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Abstract: The pollution of aquatic ecosystems is an issue facing many countries all over the world
and may result in issues such as eutrophication in coastal zones. Managing this eutrophication
is a real challenge. The current study focuses on the investigation and identification of aquatic
environmental characteristics, including the sediments, waters, and seaweed, of seven eutrophicated
locations along the Mediterranean coast of Alexandria (Egypt). Different ecological risk assessment
and bioaccumulation factors were calculated in order to identify the probable pollution source and
the degree of the problem, in addition to the accumulation of heavy metals in the seaweed. The
characteristics of the seaweed, sediments, and waters were chemically analyzed and heavy metals
were measured. The genetically and biochemically identified seaweed species were Ulva compressa,
Ulva fasciata, Ulva lactuca and Ulva linzea. The sediments of the El-Tabia location contained the
highest concentrations of Cd, Co, Ni, and Pb, because this location receives these elements from
the El-Amia drain. The Abu Qir location was found to contain the highest concentrations of the
same heavy metals in the studied water samples because it was located much closer to the Abu Qir
harbor. Ecological risk assessment indices indicated moderate to high contamination for most of the
studied elements and locations. The results of the bioaccumulation factor analysis indicated that
the studied seaweed species are accumulators of trace elements. These seaweed species should be
further investigated concerning ecotoxicology if they are to be used in the human diet and for other
benefits. This study opens many windows of research to be investigated in the future regarding the
sustainable management of polluted coastal zones.

Keywords: seaweed; bioindicator; trace elements; sediment; ecological risk assessment;
bioaccumulation factor; Mediterranean coast

1. Introduction

The pollution of coastal zones is a significant concern worldwide, including the coasts
of the Mediterranean basin [1,2]. The coastal zones of the city of Alexandria, Egypt, which is
at a latitude of 31◦13′ to 31◦19′ N and a longitude of 29◦55′ to 30◦04′ E, lie in the southeastern
Mediterranean Sea and have more than 35 beaches with a length of 24 km [3]. The coastal
zone of this city suffers from many sources of pollution, as reported by several researchers;
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these include organic pollutants [1], radionuclides [4], heavy metals [5] and municipal
wastewater sludge [6]. Marine sediments serve as a source and sink of trace elements,
influencing their concentrations and distribution patterns in the water column; this is based
on local bottom conditions, sediment re-suspension activity, and local biogeochemical
cycling regimes in the sediment [7]. Generally, the initial concentrations of trace elements
in water sources do not represent a hazard to aquatic creatures. However, the concentration
of trace elements in marine waterways is rising as a result of effluents discharged by
human industrial and agricultural production operations [8]. Monitoring trace elements
in the environment is crucial due to their potential harm to human health [9,10]. Thus,
several indices may be employed as indicators to monitor the natural variation in soil and
sediment composition, the possibility of human-source pollution, and the toxicological
health concerns that are related to soil and sediment pollution [11]. Contaminated seawater
can pose health concerns to humans through skin absorption during recreation or the
ingestion of contaminated seafood, which might expose individuals to metal contamination,
among other issues [12]. As a result, addressing the health hazards posed by metals in
saltwater is critical [13].

Eutrophication, particularly due to nitrogen and phosphorus, is a common phe-
nomenon in several coastal zones in many countries such as China [14,15], Brazil [16],
Fuji [17], Italy [18], Japan [19], Côte d’Ivoire [20], Vietnam [21], and Egypt [22]. This
phenomenon occurs in Alexandria (Egypt) because of pollution that enhances phytoplank-
tonic biomass, especially marine algal blooms, which are good indicators of eutrophica-
tion [23]. The eutrophication of aquatic ecosystems causes anoxia [14,24]. Macroalgal
blooms are linked to coastal eutrophication and are becoming increasingly common across
the globe [25].

These green tides are a specific marine environmental issue, and often involve sea
lettuce (Ulva spp.). Common Ulva species include Ulva lactuca, U. armoricana, U. rigida,
U. prolifera, U. pertusa, U. fasciata and U. rotundata [26]. Green tides occur seasonally because
of anthropogenic eutrophication and are thought to have increased since the 1970s [27].
Many strategies have been investigated to manage eutrophication, such as reducing phos-
phorus input [28], estimating nutrient thresholds [29], monitoring water temperature [30],
and reducing the abundance of Cyanophyta [31].

Macroalgae or seaweeds include green algae (Chlorophyta), brown algae (Phaeophyta)
and red algae (Rhodophyta). These kinds of seaweed produce several bioactive compounds,
which are mainly used as biofertilizers, animal feed, and human foods [32]. Macroal-
gae are also considered biomonitoring agents due to their limited mobility, significant
biomass, simple identification, long life, availability, and their capacity to collect metals [33].
Green macroalgae or green seaweeds are an important source of food for millions of peo-
ple [33]. They are rich in bioactive compounds such as proteins (9.13–25.1%), carbohydrates
(31.97–56.07%), lipids (3.1–10.1%), ashes (53%), amino acids, phytohormones such as aux-
ins, gibberellins, cytokinins and abscisic acid, and antimicrobial compounds and minerals
such as nitrogen, phosphorus, and potassium [34]. Seaweeds and seaweed-based products
can be raised in aquaculture [35] for food and feed [36], biofuels [37,38], cosmetics, dyes,
and therapeutic applications [39]. Biofertilizers derived from seaweeds have been used
in agriculture to improve soil management, water efficiency, nutritional strategies, and
drought tolerance [40,41]. Thus, the key characteristics of seaweed, such as metal biosorp-
tion and bioaccumulation, have drawn the attention of international authorities such as the
European Food Safety Authority (EFSA) and the United States Environmental Protection
Agency (USEPA) [33].

Therefore, this study focuses on the assessment of the bioaccumulation of heavy metals
in sea lettuce (Ulva spp.) along the coast of Alexandria, Egypt. Ecological risk assessment
was also evaluated for such metals in the coastal zone. The ultimate goal was to provide
information that is important to the sustainable management of this vital area.
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2. Materials and Methods
2.1. Selected Sites and Sampling

The Alexandria shoreline stretches for about 35 km along Egypt’s Mediterranean
coast. The shoreline is characterized by natural rock outcroppings that stretch along the
coastline, inland, and into the water, separated by long sandy beaches. Sea lettuce (Ulva
spp.) was collected along with seawater and sediments from seven sites on the Alexandria
coast that had a large amount of sea lettuce and were separated by approximately 5 km
each (Figure 1): El-Tabia (L1), Abu Qir (L2), El-Mandara (L3), Sidi Bishr (L4), Roshdy (L5),
El-Raml Station (L6) and Qaitbay Castle (L7) (Table 1 and Figure 2). A graphical summary
of this study, including all measurements and analyses, is presented in Figure 3.
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Figure 1. A general view of sea lettuce (Ulva spp.) and the locations that were selected for the
sampling of seaweed, water and sediments: (A) Ulva spp, (B) EL-Tabia (L1), (C) Abu Qir (L2),
(D) El-Mandra (L3), (E) Sidi Bishr (L4), (F) Roshdy (L5), (G) El-Raml Station (L6) and (H) Qaitbay
Castle (L7).

Table 1. Descriptions of the selected sampling locations.

Location Code Description of Location

El-Tabia L1
The main drain for this station is the El-Amia, where industrial wastes
from El-Tabia Pumping Station (average 1.5–2.0 million m3 day−1) are
discharged to Abu-Qir Bay, which is a semi-circular basin.

Abu Qir L2 This location is a beach at the north of the town and near the Abu Qir port.
There are no wastes flowing to the beach.

El-Mandara L3 This location is a private beach with no wastes flowing to it.

Sidi Bishr L4 This location is a very crowded beach with no wastes flowing to it. An
attempt to protect the beach using cement blocks can be seen in Figure 1.

Roshdy L5 This location is a rocky shoreline with no wastes flowing to it.
El-Raml Station L6 This location is a rocky shoreline with no wastes flowing to it.
Qaitbay Castle L7 This location is a rocky shoreline with no wastes flowing to it.
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Figure 2. A map showing the locations selected for sampling and study near Alexandria, Egypt.

In total, 63 samples of each seaweed (Ulva spp.), seawater, and sediment
(7 locations × 3 samples × 3 replicates) were randomly collected during October 2020. All
samples were collected in one day under similar weather and environmental conditions:
smooth sea, sunny with no wind, and no recent rain. Benthic sediment samples were
collected from each location at a depth of around 50 cm from the water or seaweed surface.
Seaweed was collected from an area of 10–20 m2 from each location. All seaweed thalli were
carefully washed to remove rock debris, sand, and epiphytes using seawater. Seaweed,
sediment, and seawater samples were sorted and transported separately in plastic bags
on ice to the laboratory. Using a plastic grab device, surficial sediment samples were col-
lected from the upper 0–20 cm, removing non-sediment objects and stones by hand. They
were then placed into polyethylene bags. The collected sediment samples were dried and
homogenized at room temperature and then stored at −20 ◦C until analysis. About 2 L of
water sample was collected from each location in triplicate. The water samples were taken
from the top of the water surface down to 50 cm in plastic bottles. The seaweed collected
from each location was sun dried, cut into 1–3 mm particles using a knife, washed with
distilled water, filtered, and dried overnight at 60 ◦C to prepare the samples for analyses.



Sustainability 2023, 15, 4404 5 of 22

Sustainability 2023, 15, x FOR PEER REVIEW 5 of 25 
 

 
Figure 3. An overview of the current study, including the sampling of seaweed, seawater, and 
sediment, the measurements made, and calculated indices for each type of sample. 

In total, 63 samples of each seaweed (Ulva spp.), seawater, and sediment (7 locations 
× 3 samples × 3 replicates) were randomly collected during October 2020. All samples were 
collected in one day under similar weather and environmental conditions: smooth sea, 
sunny with no wind, and no recent rain. Benthic sediment samples were collected from 
each location at a depth of around 50 cm from the water or seaweed surface. Seaweed was 
collected from an area of 10–20 m2 from each location. All seaweed thalli were carefully 
washed to remove rock debris, sand, and epiphytes using seawater. Seaweed, sediment, 
and seawater samples were sorted and transported separately in plastic bags on ice to the 
laboratory. Using a plastic grab device, surficial sediment samples were collected from 
the upper 0–20 cm, removing non-sediment objects and stones by hand. They were then 
placed into polyethylene bags. The collected sediment samples were dried and 
homogenized at room temperature and then stored at −20 °C until analysis. About 2 L of 
water sample was collected from each location in triplicate. The water samples were taken 
from the top of the water surface down to 50 cm in plastic bottles. The seaweed collected 
from each location was sun dried, cut into 1–3 mm particles using a knife, washed with 
distilled water, filtered, and dried overnight at 60 °C to prepare the samples for analyses. 

2.2. Seaweed Analyses 
Dried seaweed was crushed into a powder and digested using a mixture of sulfuric, 

nitric, and perchloric acids (2:2:1) [42]. The digested material was brought to a volume of 
50 mL with distilled water. A blank sample was made using the mixture of acids only 
without seaweed, in order to offer a chemical background. Atomic Absorption (Perkin 
Elmer pin AAcle 500, Waltham, MA, USA) was used to determine the types and amounts 
of trace elements in the extract. 

Total phosphorus was determined using a modified version of the John method [43]. 
First, 0.1 mL of clear digestate was diluted with 9 mL of distilled water. Two drops of a 
0.1% solution of the indicator (2,4 dinitrophenol) were added, followed by the addition of 
5 M NaOH drop by drop until the solution turned yellow. Next, 2 M HCl was added drop 
by drop until the solution became colorless. Then, 1 mL of the combined reagents was 
added, and the solution was gently shaken. The absorbance was measured at 710 nm after 
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2.2. Seaweed Analyses

Dried seaweed was crushed into a powder and digested using a mixture of sulfuric,
nitric, and perchloric acids (2:2:1) [42]. The digested material was brought to a volume
of 50 mL with distilled water. A blank sample was made using the mixture of acids only
without seaweed, in order to offer a chemical background. Atomic Absorption (Perkin
Elmer pin AAcle 500, Waltham, MA, USA) was used to determine the types and amounts
of trace elements in the extract.

Total phosphorus was determined using a modified version of the John method [43].
First, 0.1 mL of clear digestate was diluted with 9 mL of distilled water. Two drops of a
0.1% solution of the indicator (2,4 dinitrophenol) were added, followed by the addition
of 5 M NaOH drop by drop until the solution turned yellow. Next, 2 M HCl was added
drop by drop until the solution became colorless. Then, 1 mL of the combined reagents
was added, and the solution was gently shaken. The absorbance was measured at 710 nm
after 30 min. The mixed reagent was prepared by mixing antimony molybdate acid and
recently prepared 2.5% ascorbic acid in a 4:1 ratio. The mixture was stabilized for 1 day.
The antimony molybdate acid was prepared by dissolving 0.75 g of (NH4)6Mo7O24·4H2O
and 0.014 g of antimony potassium tartrate in 50 mL of distilled water. Then, 8.8 mL of
concentrated H2SO4 was added, and the solution was cooled. The volume was adjusted to
100 mL with distilled water, and the solution was stored in a dark-colored glass bottle.

The phosphorus concentrations were estimated considering a standard curve in the
0–5 µg range of phosphorus. Dried samples were used to determine the total nitrogen
using the Kjeldahl technique. The samples were weighed and transported to Kjeldahl
digestion flasks that contained 7.00–10.0 g of a catalyst made from a mixture of K2SO4
(9 g), in addition to CuSO4.5H2O (1 g) and 25 mL of concentrated H2SO4. Following the
digestion, the distillation occurred in the Kjeldahl distillation unit by adding more baser,
followed by the boiling and condensation of the NH3 gas in a receiving solution of 5%
H3BO3 that contained methyl red and methylene blue indicators. It was then titrated with
0.1 N HCl. The nitrogen (%) was calculated on a dry matter basis [44].

2.3. Water Analyses

Seawater samples were filtered and the pH of the untreated samples was measured
using a pH meter (JENWAY 3510, Staffordshire, UK) in the laboratory. Then, 1 L of seawater
was acidified using 2% HNO3 at 60 ◦C, and it was then concentrated to 50 mL to measure
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the elemental contents by Graphite Furnace Atomic Absorption Spectrometry (GBC Avanta
E, Victoria, Australia) according to APHA [45]. Levels of N, P, K, Mg, Ca, Cu, Co, Cd, Fe,
Ni, Mg, Pb, and Zn were determined in the clear extract using Atomic Absorption (Perkin
Elmer pin AAcle 500, USA).

2.4. Sediment Analyses

Dried sediment samples were digested in a mixture of nitric, sulfuric, and perchloric
acid (2:2:1) [42]. After digestion, the samples were cooled and the extract was brought to a
volume of 50 mL with distilled water. A blank sample was made using the mixture of acids
with no sediment digestion to provide a chemical background. The levels of Mg, Ca and
trace elements were determined in the clear extract using Atomic Absorption (Perkin Elmer
pin AAcle 500, USA). The N content of the sediments was measured using the Kjeldahl
method [46], and a spectrophotometer (Double beam UV/Visible Spectrophotometer Libra
S80PC, Cambridge, England) was used to measure P [47].

2.5. Calculation of Pollution Indices

Two pollution indices were calculated to evaluate sediment contamination at the
study sites, the geo-accumulation index (Igeo) and the enrichment factor (EF). To compare
the level of elements in the studied sediments with the mean background contents (MBC)
(mg kg−1), the ecological risk was assessed, as suggested by Kabata-Pendias [48]. A compar-
ison of the common pollution indices and what they measure is given in Brevik et al. [49].
It is important to use pollution indices as the absolute value of trace elements does not
necessarily indicate the human health threat posed by them [9].

2.5.1. The Geo-Accumulation Index

The geo-accumulation index is utilized to assess the contamination level in soil or
sediment [50]. It compares present and predicted pre-industrial concentrations using
Equation (1):

Igeo = log2 [C/1.5B] (1)

where C is the concentration of trace elements n in the sediment, B is the content of trace
elements in the geochemical background, and 1.5 is a constant that allows the analysis
of fluctuations in the trace element content due to natural processes. The outcomes are
divided into 7 classes (0, 1, 2, 3, 4, 5, and 6) as follows:

Class 0 = Igeo ≤ 0 is uncontaminated;
Class 1 = 0 < Igeo ≤ 1 is uncontaminated to moderately contaminated;
Class 2 = 1 < Igeo ≤ 2 is moderately contaminated;
Class 3 = 2 < Igeo ≤ 3 is moderately to heavily contaminated;
Class 4 = 3 < Igeo ≤ 4 is heavily contaminated;
Class 5 = 4 < Igeo ≤ 5 is heavily to extremely contaminated; and
Class 6 = Igeo > 5 is extremely contaminated [11,51].

2.5.2. Contamination Factor

The contamination factor is a one-element index that defines the degree of pollution
of a given toxic material in the ecosystem [52] using Equation (2):

CF = Csample/Cbackground (2)

where Csample is the current trace elements content in the sediment and Cbackground is back-
ground concentration. The contamination factor is categorized into the following: CF < 1
indicates a small amount of contamination; 1 ≤ CF< 3 refers to medium contamination;
3 ≤ CF < 6 is significant contamination; and CF ≥ 6 is very high contamination.
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2.6. Bioaccumulation Factor (BAF)

The BAF was evaluated to show how effective the seaweed or algae was at accumulat-
ing trace elements from the sediment or seawater using Equation (3) [53]:

BAF = Calgae/Csediment or Calgae/Cseawater (3)

where Calgae= trace element concentrations in algae or seaweed tissues (mg kg−1) and
Csediment and Cseawater are trace element concentrations in sediment and seawater, respec-
tively (mg L−1).

2.7. DNA Extraction

To extract algal DNA from the samples that were frozen at −20 ◦C, a 150 mg sample
was ground in liquid nitrogen using a mortar and pestle. The DNA was isolated using the
Cetyl-trimethyl ammonium bromide method [54], and the concentrations were determined
using a Nanodrop spectrophotometer (Implen, Westlake Village, CA, USA).

2.8. PCR and Gel Electrophoresis

A polymerase chain reaction (PCR) was performed with six decamer random amplified
polymorphic DNA (RAPD) primers. PCRs were performed in the presence of 1X Taq DNA
polymerase buffer (i.e., 10 mM Tris-HCl at pH 8.3, 50 mM KCl and 1.5 mM MgCl2), 100 µM
dNTPs, 10 picomole of a random primer, 25 ng DNA template, and a half unit of Taq DNA
polymerase in a whole volume of 25 µL. PCR was carried out in an automated thermal
cycler (MJ-Mini, Bio-Rad, Hercules, CA, USA). The first step was performed at 95 ◦C for
4 min, then 35 cycles were performed at 94 ◦C for 1 min., at 36 ◦C for 30 s and at 72 ◦C
for 3 min for denaturation, annealing, and polymerization, respectively, followed by a
final expansion step at 72 ◦C for 7 min. The products of amplification were separated on
1.5% agarose gel in a 0.5 × TBE buffer versus molecular size standard 1 Kbp ladder. Gels
were visualized under UV light and depicted by the gel documentation system (UVITEC,
Cambridge, UK).

2.9. Quantification of Antioxidant Enzymatic Activities

The activities of antioxidant enzymes, including catalase, peroxides, and polyphenol
oxidase were measured in the algal samples. Catalase (CAT; EC 1.11.1.6) activity was
determined using H2O2 at 240 nm [55]. The reaction combination (1 mL overall) included
20 mg total protein, 50 mM sodium phosphate buffer (pH 7.0) and 10 mM H2O2. For each
measure, the blank paralleled the absorbance of the combination at time zero, and the
real reading paralleled the absorbance that was measured after 1 min. One unit of CAT
activity was described as a 0.01 decrease in absorbance at 240 nm/mg of protein/min.
Peroxidase (POX; EC 1.11.1.7) activity was determined based on the procedure described
by Hammerschmidt et al. [56], and polyphenol oxidase (PPO; EC 1.10.3.1) activity was
determined according to Malik and Singh [57].

2.10. Quality Control and Quality Assurance

All blanks, measurements, triplicate trace element measurements in extracts, and
certified reference materials for each studied element were included for quality control,
and uncertainty was calculated. All the equipment was calibrated according to the man-
ufacturer’s specifications. Internal and external quality assurance systems were applied
according to the requirements of ISO/IEC 17025-2017 [58]. Certified reference materi-
als obtained from Phenova Certified Reference Materials (Torrance, CA, USA; WS0718;
September 2018) were used for quality control to calculate the analyses’ efficiencies. The
recovery was between 92% and 103% depending on the studied element, whereas the
average relative standard deviation (RSD) was less than 5%. The standard deviation (SD)
of the measurements was above 5% in a few cases. These values were not included in the
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statistical analyses. The detection limits obtained for Cd, Co, Cu, Fe, Ni, Pb and Zn were
0.02, 0.05, 0.04, 0.06, 0.04, 0.05, and 0.04 mg L−1, respectively.

2.11. Statistical Analyses

The means and analysis of variance were calculated using Costat Version 6.311 sta-
tistical software [59]. The means were separated by least significant difference (LSD) and
Duncan’s multiple range tests, and significance was determined at p ≤ 0.01.

Amplification profiles were generated using the RAPD primers and recorded as 1 or 0
for the presence or absence, respectively, of a band of a specific molecular size, in order to
produce a binary matrix that was subjected to cluster analysis. The similarity matrix was
assessed by Jaccard’s genetic similarity index [60]. A dendrogram was produced by cluster
analysis using the arithmetic averages (UPGMA) by the un-weighed pair group technique.
The PAST statistics software version 2.17 package was utilized to analyze the data [61].

3. Results
3.1. Ulva and Pollution
3.1.1. Chemical Analyses of Ulva spp.

All seaweed samples varied in their content (in mg kg−1) of K (7670–20,820), Mg
(14,000–17,820), P (2960–5810), N (860–3360), Ca (400–33,330), Cu (7.7–26.7), Fe (533–4437),
and Zn (14.2–19.5) in all locations (Table 2). The Mg content was the highest element
tested in all the algal samples from all locations. When comparing locations, the algal
samples from L1 had the highest P and Fe contents, whereas the samples from L3 contained
the highest N and Mg. The highest K content was recorded at L7. The trace elements
concentrations varied significantly among the locations. Pb and Ni showed the highest trace
elements concentrations (28.6–35.8 and 23.9–33.8 mg kg−1, respectively) in the samples
from all locations compared to the other trace elements. The highest significant mean
concentrations of Co, Ni and Pb were 20.9, 33.8, and 35.8 mg kg−1, respectively, at L3. The
highest significant mean concentrations of Fe, Cu and Zn were 4437, 26.7, and 19.5 mg kg−1,
respectively, at L1. The highest mean concentration of Cd was 12.8 mg kg−1 at L5.

Table 2. The mean concentrations of major elements and heavy metals (mg kg−1) in seaweed (Ulva
spp.) samples collected near Alexandria, Egypt.

Site N P K Mg Ca Fe Cu Cd Co Ni Pb Zn

L1 1090 e 5810 a 7670 h 15,440 c 6670 c 4437 a 26.7 a 4.6 d 20.9 a 24.6 d 31.3 b 19.5 a
L2 890 g 3100 e 7702 g 14,000 e 8000 b 1563 c 10.2 b 5.8 cd 18.4 c 23.9 e 30.7 c 14.3 g
L3 3360 a 4610 c 13,130 c 17,820 a 5330 d 1004 d 10.8 b 5.3 b 20.4 a 33.8 a 35.8 a 16.3 b
L4 1940 d 2960 g 10,260 d 15,660 c 12,000 a 533 h 9.6 c 5.2 cd 17.5 d 29.9 b 28.6 e 14.2 h
L5 2740 c 4210 d 13,280 b 15,680 c 5330 d 739 g 13.3 b 12.8 a 19.3 b 29 b 30.5 bc 15.1 d
L6 860 g 4570 c 8130 e 14,800 d 400 e 3940 b 11 b 5.8 c 19.3 b 27.2 c 30.1 c 15.3 c
L7 3230 b 5220 b 20,820 a 16,180 b 33,330 f 966 e 7.7 d 5.5 c 18.4 c 26.8 c 29.7 d 14.8 e

Different letters in the same column show significant differences among each group of treatments according to
Duncan’s test at p ≤ 0.01. All location (L1 to L7) details can be found in Table 1.

3.1.2. Antioxidant Enzymes Activity of Ulva spp.

The activities of some antioxidant enzymes were measured for the seaweed samples
at each location (Figure 4). These antioxidants were catalase (CAT), peroxidase (POX) and
polyphenol oxidase (PPO). The samples from L4 had the highest activities of all antioxidant
enzymes studied, followed by the samples from L1, and the algal samples from L3 had the
lowest values of CAT and POX. The CAT and POX enzyme activity decreased in samples
from L4 toward the L7 location. The activities of the antioxidant enzymes studied reflected
the degree of pollution at these sites. These findings indicate that L4 was associated with
the highest level of human activity near Alexandria. Based on the values of antioxidant
activities, the sites were ordered as follows: L4 > L1 > L5 > L7 > L2 > L6 > L3.
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Figure 4. Antioxidant enzyme activities of Ulva spp., including (A) catalase (CAT), (B) peroxidase
(POX) and (C) polyphenol oxidase (PPO) for the study locations. All location (L1 to L7) details can be
found in Table 1.

3.1.3. Genetic Diversity of Ulva spp.

Six RAPD primers were used for four populations of Ulva spp. from the studied
costal locations (Table 3). The RAPD primers effectively created scoreable and instructive
bands. The RAPD profiles of the magnified products are presented in Figure 5. Various
banding shapes were formed from various primers. The level of polymorphism was 100%
with all the investigated primers except OPF08, which had 90% polymorphism through
all examined Ulva populations. Primer OPD12 yielded the most bands (12) while primers
OPC04, OPF08, and OPV02 amplified the fewest (9). The highest similarity value (0.43)
was recorded for the L1 and L2 populations, while the lowest value (0.06) was recorded for
L7 populations. Similarity coefficient matrices were utilized to make a dendrogram of the
four Ulva spp. studied, according to UPGMA analysis (Figure 6).
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Table 3. The sequence of the RAPD primers used in this study.

Primer Name Nucleotide
Sequence Total Bands Monomorphic

Bands
Polymorphic
Bands

Polymorphism
(%)

OPC-04 CCGCATCTAC 9 0 9 100
OPC-08 TGGACCGGTG 11 0 11 100
OPC-10 TGTCTGGGTG 10 0 10 100
OPD-12 CACCGTATCC 12 0 12 100
OPF-08 GGGATATCGG 10 1 9 90
OPV-02 AGTCACTCCC 9 0 9 100
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Figure 6. Randomly amplified polymorphic DNA-based phylogenetic tree and clustering anal-
ysis among four Ulva spp. collected from selected coastal locations using the unweighted pair
group method.

3.2. Chemical Characterization of Seawater

The seawater samples significantly varied in their characteristics among the different
locations (Table 4). In general, Sidi Bishr (L4) had the highest concentrations of both K
(1031 mg L−1) and Mg (384 mg L−1), whereas Abu Qir had the highest concentrations
of trace elements such as Pb (4.11 mg L−1), Ni (3.81 mg L−1), Co (2.38 mg L−1), and
Cd (0.507 mg L−1). The chemical analysis of seawater showed that all locations had high
concentrations of trace elements compared to the normal level of these elements in seawater.
The concentrations of trace elements in aquatic compartments such as sediments reflect
either anthropogenic impacts or the chemical composition of the bedrock. The pH values
were 7.18, 7.88, 7.93, 7.92, 7.74, 7.68, and 7.84 in the studied locations, respectively.
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Table 4. Concentration of elements in seawater (mg L−1) collected from different locations near
Alexandria, Egypt.

Site N P K Mg Ca Fe Cu Cd Co Ni Pb Zn

L1 0.182 e 0.227 a 455 e 371 d 176 g 9.86 c 0.263 b 0.433 c 2.20 b 3.30 c 3.69 b 1.46 d
L2 0.226 d 0.000 c 870 bc 372 cd 310 d 3.88 e 0.227 b 0.507 a 2.38 a 3.81 a 4.11 a 1.42 e
L3 3.361 a 0.000 c 856 d 375 bc 192 f 5.57 d 0.227 b 0.480 b 1.63 d 3.75 a 4.11 a 1.68 b
L4 0.241 c 0.000 c 1031 a 384 a 860 b 12.78 b 0.250 b 0.497 ab 1.85 c 3.71 a 4.29 a 1.69 b
L5 0.388 b 0.013 b 891 b 373 bcd 900 a 23.67 a 0.260 b 0.463 bc 1.75 cd 3.37 bc 3.87 b 1.52 c
L6 0.211 d 0.013 b 885 bc 376 b 664 c 3.46 g 0.220 b 0.443 c 1.62 d 3.23 c 3.79 b 1.35 f
L7 0.246 c 0.000 c 870 c 376 b 216 e 3.70 f 0.503 a 0.507 a 1.45 e 3.44 b 3.85 b 2.25 a

Different letters in same column show significant differences among each group of treatments according to
Duncan’s test at p ≤ 0.01. All location (L1 to L7) details can be found in Table 1.

3.3. Chemical Properties of Sediments

The chemical composition of sediment samples varied significantly among the lo-
cations (Table 5). The sediment samples ranged (in mg kg−1) from 5660–7250, 338–1585,
4223–11,546, 80–1280, 1.2–13.5, 1000–9656, and 78.1–149.5 for N, P, Mg, Ca, Cu, Fe, and Zn,
respectively. The differences between the concentrations of the various metals were highly
significant (p ≤ 0.01).

Table 5. The content of studied elements in sediments (mg kg−1) from locations near Alexan-
dria, Egypt.

Site N P Mg Ca Fe Cu Cd Co Ni Pb Zn

L1 5950 b 1585 b 8402 e 180 c 1578 d 9.2 b 4.0 a 14.6 a 23.9 a 27.2 a 117.7 c
L2 6700 ab 755 f 4223 g 080 e 9656 h 1.7 d 3.4 d 13 b 19.5 d 20.2 e 78.1 e
L3 5900 b 1204 c 8880 d 200 b 1360 e 1.2 d 3.8 c 13.6 b 20.7 c 21.3 c 100.2 d
L4 7050 a 338 g 9148 c 180 c 1000 g 6.3 c 2.2 g 9.5 d 16.4 e 15.0 h 94.1 d
L5 5780 c 1951 a 10,844 b 120 d 1698 c 6.3 c 3.7 e 12.4 bc 19.4 cd 20.9 d 121.2 b
L6 7250 a 847 e 11,546 a 200 b 2045 a 13.5 a 4.8 b 14.6 a 22.5 b 25.0 b 149.5 a
L7 5660 c 994 d 8814 d 1280 a 1799 b 5.4 c 3.9 cd 12.1 c 19.0 d 16.3 g 120.5 b

Different letters in same column show significant differences among each group of treatments according to
Duncan’s test at p ≤ 0.01. All location (L1 to L7) details can be found in Table 1.

3.4. Ecological Risk Assessment

Two selected pollution indices (CF and Igeo) were calculated to evaluate sediment
contamination as part of the ecological risk assessment (Table 6). All sites had low Cu,
Fe, and Zn contamination based on the CF values (i.e., CF = 1 ≤ CF < 3), while they were
very highly contaminated by the other metals studied (i.e., CF ≥ 6). The values of the
bioaccumulation factor (BAF) were calculated using both sediments and seawater, and
are shown in Table 7. The BAF values were higher than 1 at all sites for all metals, except
Cu at L6 and Fe at 4 locations. This indicated that the algae accumulated these metals in
their tissues at most of the study sites and were classified as metal accumulators. Geo-
accumulation (Igeo) index values were extremely high and showed polluted conditions
for Cd at all locations, whereas Fe and Zn values for this index indicated uncontaminated
to moderately contaminated conditions. All locations had Igeo index values that ranged
between 1 and 2 for Pb, whereas the values were between 2 and 3 for Co.
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Table 6. Contamination factor (CF) and geo-accumulation index (Igeo) of the studied trace elements.

Site Cu Cd Co Fe Ni Pb Zn

Contamination Factor (CF)

L1 0.37 b ± 0.01 9.21 a ± 0.1 1.50 a ± 0.04 0.05 c ± 0.001 0.87 a ± 0.02 0.93 a ± 0.02 1.68 c ± 0.01
L2 0.07 d ± 0.1 7.29 d ± 0.1 1.30 b ± 0.03 0.03 d ± 0.001 0.73 d ± 0.01 0.70 d ± 0.01 1.12 f ± 0.01
L3 0.05 d ± 0.1 7.55 c ± 0.1 1.34 b ± 0.03 0.05 c ± 0.001 0.75 c ± 0.01 0.76 c ± 0.01 1.43 d ± 0.02
L4 0.25 c ± 0.03 4.84 e ± 0.1 1.00 d ± 0.01 0.03 d ± 0.001 0.61 e ± 0.03 0.52 f ± 0.01 1.34 e ± 0.01
L5 0.25 c ± 0.04 6.93 e ± 0.2 1.29 b ± 0.1 0.06 b ± 0.001 0.73 d ± 0.01 0.71 d ± 0.02 1.73 b ± 0.01
L6 0.54 a ± 0.03 8.36 b ± 0.1 1.46 a ± 0.01 0.07 a ± 0.002 0.83 b ± 0.01 0.87 b ± 0.03 2.14 a ± 0.02
L7 0.22 c ± 0.03 7.39 d ± 0.1 1.25 c ± 0.02 0.06 b ± 0.001 0.72 d ± 0.01 0.56 e ± 0.02 1.72 b ± 0.01

Geo-accumulation index (Igeo)

L1 0.34 b ± 0.01 8.66 a ± 0.08 1.40 a ± 0.04 0.05 b ± 0.001 0.82 a ± 0.02 0.88 a ± 0.01 1.58 c ± 0.01
L2 0.06 d ± 0.02 6.85 d ± 0.1 1.22 bc ± 0.03 0.03 d ± 0.001 0.68 d ± 0.01 0.65 d ± 0.01 1.05 f ± 0.01
L3 0.04 d ± 0.01 7.10 c ± 0.1 1.26 b ± 0.02 0.04 c ± 0.001 0.71 d ± 0.01 0.71 c ± 0.02 1.34 d ± 0.02
L4 0.24 c ± 0.03 4.55 f ± 0.1 0.94 e ± 0.01 0.03 d ± 0.001 0.57 e ± 0.1 0.49 f ± 0.02 1.26 e ± 0.01
L5 0.24 c ± 0.04 6.52 e ± 0.1 1.22 c ± 0.1 0.05 b ± 0.001 0.69 d ± 0.01 0.67 d ± 0.02 1.63 b ± 0.01
L6 0.51 a ± 0.02 7.86 b ± 0.1 1.37 a ± 0.1 0.06 a ± 0.001 0.78 b ± 0.01 0.82 b ± 0.03 2.01 a ± 0.02
L7 0.20 c ± 0.03 6.94 d ± 0.1 1.18 d ± 0.03 0.06 a ± 0.001 0.68 d ± 0.02 0.53 e ± 0.02 1.62 b ± 0.01

Different letters in same column show significant differences among each group of treatments according to
Duncan’s test at p ≤ 0.01. All location (L1 to L7) details can be found in Table 1.

Table 7. Bioaccumulation factor (BAF) based on seawater or sediment for the studied trace elements
by location.

Sites Cu Cd Co Fe Ni Pb Zn

Bioaccumulation factor (BAF)seawater

L1 105 a ± 20.4 11.4 bc ± 0.5 9.16 c ± 0.5 44.99 b ± 0.5 7.45 d ± 0.3 8.46 a ± 0.3 133 a ± 1.5
L2 46.17 b ± 9.5 10.05 d ± 0.4 7.72 d ± 0.2 40.33 c ± 0.2 6.11 e ± 0.4 7.41 c ± 0.2 100 c ± 2.2
L3 47.67 b ± 1.5 12.36 b ± 0.2 12.53 b ± 1.1 18.03 e ± 0.2 8.97 a ± 0.4 8.59 a ± 0.1 97.1 d ± 0.5
L4 38.74 b ± 2.6 10.11 d ± 0.1 9.47 c ± 0.5 4.18 f ± 0.1 7.85 c ± 0.2 6.75 d ± 0.5 84.5 e ± 0.7
L5 51.10 b ± 2.7 26.10 a ± 1.1 11.07 b ± 0.4 3.12 e ± 0.1 8.7 ab ± 0.2 7.94 b ± 0.1 99.5 c ± 0.8
L6 50.14 b ± 6.2 11.71 b ± 0.7 11.94 ab ± 0.6 113.9 a ± 3.5 8.4 b ± 0.1 8.03 b ± 0.2 113 b ± 0.5
L7 15.26 c ± 1.0 10.57 cd ± 0.5 12.68 b ± 0.5 26.15 d ± 0.2 7.64 cd ± 0.3 7.65 bd ± 0.1 66.1 f ± 0.2

Bioaccumulation factor (BAF)sediment

L1 2.92 b ± 0.1 1.08 f ± 0.1 1.35 d ± 0.03 0.28 a ± 0.001 1.04 f ± 0.03 1.16 e ± 0.05 1.66 b ± 0.01
L2 6.20 ab ± 1.6 1.40 d ± 0.05 1.42 c ± 0.06 0.16 a ± 0.001 1.19 e ± 0.08 1.51 d ± 0.02 1.84 a ± 0.02
L3 14.86 a ± 4.5 1.57 c ± 0.01 1.53 b ± 0.05 0.07 a ± 0.001 1.66 b ± 0.03 1.61 c ± 0.03 1.63 c ± 0.02
L4 1.55 b ± 0.2 2.07 b ± 0.01 1.76 a ± 0.02 0.05 a ± 0.001 1.76 a ± 0.02 1.91 a ± 0.04 1.52 d ± 0.01
L5 2.14 b ± 0.4 3.49 a ± 0.06 1.49 b ± 0.01 0.04 a ± 0.001 1.48 c ± 0.03 1.49 d ± 0.03 1.25 e ± 0.01
L6 0.81 b ± 0.1 1.24 e ± 0.02 1.33 d ± 0.02 0.19 a ± 0.001 1.22 e ± 0.02 1.20 e ± 0.05 1.03 f ± 0.01
L7 1.44 b ± 0.3 1.45 d ± 0.01 1.48 bc ± 0.03 0.05 a ± 0.001 1.36 d ± 0.02 1.80 b ± 0.06 1.23 e ± 0.03

Different letters in same column show significant differences among each group of treatments according to
Duncan’s test at p ≤ 0.01. All location (L1 to L7) details can be found in Table 1.

3.5. Principal Component Analysis (PCA) and Correlation

The PCA showed two principal components (Figure 7), PCA1 and PCA2, which
accounted for 74.81 and 12.51% of the whole variance in the data matrix, respectively. The
estimated Kaiser–Meyer–Olkin Measure (KMO) value was 0.70 and the Bartlett’s level of
significance was <0.01, indicating the general suitability of the data for PCA. This suggested
that all elements were included in PCA1 except N, which was included in PCA2. PCA1
was heavy with the positive loading of Zn, Co, Pb and Ni, which indicates that these metals
have similar sources. This result is supported by the results of the strong relationships
among these metals, demonstrated by the correlation analysis (Table 8). PCA2 included
only N, indicating that N in this area has a different source to the other elements studied.
The correlation between the studied heavy metals was significantly higher than 96% (R2)
for Co, Pb, Ni, Mg, and Zn.
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Table 8. Pearson’s correlation coefficients for the studied metals and elements.

Cu Cd Co Fe Ni Pb Zn Mg Ca N P

Cu 1
Cd 0.68 ** 1
Co 0.78 ** 0.88 ** 1
Fe 0.79 ** 0.46 ** 0.70 ** 1
Ni 0.72 ** 0.88 ** 0.99 ** 0.62 ** 1
Pb 0.78 ** 0.87 ** 0.99 ** 0.67 ** 0.99 ** 1
Zn 0.85 ** 0.84 ** 0.98 ** 0.76 ** 0.96 ** 0.97 ** 1
Mg 0.80 ** 0.85 ** 0.96 ** 0.63 ** 0.96 ** 0.96 ** 0.97 ** 1
Ca 0.59 ** 0.56 ** 0.61 ** 0.27 * 0.59 ** 0.61 ** 0.59 ** 0.69 ** 1
N 0.19 0.38 ** 0.47 ** 0.28 * 0.54 ** 0.47 ** 0.49 ** 0.37 ** −0.22 1
P 0.80 ** 0.77 ** 0.85 ** 0.65 ** 0.81 ** 0.85 ** 0.84 ** 0.89 ** 0.70 ** 0.032 1

**—Correlation is significant at the 0.01 level (2-tailed). *—Correlation is significant at the 0.05 level (2-tailed).

4. Discussion

Several coastal zones all over the world suffer from the effects of intensive human
activities, which lead to the pollution of these aquatic environments. In the current study,
the coastal zone along Alexandria, Egypt, was selected as a case study of a eutrophicated
area due to human activities. To evaluate the environmental effects of human activity,
samples of seawater, seaweed from the genus Ulva, and sediments were collected from
seven locations along the Alexandria coastal zone.

4.1. Seaweed and Eutrophication in Selected Locations

The chemical properties of seaweed showed that all locations had high concentrations
of trace elements compared to the typical values reported in the literature. This finding
means that the seaweed species is a hyperaccumulator of the studied heavy metals and,
therefore, of important bioindicators for eutrophicated locations. The reason for the high
heavy metal values may be due to the intensive human activities in these coastal zones,
which provide many sources of pollution; this includes untreated sewage, oil spillage,
oil transport, and industrial wastewater [62]. The populations were separated into two
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marked clusters by the unweighted pair group method. The first was comprised of the
L1 and L2 populations, while the second cluster consisted of the L4 and L7 populations.
According to their morphological characteristics, the four Ulva populations collected from
L1, L2, L4 and L7 were U. lactuca, U. compressa, U. fasciata and U. linzea, respectively. These
results clearly indicate that U. lactuca was phylogenetically close to the species U. compressa.
The phylogenetic relationship indicated by the dendrogram in Figure 7 agreed with the
results obtained by Guidone et al. [63] and Ismail and Mohamed [64]. The distribution of
green macroalgae, such as the Ulva spp., in coastal zones worldwide is presented in Table 9.
The green tides composed of green macroalgae have been observed at multiple locations
worldwide. These green tides are considered bioindicators of pollution, and different
mitigation strategies have been applied to overcome this global problem. Eutrophication
mitigation strategies should include controlling nutrient loads and organic matter, as well
as the restoration of ecosystems so that they can function in a sustainable way [65]. These
strategies should be investigated for absolute environmental sustainability assessments [66].

Table 9. Distribution of green macroalgae of the genus Ulva at eutrophicated coasts worldwide.

Country The Coastal Region
(Sea or Ocean) Brief Description of Study Dominant Species of Ulva Reference

Egypt Alexandria (Mediterranean Sea) Evaluation of pollution in an area
affected by green tides

U. lactuca, U. compressa,
U. fasciata, U. linzea Current study

China Yellow Sea Monitoring distribution of U. prolifera
during 2020–2022 using remote sensing Ulva prolifera Wang et al. [67]

China Yellow Sea
Largest U. prolifera bloom coverage in
this sea was observed during
June/July 2021

Ulva prolifera Nukapothula et al. [68]

China South Yellow Sea Green tide reached its largest scale in
history during 2021 Ulva prolifera Zheng et al. [69]

China Jiangsu Province (Yellow Sea) Mitigation of green tides Ulva prolifera Liu et al. [70]

Brazil Itanhaém, Sao Paulo (South
Atlantic Ocean)

U. lactuca exposed to laboratory coastal
oceanic acidification Ulva lactuca Sousa et al. [71]

China Yantai City
(Yellow Sea)

Pollution due to phenolic
endocrine-disrupting
compounds, EDCs

Ulva pertusa, U. prolifera Zhang et al. [72]

China Subei Shoal (Jiangsu Province,
Yellow Sea)

Pollution due to nutrient-rich
submarine groundwater discharge Ulva prolifera Zhao et al. [73]

Japan Tosa Bay, Kochi
(Pacific Ocean) Mitigation of green tides Ulva ohnoi, U. reticulata Hiraoka et al. [74]

China Subei Shoal (Yellow Sea) Mitigation of green tides Ulva prolifera Sun et al. [75]
China Qingdao (Yellow Sea) Pollution by nitric oxide (NO) Ulva prolifera Wang et al. [76]

USA Elkhorn Slough, Monterey
bay, California Mitigation of green tides U. intestinalis, U. lactuca Duplá [77]

India Gujarat and others Mitigation of green tides Ulva rigida Balar et al. [78]

South Korea Jeju coast (Bangdu Bay)
Polluted with high nitrate
concentration (NO3

−) due to
sewage discharge

Ulva spp. Samanta et al. [79]

China Rushan city (Yellow Sea) Polluted with bisphenol A (BPA) Ulva prolifera Zhang et al. [80]

4.2. Seawater Eutrophication in Selected Locations

Nutrients (i.e., N, P, Fe, Mg, etc.) are commonly abundant in the coastal zone. These
nutrients and their concentrations depend on the source and level of input. Human
activities may also introduce pollutants, including heavy metals and nutrient overloads,
into coastal waters and sediments. In the current study, all metals were found in high
concentrations in seaweed, seawater, and sediment according to the expected background
concentrations reported by Kabata-Pendias and Mukherjee [81] and Kabata-Pendias [48].
These findings reflect the presence of pollution in this area, which emphasizes the impact of
human activities, such as the release of industrial wastes from sewage sludge and factories.
The locations studied were eutrophicated, and the pollution indices for trace elements
in the seawater from these sites confirmed the presence of pollution. There are many
reasons for this, including the adsorption of these elements into organic compounds and
their deposition in sediments [48]. These findings are in an agreement with the results of
Alprol et al. [3], who reported that the pollution levels in the Alexandria coastal zone had
increased over time. Trace elements that are soluble in seawater may be linked to water
pollution in the studied locations [82]. Seaweed is a sink of trace elements that efficiently
sequesters these elements in its tissues; elemental levels in the tissues correlate to the
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elemental levels in both the water and sediment [34]. Seawater intrusion may decrease the
toxicity of heavy metals in coastal zones, but might increase the ecological risk for coastal
groundwater, as reported in India [83].

4.3. Sediments under Eutrophication in Selected Locations

Coastal zones are under anthropogenic pressures that vary from one area to another
depending on the type and intensity of human activity. Therefore, suitable indicators of
negative effects from this pressure are critical in order to evaluate coastal ecological quality,
which is temporally and spatially variable [17]. Sediments are an important component
of the aquatic environment and are a significant indicator of pollution levels. The con-
centrations of trace elements in the studied locations were higher than their background
concentrations in many other parts of the world, as determined from the literature. The
distribution of green macroalgae, such as Ulva spp., in coastal zones worldwide is presented
in Table 10. This implies that the coastline of Alexandria was more polluted than other
coastal zones in many locations around the world. This may be due to environmental
pollutants that originate on land (discharge of urban domestic sewage, agricultural and
industrial wastewater, disturbance of soil during agricultural and construction activities,
etc.) and reach the sea via riverine inputs or aerial depositions, alongside the high level
of human ocean-based activity in this area, including shipping and port services, fishing,
and aquaculture.

Table 10. A comparison of heavy metal concentrations for surface seawater (compared to their
concentrations in drinking water (mg L−1) and sediment in different locations worldwide. Kabata-
Pendias [48] indicates background levels for seawater.

Kabata-
Pendias [48] Wang et al. [84] Arikibe and

Prasad [85]
Nour and

El-Sorogy [86] Liu et al. [87] Current Study

Seawater

Cd 0.0001 0.17–1.55 0.15–0.25 0.013–0.13 0.08–0.73 0.433–0.507
Co 0.00001 - - - - 1.45–2.38
Cu 0.0002 0.04–31.0 0.88–10.29 0.43–0.62 0.83–5.38 0.227–0.503
Fe 0.001 - - 1.97–2.45 - 3.70–23.67
Ni 0.0005 - 0.23–0.80 0.003–0.008 - 3.30–3.81
Pb 0.00003 0.42–7.25 0.88–1.76 0.08–1.80 0.52–3.60 3.69–4.11
Zn 0.00003 1.97–42.2 0.08–1.45 0.22–0.25 2.22–40.7 1.42–2.25

Sediments

Arikibe and
Prasad [85]

Nour and
El-Sorogy [86] Liu et al. [87] Nour et al. [88] Soliman et al. [89] Current study

Cd 5.49–9.16 0.55 0.08–0.23 0.53 0.04–0.47 2.2–4.8
Co - - - - 0.43–26.39 9.5–14.6
Cu 78.43–490.18 5.10 13.5–26.0 9.43 0.46–26.26 17–13.5
Fe - 2384 - 8451 243–38,045 1000–2045
Ni 17.24–28.74 2.87 - 17.5 1.65–60.25 16–23
Pb 116.96–233.92 17.3 11.0–20.8 11.4 3.34–53.67 15–27
Zn 16.00–68.78 22.4 17.6–34.1 44.2 2.05–62.21 78–149

All the metal concentrations in the sediment were higher than the sediment quality
guidelines for the protection of aquatic life (marine) [90]. Water pollutants, depending on
their physicochemical properties, may stay in the water column or bind to particles that
are subsequently deposited on the seabed [91]. If there are a considerable amount of these
elements adsorbed in the sediments, the elements may become a hazard to aquatic life
when released, due to changes in the physicochemical properties of the seawater. Mining,
manufacturing, and municipal wastewaters are all anthropogenic activities that have a
strong link with trace elements in waters and sediments [48]. The concentrations of trace
elements in the sediments were higher than the maximum allowable concentrations of
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these elements in agricultural soils. The concentration of many studied elements in the
recent study were high, as reported by El Zokm et al. [92].

4.4. Ecological Risk Assessment of Selected Locations

There is an urgent need to use potential ecological risk assessments to determine the
effects of pollutants or nutrients and their role in the eutrophication phenomenon. Assess-
ment of sediment pollution is considered crucial for evaluating the health of ecosystems;
however, the determination of metals concentrations alone is not enough to assess possible
anthropogenic and environmental health impacts [49]. Thus, several quantitative indices
have been developed to assess the level of pollution and ecological risk posed by metals in
the environment [49,93]. Bibak et al. [94] stated that ecological risk assessment indicated
that elemental sediment pollution has occurred as a result of anthropogenic activities.

The suggested indices of risk assessment are important tools for identification of
environmental health risk in coastal zones and should be integrated into eutrophication
evaluations [95]. The seven studied locations are along the coastline of Alexandria, which
includes major harbors, is considered one of the most industrialized zones in Egypt, and
receives considerable amounts of petroleum product inputs [96]. These sources of pollution
have generated eutrophication due to green tides along the coastal zones of Alexandria.
The pollution of these coastal zones has been described by several authors focusing on
pollutants such as polycyclic aromatic hydrocarbons [97], heavy metals [92,98], and urban
dust, rich in HMs [99]. Furthermore, Alexandria possesses approximately 40% of Egypt’s
industry and is the main summer resort in Egypt [3].

There are many indices for monitoring the pollution of aquatic environments that
have been used in the evaluation of the eutrophication phenomenon. The degree of
metal contamination ranged between zero (or low) to moderate contamination for Cd in
approximately half of the studied sites, and was significant in the remaining sites. Cu
contamination was low to moderate at all the studied sites. Zn contamination was very
high, and Co, Ni, and Pb contamination was high at all sites. According to the Igeo values,
all sites were uncontaminated or moderately contaminated by Cu, Fe, and Zn, while all
sites were moderately contaminated by Ni and Pb. All sites were extremely contaminated
by Cd. The Pb and Cd concentrations in seawater in the current study were many times
higher than those in natural seawater and drinking water. These findings indicate the
presence of pollution in this area, which reflects the impact of human activities, such as the
release of industrial wastes from sewage sludge and factories [48].

Algae are used in the assessment of marine ecosystems due to their high capacity
for HMs bioaccumulation; they are considered good bioindicators. Some algae species
can survive in polluted environments because of the genetic mutations they undergo. We
calculated BAF values related to both sediments and seawater. The BAF examines the
degree to which elements are mobilized from the environment and travel into plants,
by determining the efficiency with which plants accumulate elements that are in the
environment [93]. When the BAF > 1, the given element is more likely to accumulate in the
plant’s tissues [100,101]. According to Alvarez-Mateos et al. [102] and Elbehiry et al. [100],
plants are classified as hyperaccumulators (>5 mg kg−1), accumulators <5 mg kg−1 and
(>1 mg kg−1), and excluders (<1 mg kg−1), based on their BAF values. Correlation analysis
was applied to explain the relationships among the examined elements and factors that
may affect their interactions [103]. The highest strong positive correlation was observed
between Ni and Pb; Co and Ni; Pb, Zn, and Mn; and Cd and Co. These results confirm that
the sources of these elements are similar, as are the results of the ecological risk assessment.
PCA is also an effective tool in order to confirm the main potential pollution source in
the environment and to condense a huge number of indicators into a more manageable
set [11,100]. The PCA analysis also indicated that all the elements studied, except for N,
have a similar source.

The values of the bioaccumulation factors show that these algae are good accumu-
lators for all metals except Fe (BAFsediment > 1) (as depicted in Table 10). Copper and Zn
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are essential microelements for algae, but in higher concentrations, they become toxic.
Cd and Pb translocated into plant tissues due to an interference with essential elements,
which become toxic when they accumulate in high enough concentrations [104]. The
BAFsediment was higher than 1 at all sites for all metals except Cu at L6 and Fe at all
locations [101]. Ulva spp. BAFseawater values were higher than for BCFsediment. The maxi-
mum BAFseawater value recorded for algae was higher than 1 for all metals, which means
that bioaccumulation was confirmed. The BAFseawater comparison between the metals was
Zn > Cu > Fe > Cd > Co > Pb > Ni (Table 10). Other studies showed that the concentrations
of heavy metals vary from species to species [105].

4.5. Suggested Sustainable Management of Eutrophication

Several pollutants may result from human activities, including heavy metals and
organic chemicals from sources such as fertilizers, pesticides, medical activities, waste
disposal, and industrial activities [106]. The concentrations of these pollutants can become
elevated in aquatic ecosystems, leading to toxicity for aquatic biota [107]. Eutrophication
(mainly from N and P) can lead to harmful algal blooms (mainly Cyanophyta), as pre-
sented in Figure 8. Therefore, there is an urgent need to identify sustainable approaches
for the management of coastal zones in order to prevent eutrophication, such as apply-
ing Bacillariophyta and Chlorophyta to inhibit harmful Cyanophyta blooms [32]. Additional
strategies include reducing phosphorus input [29], estimating nutrient thresholds [30],
monitoring water temperature [31], reducing the abundance of Cyanophyta [32], the in-
tegrated risk assessment approach [95], marine green economics [108], and the use of
biological nanomaterials for the nanoremediation of polluted water [109]. It is possible that
the blooms that cause this eutrophication could be harvested to provide organic fertilizer
for agricultural production or be used directly as a human food source. However, doing
so requires an understanding of the potential for contaminates to bioaccumulate in ocean
plants such as seaweed. Several approaches are needed for the sustainable management
of eutrophication. Preventing the problem and using bioindicators such as seaweed to
monitor pollution is the best solution [110].
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5. Conclusions

Alexandria has several eutrophicated coastal zones that result from the growth of
extensive green tides of macroalgae. Seven coastal zone sites were selected to evaluate these
green tides and the environmental conditions in which they exist. The results confirmed
that Ulva spp. was a biomarker and accumulator for contamination in this area, especially
for trace element contamination. The ecological risk assessment results confirmed the
different degrees of pollution by a variety of elements at the studied locations. Owing to the
very high nutrient content, particularly N, P, Ca, K, and Mg in the Ulva species, this seaweed
could act as an effective biofertilizer or human food source. However, these species should
be further investigated regarding ecotoxicology if they are to be used in human nutrition
or biofertilizers. The trace element contamination seen in this study is a concern and must
be addressed before the seaweed can be applied to these other uses. Therefore, while this
seaweed has promise in terms of helping to meet food security goals, the trace element
contamination levels seen in this study represent a concern. Further research should focus
on the use of algal extracts, which are effective in organic farming, and are an eco-friendly
approach to sustainable agriculture. It is imperative to develop a comprehensive program
for the management and restoration of the coastline of Alexandria through monitoring of
the water quanlity. Municipal, industrial, fish farm, and other wastes must be controlled
and/or treated before being discharged into the sea.
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