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Abstract
Human gut microbiome studies typically focus on 16S RNA analyses and bacterial identification at the
genus level. We analyzed bacterial and viral communities in colorectal tissue using both DNA and RNA
sequencing and improved taxonomy resolution to species level.

Specimens from 10 colorectal cancer patients and 10 matched control patients were DNA and RNA
sequenced using Illumina Novaseq. Following taxonomy classification using Kraken 2, alpha and beta
diversities (different metrics) as well as relative and differential abundance were calculated.

There were no viral differences, but P. nesessarius had a highly increased presence in tumors (p=0.001).
RNA analyses showed that A. massiliensis had a highly decreased transcription in tumors (p=0.002)
while F. nucleatum transcription was highly increased in tumors (p=0.002).

In conclusion, joint assessment of the metagenome (DNA) and the metatranscriptome (RNA) at the
species level identifies specific bacterial species as tumor-associated.

Introduction
Human microbiome studies have grown exponentially in the last decades, documenting several key
associations to health and disease. Changes in microbiome diversity and dysbiotic states have been
related to several diseases such as diabetes, obesity, autoimmune diseases, and cancer1–5. The
Hallmarks of Cancer now includes polymorphic microbiomes as new enabling characteristics,
highlighting its importance in both the carcinogenic processes as well as in prognosis or development of
resistance to chemotherapy6.

Colorectal Cancer (CRC) is the third most common incident cancer worldwide and the second in terms of
mortality7. CRC is one of the most studied cancers when it comes to the human microbiome8. Diet is a
major CRC risk factor and the microbiome has a direct effect on the nutrient metabolism in the colorectal
epithelium1,3. The ecological composition of colonic mucosa can directly influence tissue
microenvironment and its functionality. It has been widely demonstrated how gut microbiome shifts can
lead to proinflammatory states that favorize tumorigenic processes6,9. Many bacterial taxa such as
enterotoxigenic Bacteroidetes fragilis (ETBF) or Escherichia coli pks + have been related with tissue
damage and DNA mutations via the production and secretion of bacterial enterotoxins10. Even so, the
most CRC-associated bacterium is Fusobacterium nucleatum spp. Abundance of F. nucleatum has been
strongly associated not only with the presence of colorectal cancer but also with patient outcomes and
even with chemotherapy resistance11–14.

Although many studies have described the human gut microbiome, also in large cohorts15,16, microbiome
assessment techniques vary greatly both in the laboratory phase and in the bioinformatic analysis phase.
As next generation sequencing (NGS) technologies are nowadays widely available at low costs, the
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varying strategies need to be further explored for, as microbial profile comparisons can vary depending on
the technology used. In previous work with part of the samples used in the present study, we investigated
the differences between healthy mucosa and tumor tissue from CRC patients as well as the differences
between those colorectal cancer patients and healthy subjects using 16S rRNA sequencing17. Those
analysis were focused only on bacterial communities and were restricted most of the times to a genus
level classification due to the technical limitations of only sequencing the 16S rRNA gene18. We now
wished to address those issues by studying both bacterial and viral communities at the species level in
colorectal human samples using both metagenomics and metatranscriptomics (both DNA and RNA deep-
sequencing).

Results
Taxonomic classification

After removal of human reads, bacterial taxonomic resolution at species level was at 89.94% for DNA
sequencing reads and 88.36% for RNA sequencing reads. We identified up to 5,918 species corresponding
to 6,580 taxa when performing metagenomics and 5,915 species within 6,694 taxa when analyzing
metatranscriptomics. For viral species, taxonomic resolution was slightly higher, reaching 90.23% for
DNA sequencing reads and 89.68% for RNA sequencing reads (628 species were identified from 696 taxa
when performing metagenomics and 391 species from 436 taxa when performing metatranscriptomics).

Filtering by a minimum of 0.1% of relative abundance in at least one sample translated into detection of
55 and 64 bacterial species for DNA and RNA sequencing analysis, respectively. The top 10 bacterial
species per group are presented in Figures 1A (DNA) and 3A (RNA), and the relative abundances of all
species is found in Supplementary Tables S1 (DNA) and S3 (RNA). Ten viral species were detected by
metagenomics and 6 viral species were identified using metatranscriptomics, after filtering. Viral species
relative abundances are presented in Figures 2A (DNA), 4A (RNA) and in Supplementary Tables S2 (DNA)
and S4 (RNA).

Tumor vs healthy mucosa (DNA)

Bacteria

Comparing the bacterial species between colorectal tumor specimens and healthy mucosa by analyzing
the relative abundance revealed statistically significant differences (p-value <0.01) for 12 bacterial
species (Supplementary table S1). Among those, Polynucleobacter necessarius (reported to be found
mainly in water ponds, but also to be significantly enriched in patients with septic shock and as an
important antibiotic resistant gene host33–35), was the species with highest F-value, being more abundant
in tumors (Figure 1A, Supplementary table S1; F=24.652, p-value < 0.01). 

Alpha diversity indexes, which informed about diversity within samples, did not show any statistical
differences between groups (Figure 1B). Beta indexes, which informed about differences in bacterial
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communities diversity among tumors and healthy tissue, were assessed with 2 different indexes (Figure
1C-D), Jaccard and Bray-Curtis indexes, which showed a clear clustering but not reaching statistically
significance. 

Differential abundance analysis revealed only one bacterial species being more abundant in tumors when
comparing with healthy tissue: Polynucleobacter necessarius (Table 1; log2 fold change of 6.5 and
adjusted p-value = 0.001).

Virus

Up to 10 viral species were identified when performing metagenomic analysis (Supplementary Table S2).
However, there was no statistically significance found when analyzing relative abundance of species,
alpha diversity, beta diversity nor differential abundance analysis (Figure 2).

Tumor vs healthy mucosa (RNA)

Bacteria

Comparison of colorectal tumor and healthy mucosa tissue revealed a decreased relative abundance of
Arabia massiliensis (F=26.021, p-value <0.01) in tumors (Figure 3A, Supplementary table S3). Alpha
diversity indexes, which informed about diversity within samples, did not show any statistical differences
between groups (Figure 3B). Bacterial communities showed a clear clustering when evaluating Jaccard
(p-value 0.001) and Bray-Curtis (p-value 0.001) beta diversity indexes (Figure 3C-D). 

Differential abundance analysis reported 2 bacterial species: Arabia massiliensis being more abundant in
healthy tissue (log2 fold change of -12.68 and adjusted p-value = 0.0001) and Fusobacterium nucleatum
(log2 fold change of 5.31 and adjusted p-value = 0.002) being more abundant in tumors (Table 1).

Virus

Up to 6 viral species were detected when analyzing metatranscriptomes for both tumors and mucosa
(Supplementary Table S2). However, there was no statistically significance found when analyzing species
relative abundance, alpha diversity, beta diversity nor differential abundance analysis (Figure 4).

Table 1. Differentially (p<0.01) abundant bacteria (healthy mucosa vs tumor) in DNA and RNA datasets.

Group Species Log2 fold change adj p-value

DNA Polynucleobacter necessarius 6.5 0.001

RNA Arabia massiliensis -12.68 0.0001

Fusobacterium nucleatum 5.31 0.002

Discussion
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Microbiome studies in relation to human health is an expanding field, that has provided many important
insights, but studies may be fraught with variability in sequencing technologies, bioinformatic pipelines
and downstream diversity analysis. We compared different analysis (relative abundance, alpha and beta
diversities as well as differential abundances) for both DNA and RNA sequencing data, aiming to detect
bacteria and viruses up to species level.

Prior to analysis, bacterial and viral species were filtered (0.1% of total bacterial/viral reads presence in at
least one sample) to reduce complexity, noise and technical variability while preserving data integrity and
representing main communities36. Choosing the appropriate cutoff for filtering is a key step in
microbiome analysis since it can strongly influence the downstream results and result in false
positivity/negativity36. We also included multiple metrics for each analysis. Up to 3 different indexes were
used to analyze the alpha diversity, offering a wide perspective of within sample diversity, increasing
sensitivity for both richness and evenness37. Beta diversity analyses included non-phylogenetic indexes
accounting for both qualitative (Jaccard) and quantitative (Bray-Curtis) indexes to avoid bias of
undersampling meanwhile maintaining sensitivity to rare species38 and differential abundance analysis
to provide more reliable results for specific species enrichment (more than just comparing relative
abundances) since this normalized and transformed taxa can account for data sparsity29.

While no viral differences were detected, our study revealed statistical significances for 3 bacterial
species. P. necessarius and F. nucleatum were highly increased in tumor specimens when analyzing
metagenomics and metatranscriptomics, respectively. Furthermore, A. massiliensis was highly decreased
in tumor tissue when analyzing RNA data.  P. necessarius did not reach the established cut-off when
analyzing RNA sequencing data (present in < 0.1% of total bacterial transcripts in at least one sample).
This species has been mostly identified in freshwater habitats33, but there are studies where the
corresponding genus has been reported to be significantly enriched in patients with septic shock and as
one important antibiotic resistance gene host34,35. When encountering environmental microorganisms, it
is important to identify if those really come from the tumor/specimen, or if those correspond to
deposition, and therefore we highlight the importance of using negative controls to be able to search for
microorganisms that may represent deposition/contamination. Also, both DNA and RNA analysis were
performed within the exact same samples, and a systematic identification was not detected. Furthermore,
observing a lack of RNA transcription casts doubt on possible role of this microorganism in colorectal
tumors. Previous studies on skin, have detected several hundreds of human papillomavirus types when
analyzing DNA sequences, but most of these viruses were not actively transcribed (apparently
representing deposition)39.

Both A. massiliensis (recently identified in stool material)40  and F. nucleatum (the by far most CRC-
associated bacterium in previous studies) were highly detected among the RNA sequences of the mucosa
and the tumors, respectively. Compared to DNA analysis, A. massiliensis did not surpass the established
cut-off, and F. nucleatum did reach it, but its relative abundance presence was low and not different
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between tumor and healthy mucosa specimens. Absence or low prevalence of these species may be
explained by the higher abundance of other species.

This study demonstrated how deep sequencing of both DNA and RNA enables a wider perspective of
microbiome profiles: individual microbial features can vary depending on whether the metagenome or
metatranscriptome is analysed. The role of the recently identified A. massiliensis40 needs to be further
investigated to elucidate its implications in human health. While F. nucleatum is already known to be a
potential colorectal cancer biomarker for screening, diagnosis, and prognosis prediction for patient
outcomes11–14, the association mainly with transcription of F. nucleatum  may provide further insights on
the role of this   microorganism in CRC.  

Methods
Cohort information

The present study includes biopsies from ten patients who were diagnosed with stage I–III colon cancer
after colonoscopy examination and 10 patients that acted as controls where no tumor (neither malignant
nor benign) was seen during colonoscopy examination. Cases and controls were matched by age and sex
and description of all tumors and 2/10 controls as well as results on their 16S rRNA sequencing analysis
have previously been published17. Characteristics of age, sex, BMI and tumor stage from these 20
patients can be seen in Table 2. The study was approved by the Regional Ethical Review Board in
Gothenburg under study number 233-10 and registered at ClinicalTrials.gov (ID: NCT03072641). Informed
consent was obtained from all study subjects. All research was performed in accordance with relevant
guidelines and regulations.

Table 2. Clinical information for patients included in the study.

Group CRC patients Non-CRC subjects

Sample size n=10 n=10

Sex 7 Females

3 Males

7 Females

3 Males

Age

mean(sd)

71.5 (9.78) 70.8 (9.77)

BMI

mean(sd)

24.96 (3.28) NA

Stage I (1), II (4), III (5) -

DNA and RNA extraction
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DNA was extracted using the AllPrep DNA/RNA/Protein Kit (Qiagen, Hilden, Germany), followed by PCR
inhibitor removal with OneStep-96 PCR Inhibitor Removal Kit (Zymo Research, Irvine, California, USA), and
DNA concentration measurement with Qubit 2.0 Fluorometer (Life Technologies, Darmstadt, Germany).
Total RNA was extracted with the AllPrep DNA/RNA/Protein Kit (Qiagen, Hilden, Germany) and reverse
transcribed to single-stranded cDNA using the High Capacity cDNA Reverse Transcription kit
(ThermoFisher Scientific, Massachusetts, USA) following manufacturer's instructions. Double-stranded
cDNA was prepared following step 2 of the Maxima H Minus DS cDNA Kit (ThermoFisher Scientific,
Massachusetts, USA) and the cDNA was cleaned using GeneJET PCR Purification Kit (ThermoFisher
Scientific, Massachusetts, USA).  Thereafter, cDNA was subjected to PCR inhibitor removal with OneStep-
96 PCR Inhibitor Removal Kit (Zymo Research, Irvine, California, USA) and cDNA concentration
measurement with Qubit 2.0 Fluorometer (Life Technologies, Darmstadt, Germany). Both DNA and cDNA
were stored at -20 degrees until further analysis.

Whole genome sequencing

Extracted material (DNA and cDNA) was thereafter subjected to library preparation, using Nextera XT DNA
library preparation kit (Illumina, San Diego, CA, USA) following the manufacturers’ reference guide,
starting with 1 ng of DNA/cDNA (as recommended by the manufacturer) and using unique indexed
adapters to facilitate pooling of the libraries. Libraries were individually quantified using the QuantiFluor
system (Promega, US) and the library sizes were measured using the Bioanalyzer (Agilent, Santa Clara,
CA, USA) as quality analysis. All 20 libraries were normalized to 2 nM and pooled prior paired-end
sequencing using NovaSeq 6000 system (Illumina, USA) at 2 × 150 bp aiming for 100 M high
quality paired end reads/sample.

Bioinformatic preprocessing

Indexes, included in the Illumina adapters, were used to assign raw sequence reads obtained from the
NextSeq500 (Illumina) platform to the originating samples. Reads were quality checked and adapter
trimmed with Trimmomatic using 36 bp as minimal length for the reads19. High quality reads were
screened against the human reference genome hg19 using NextGenMap20 and only reads that did not
map to the human genome, with >95% identity over 75% of their length, were considered as non-human
and further analyzed for microbiome.  Once human reads were filtered from the data set, high-quality non-
human reads were classified using Kraken2 v. 2.1.121, which was run against a reference database
containing all RefSeq bacterial and viral genomes (built in December 2020) with a 0.1 confidence
threshold.

Diversity analysis and statistics

All diversity analyses were performed at species level using R (v.4.2.2). Packages used in this analysis
were biomformat22, phyloseq23, ggvenn24, tidyr25, ggpubr26, vegan27, vtable28, metagenomeSeq29,
funrar30, and superheat31. The biom files generated with kraken-biom32 were used, together with sample
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metadata, to construct phyloseq objects. Results reported all species which comprised more than 0.1% (in
at least one sample) of total bacterial or viral reads, separately. Bacterial and viral species relative
abundance comparison using group F-tests was done for healthy mucosa and tumors in both DNA and
RNA datasets (Supplementary tables S1-S4). Relative abundance plots for top 10 species were plotted for
tumor and healthy mucosa in both DNA and RNA datasets. Observed species, Shannon and Inverse
Simpson alpha diversity indexes were calculated after rarefaction (between 68,535 and 5,034,325 reads,
depending on the subset analyzed) to standardize species representation regardless of sample depth.
Differences between groups for alpha diversity were calculated using unpaired Wilcoxon tests. Bray-
Curtis and Jaccard beta diversity indexes were calculated to analyze differences between bacterial and
viral communities and ANOSIM tests were used to stablish if differences between groups were greater
than differences within groups. Finally, differential abundance (DA) analysis comparing tumor and
healthy tissue was performed for DNA and RNA separately. In this last step, species counts were
transformed using cumulative sum scaling (CSS), log2 transformation as well as a pseudocount addition
to handle data sparsity. P-values obtained from DA analysis were corrected using FDR. Statistical
significance was obtained when p-value <0.01.
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Figure 1

DNA Bacterial diversity of filtered reads.
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Figure 2

DNA Viral diversity of filtered reads.
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Figure 3

RNA Bacterial diversity of filtered reads.
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Figure 4

RNA Viral diversity of filtered reads.
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