�30 events/h in the hospital;

60.0% vs. 58.8% Acc for AHI�15 events/h and 55.5% vs. 61.8% Acc for AHI�30 events/h at

home). In addition, once optimized and trained, ANNs are reliable, easy-to-use, and computa-

tionally efficient tools, which are major features in order to speed up decision-making.

Pertinent features derived from each overnight oximetric profile fed the neural network.

Previous studies showed that these variables have high discriminant ability between OSAS-

negative and OSAS-positive patients in the context of binary classification from supervised

oximetry [32–34]. In the present study, we assessed the capability of these features to predict

the AHI from portable oximetry. The proposed FCBF technique for variable selection auto-

matically identified the features most representative of the actual AHI from PSG (higher sym-

metrical uncertainty) as well as the less redundant (lower symmetrical uncertainty between

each pair of variables). It is remarkable thatM1t,M3t,M4t, PR, SampEn, CTM, and LZC were

all included in the optimum feature subset both in the hospital and at home, which evidences

the relevancy of these features in the regression-based ANN for AHI estimation. They gather

complementary information from the oximetry signal (time:M1t,M3t,M4t; frequency: PR;

and nonlinear: SampEn, CTM, and LZC) in order to account for all the changes linked with

apneic events which are commonly quantified by means of the AHI.

In regard to the agreement between estimated and actual AHI, a small similar overestima-

tion can be seen for the groups under study both in the hospital (1.30 non-COPD vs. 1.60

COPD) and at home (0.61 non-COPD vs. 0.73 COPD). Nevertheless, the diagnostic perfor-

mance did not agree with this slight overall overestimation, as can be derived from Tables 5–8.

In both settings, higher sensitivity than specificity was obtained for the groups under study,

especially for the lower cutoff (AHI�15 events/h), which suggests a systemic misclassification

into a higher severity group. The Bland-Altman plots in Fig 3A and 3B show different trends

for low and high AHI values whatever the group or the setting under analysis. Significant over-

estimation was obtained for AHI under 15 events/h, which explains the misclassification

towards higher severity classes. Conversely, an important underestimation is observed for

higher AHI values, which compensates for the initial trend leading to a slight average overesti-

mation. It is important to note that this behavior can be observed both in the hospital and at

home regardless of suffering from COPD, which agrees with our initial hypothesis.

In our aim to gain insight into the usefulness of at-home portable oximetry for OSAS

screening in COPD, a thoroughly analysis of misclassified COPD patients in the unsupervised

setting was accomplished. Traditionally, it has been suggested that profound nocturnal desa-

turations characteristic of COPD could lead to increased misdiagnosis in oximetry-based

screening tests for OSAS. Nevertheless, our findings revealed no influence on the diagnostic

capability of oximetry linked with transient worsening due to COPD. Furthermore, no differ-

ences related to the severity of the pulmonary disease were found among misclassified patients

within the COPD group at home. Regarding mild COPD (GOLD 1), four patients showing

mild OSAS were misclassified as severe using AHIOX-HOME. Two patients showed BMI>29

kg/m2 and OSAS was also overestimated using in-laboratory portable oximetry. Analyzing the

remaining two patients, both were hypertensive and one had a BMI of 50.5 kg/m2. In regard to

moderate COPD patients (GOLD 2), just one non-OSAS subject (borderline with AHIPSG =

4.2 events/h, obese, and hypertensive) was misclassified as mild OSAS both at home and in the

hospital. In addition, six OSAS patients were misclassified at home. It is important to note that
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all cases showed significantly decreased (5 patients) or increased (1 patient) number of desa-

turations in the unattended setting compared to in-hospital recordings, which could be due to

the well-known night-to-night variability of OSAS. Regarding severe COPD (GOLD 3), four

OSAS patients were incorrectly classified into a category of higher severity (3 from mild to

moderate and 1 from moderate to severe). Two mild OSAS patients showed poor sleep effi-

ciency in the hospital (<55%) and little time in REM sleep, which could hide the actual severity

of the disease. The moderate OSAS patient showed overweight (BMI = 29.4 kg/m2). On the

other hand, two severe COPD subjects were wrongly classified at home into an OSAS category

of lower severity. Both patients showed significant contribution of positional apneas during

PSG and they presented markedly low number of desaturations at home due to night-to-night

variability.

During the last years, researchers have made a great effort on the development of efficient

screening tools for OSAS based on portable monitoring in order to expedite diagnosis. Never-

theless, the validation of almost all simplified screening tests excluded patients with significant

comorbidities, such as cardiovascular or pulmonary diseases. Therefore, data on the accuracy

of abbreviated methods in COPD patients are very limited [13, 16, 17]. In fact, the AASM does

not recommend its use on such populations due to the lack of appropriate evidences support-

ing their accuracy [11]. Table 9 shows the results reported in the scarce studies where portable

monitors are assessed for OSAS screening in COPD patients. In the work by Pépin et al. [20],

the delta index was proposed to characterize OSAS from portable oximetric recordings

acquired in the hospital. The authors obtained promising results though a small population

composed of only 8 COPD patients was analyzed.

In the study by Oliveira et al. [21], a Type 3 portable monitor was used, which was assessed

in a population composed of 26 COPD patients. The authors reported a moderate ICC equal

to 0.61 between the actual AHI from PSG and manual scoring of in-hospital portable record-

ings, whereas the agreement decreases up to 0.47 when the monitoring were carried out at

home.

In a recent study by Scott et al. [22] a portable oximeter was tested in the hospital to deter-

mine the presence or absence of OSAS in 59 COPD patients. Using a cutoff of 15 events/h for

positive OSAS, visual inspection of the overnight oximetric profile reached 59% Se and 60%

Sp, while the performance increased up to 60% Se and 63% Sp using the automated ODI4.

In the present research, additional knowledge is provided on the usefulness of automated

processing of portable oximetry as a single tool for screening for OSAS in COPD patients. One

of the main novelties of our study is that the impact of suffering from COPD on the capability

of portable oximetry was assessed by the analysis of two populations: non-COPD and COPD

independent test datasets. In addition, the proposed methodology based on automated pattern

recognition using ANNs was validated both in the hospital and at home. Regarding portable

monitoring in a supervised setting, our automated approach improved the performance

reached by Scott et al. (60% Se– 63% Sp vs. 96.2% Se– 56.3% Sp, AHI�15 events/h) [22]. On

the other hand, our sensitivity–specificity pair showed higher imbalance. In the unattended

setting, the agreement with the AHI from PSG reported by Oliveira et al. [21] was also notably

enhanced (0.47 ICC vs. 0.79 ICC). Essential differences between the present research and pre-

vious studies account for the dissimilarities in the diagnostic capability of oximetry. Firstly,

datasets of different size and severity were studied. In this regard, it is important to highlight

that our sample size is larger than populations analyzed in previous studies and accounts for a

wide range of severities in both OSAS and COPD. Secondly, there are major methodological

differences among studies. Previous researchers characterized the portable recording by

means of conventional indices, such as the delta index [20] or ODI4 [22], or proposed visual

inspection of the overnight oximetric profile [22] or manual scoring of respiratory events [21].
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On the other hand, our proposal is based on advanced signal processing techniques aimed at

deriving as much information as possible from oximetry in order to maximize its diagnostic

ability. In addition, the most relevant and complementary features were identified and high-

performance pattern recognition techniques were used to optimally manage all these data.

Some limitations of the study should be discussed. We analyzed a large population of

patients showing clinical suspicion of OSAS. Particularly, the group composed of patients with

concomitant COPD was larger than in previous similar studies aimed at assessing portable

oximetry in the presence of comorbidities found in the state-of-the-art. Nevertheless, the num-

ber of patients with very severe COPD (GOLD 4) could be larger in order to generalize our

results. Regarding the composition of the population under study, the great imbalance between

the number of non-OSAS and OSAS patients is an additional drawback that merits some dis-

cussion. Sleep apnea patients were predominant, particularly severe OSAS (56.0% of patients

in the training set, 57.3% in the non-COPD group, and 57.4% in the COPD group). This agrees

with the prevalence of the disease reported in similar studies [53]. However, this imbalance

could influence our results. Although we used a regression-based approach and small bias was

Table 9. Evidences on the effectiveness of portable oximetrymonitoring for OSAS detection in patients with COPD in the state-on-the-art and in
the present study.

Author Population Method and setting Goal Se (%) Sp (%) ICC

Pépin et al. (1991)
[20]

26 patients

• 15 OSAS

• 8 COPD

• 3 Restrictive

Method: Delta index
Setting: In-hospital portable
oximetry

OSAS detection in:

• Whole population

• Patients showing basal SpO2 <93%
• COPD patients

75

100

100

86

83

100

-

-

-

Oliveira et al.
(2012) [21]

26 COPD patients showing symptoms of
suffering from OSAS

Method: Manual AHI
Setting. SpO2 from RP in-lab and
at home

Agreement:

• PSG vs. RPLAB

• PSG vs. RPHOME

• RPLAB vs. RPHOME

-

-

-

-

-

-

0.61

0.47

0.47

Scott et al. (2014)
[22]

59 COPD (GOLD 3–4) Method: Visual and automated
analyses
Setting: In-hospital portable
oximetry

OSAS detection (AHI �15)

• Visual inspection

• Automated ODI4

59

60

60

63

-

-

Present study
(2016)

371 patients showing symptoms of suffering
from OSAS

• 193 training

• 178 test (110 non-COPD and 68 COPD)

Method: Automated analyses by
MLP ANN
Setting: Portable oximetry in-lab
and at home

OSAS detection in the hospital (AHI �15):

• non-COPD

• COPD

OSAS detection at home (AHI �15):

• non-COPD

• COPD

Agreement PSG versusMLPOX-LAB in the
hospital

• non-COPD

• COPD

Agreement PSG versusMLPOX-HOME at
home

• non-COPD

• COPD

97.5

96.2

97.5

86.5

-

-

-

-

58.6

56.3

24.1

37.5

-

-

-

-

-

-

-

-

0.94

0.94

0.73

0.79

OSAS: obstructive sleep apnea syndrome; COPD: chronic obstructive pulmonary disease; GOLD: Global Initiative for Chronic Obstructive Lung Disease;

AHI: apnea-hypopnea index; SpO2: blood oxygen saturation; RP: respiratory polygraphy; PSG: polysomnography; RPLAB: in-hospital respiratory

polygraphy; RPHOME: respiratory polygraphy at home; ODI4: oxygen desaturation index of 4%; MLPOX-LAB: multilayer perceptron artificial neural network

trained with oximetric recordings from portable oximetry in the hospital; MLPOX-HOME: multilayer perceptron artificial neural network trained with oximetric

recordings from portable oximetry at home.

https://doi.org/10.1371/journal.pone.0188094.t009
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obtained in the estimation of the AHI from portable oximetry, unbalanced sensitivity-specific-

ity pairs (sensitivity notably higher than specificity) were obtained when using a fixed diagnos-

tic threshold, particularly for the cutoff AHI�15 events/h, where the imbalance is more

significant. While the proposed ANNs could be optimized in future studies using a more bal-

anced population, our models provide interesting insight into the usefulness of portable moni-

toring for OSAS detection in COPD patients, i.e., oximetry could be an efficient tool as a

simplified screening test for OSAS regardless of suffering from COPD.

An additional limitation is linked with conducting the unsupervised oximetry at home and

the reference PSG in different nights. The night-to-night variability of OSAS is widely known,

which could indirectly increase the differences between the actual AHI from PSG and the AHI

estimated using portable oximetry at home in a different night. Clearly, the agreement between

studies conducted simultaneously (PSG and in-lab oximetry) is expected to be higher than the

agreement between measures derived from studies performed separately (PSG and at-home

oximetry). Therefore, the decrease in the agreement between the actual AHI and the estimated

AHI from unattended oximetry in the home setting, as well as the decrease in the diagnostic

performance, could be mostly due to this issue. Nonetheless, both the non-COPD and the

COPD groups showed similar behavior and no significant differences were found between

groups, which confirm our initial hypothesis.

Conclusions

A simplified screening test for OSAS based on automated analysis of portable oximetry by

means of a regression ANN exhibited no significant differences between non-COPD and

COPD patients in terms of diagnostic performance. The diagnostic accuracy of the estimated

AHI from oximetry and its agreement with the actual AHI from PSG were similar regardless

of the presence of COPD both in the laboratory and at home. Furthermore, in the home set-

ting, the proposed regression ANN performed similar in patients with such comorbid condi-

tion regardless of the severity of COPD, particularly in stages GOLD 1 to 3. Our results

suggest that automated analysis of unsupervised portable oximetry at home may be recom-

mended as an efficient tool for moderate-to-severe OSAS diagnosis also in the presence of

COPD.
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