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Assessment of Catastrophic Risk Using Bayesian Network
Constructed from Domain Knowledge and Spatial Data

Lianfa Li,1,2 Jinfeng Wang,1 Hareton Leung,2 and Chengsheng Jiang1

Prediction of natural disasters and their consequences is difficult due to the uncertainties and
complexity of multiple related factors. This article explores the use of domain knowledge and
spatial data to construct a Bayesian network (BN) that facilitates the integration of multiple
factors and quantification of uncertainties within a consistent system for assessment of catas-
trophic risk. A BN is chosen due to its advantages such as merging multiple source data and
domain knowledge in a consistent system, learning from the data set, inference with missing
data, and support of decision making. A key advantage of our methodology is the combi-
nation of domain knowledge and learning from the data to construct a robust network. To
improve the assessment, we employ spatial data analysis and data mining to extend the train-
ing data set, select risk factors, and fine-tune the network. Another major advantage of our
methodology is the integration of an optimal discretizer, informative feature selector, learn-
ers, search strategies for local topologies, and Bayesian model averaging. These techniques
all contribute to a robust prediction of risk probability of natural disasters. In the flood disas-
ter’s study, our methodology achieved a better probability of detection of high risk, a better
precision, and a better ROC area compared with other methods, using both cross-validation
and prediction of catastrophic risk based on historic data. Our results suggest that BN is a
good alternative for risk assessment and as a decision tool in the management of catastrophic
risk.
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1. INTRODUCTION

Emergency catastrophic events like natural dis-
asters are affected by complex factors that are both
diverse (natural, environmental, ecological, demo-
graphic, and socioeconomic) and may have a large
measure of uncertainty.(1) The interactions of these
factors are complex and affected by random fluctu-
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ations. Many scholars have done studies on natu-
ral disasters resulting in the construction of complex
systematic theories thereof and suggestions of spe-
cialist methods for risk assessment.(1−4) Shi et al.(3)

proposed a systematic theory of natural disasters by
dividing the risk-related factors into three aspects: in-
ducing factors, environmental factors, and vulnera-
bility. Based on practical surveys, Guo and Chen(5)

concluded that there is a monotonously decreas-
ing relationship (the solid line in Fig. 1) between
loss risk and predictability of natural disasters or a
monotonously increasing relationship (the dash-dot
line in Fig. 1) between loss risk and mitigation delay.
As seen from Fig. 1, if predictability of natural disas-
ters is improved (early warning) or timely mitigation
actions are carried out, loss can be decreased consid-
erably, thus lowering the risk and saving more lives.
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Fig. 1. Relationship between predictability of natural disasters
and loss risk and between mitigation delay and loss risk.

Generally, the traditional approaches use the fol-
lowing form, or a derivation thereof, to model catas-
trophic risk:

R =
∫ ∫

C(V)P(V | A)P(A) dV dA, (1)

where P(A) is the probability of the disaster event,
A, P(V | A) is the probability of vulnerability for a
certain individual (V) given event A, and C(V) is
the damage potential of V. Estimation of risk us-
ing Equation (1) is dependent on multiple factors
and these are subject to uncertainty.(6) Many pre-
vious approaches, however, ignore or are limited in
quantifying the uncertainty of these factors and their
interactions.(7) Building on top of the traditional ap-
proaches, we apply new techniques to enhance the
predictability of natural disasters and thus to de-
crease the potential loss risk (Fig. 1).

Recently, with the development of geographical
information science, data mining, and artificial intel-
ligence, new techniques have been used in assess-
ing catastrophic risk.(8−11) There is still the need for
more exploration of new methods and applications.
As pointed out in NASA’s report,(12) some existing
methods of data analysis lack consideration of do-
main knowledge, making it difficult to interpret the
results; there are relatively few studies that merge
multiple sources of information (some of which may
be significant) although natural disasters are affected
by multiple uncertainty factors.

As an exploration of pragmatic and efficient
methods, this article proposes an uncertainty in-
ference model, a Bayesian network, which is ini-
tially constructed according to domain knowledge
and then fine-tuned by learning from historic data.
Specifically, we explore how to fuse knowledge and
spatial data from multiple sources to construct an
adaptive network, how to combine components of

kernel density analysis, exposure analysis, and vul-
nerability analysis into a consistent system, and how
to use the network to make a robust prediction that
overcomes overfitting.

Our model is based on Bayesian network (BN)
that, as a directed acyclic graph, is able to repre-
sent uncertainty interdependences between factors
that describe many real-world domains, such as pub-
lic emergency catastrophic events. They have many
advantages (over traditional probabilistic methods)
including merging domain knowledge and multiple-
source data within a consistent system, flexible net-
work structure beneficial for searching a locally
optimal solution, and inference under missing data
conditions. Furthermore, by adding nodes of utilities
and decision, a BN can easily become a tool for sup-
porting reasonable decision making. With new infor-
mation (evidence) at hand, the tool can instantly up-
date the risk assessment and an adaptive decision can
be made accordingly. Therefore, it is a good integra-
tion approach to assessing catastrophic risk.

Although BNs have been widely applied in many
domains, for example, economy, public health, eco-
logical risk assessment, and mineral exploitation, to
the best of our knowledge, there are only a few re-
ports of BNs being applied in catastrophic risk as-
sessment that include debris flow,(13) earthquakes,(14)

and avalanches.(7)

Compared with the small number of BN appli-
cations in catastrophic risk assessment, our study fo-
cuses on learning and robust prediction of risk using
BN. We use data mining and learning methods to im-
prove the BN’s risk assessment. Hence, our model-
ing is different from those studies based mostly on
domain knowledge. Through this study, we make the
following contributions:

1. We use kernel density analysis (KDA) to pre-
process the spatial data set. KDA is an ap-
proach to modeling the intensity of a certain
event (e.g., how far a vulnerable individual is
close to a flooded river) or a quantity (e.g.,
amount of loss) spread across the geospa-
tial landscape.(15) In our study, this method
is employed to preprocess the data to obtain
the intensity buffer classification of the fea-
tures (e.g., rivers, roads, or residential areas).
This approach considers the influence of spa-
tial distance on intensity classification of fea-
tures, which is beneficial for making a robust
prediction.

2. We design an optimal discretization algo-
rithm. This is a supervised learning algorithm
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that relates the discretization of quantitative
factors to classification of the target variable.
This algorithm is beneficial to improving the
performance of the learned models in par-
ticular when we have little knowledge about
the discretization and its influence on the risk
prediction.

3. We design a generic modeling framework of
a BN according to domain knowledge. Us-
ing data mining techniques such as informa-
tive feature selector, optimal discretizer, and
search strategies, the framework facilitates in-
tegration of multiple quantitative factors and
qualitative factors within a consistent system
to make uncertainty inferences. It combines
domain knowledge and historic data within
an integration platform for multidisciplinary
communication among experts in different
fields (geographers, construction engineers,
knowledge engineers, and economists). Ag-
gregative use of multiple techniques is ben-
eficial for improving the robustness of our
method. Bayesian model averaging (BMA)
can be used to enhance the prediction’s
robustness.

Our method was successfully applied in monitoring
the flood disaster. Using both cross-validation and
historic data to predict the new situations, our BMA
prediction achieved a better probability of detection
of high risk, a better precision, and ROC area than
the other learning methods. Our encouraging result
has implications for using BNs as an approach to as-
sessment and decision making of catastrophic risk.
If nodes of utilities and decision actions are added
to the BN, a better decision-making functionality
can easily be implemented on the basis of robust
prediction by our methodology. Our methodology
of risk assessment, although using the flood as the
study case, is based on a generic modeling frame-
work and it can be easily adjusted and extended
to other types of catastrophic risk such as seismic
and typhoon risk if relevant factors are selected and
relevant domain knowledge is incorporated in the
framework.

2. MODELING FRAMEWORK
OF BAYESIAN NETWORK

This section briefly describes the BN model-
ing framework. Specifically, Section 2.1 introduces
knowledge of the factors associated with catastrophic

risk, Section 2.2 introduces the BN, and Section 2.3
proposes the BN framework.

2.1. Factors Associated with Catastrophic Risk

There are many factors associated with catas-
trophic risk. As described in Shi,(3) we can di-
vide these factors into three aspects, namely, induc-
ing factors, environmental factors, and vulnerability
factors.

1. Disaster-inducing factors: As direct exposure-
related factors, inducing factors are mainly re-
sponsible for occurrence of the hazards and
are closely related to the occurrence of catas-
trophic loss. For instance, heavy rainfall may
induce floods and landslides; extremely in-
tense wind may cause typhoons or cyclones;
and movements of the earth’s crust may in-
duce earthquakes.

2. Environmental factors for breeding disasters:
Environmental factors are relevant to the en-
vironment that breeds the disasters. Such a
factor can be either physical or artificial and
is able to mitigate or aggregate the destruc-
tive power of a hazard. For instance, land with
good water-soil conservation capabilities can
prevent a mudslide or mitigate its destruc-
tive effect, while a flood has more destruc-
tive power on the infrastructure or residences
close to a river floodplain than those further
away from the floodplain.

3. Vulnerability: This is the degree to which a
system or subsystem is likely to experience
and adapt to harm due to exposure to a haz-
ard. Different systems and individuals have
different vulnerability due to their differences
in adaptation to harm. For instance, young
people are less vulnerable to a flood than se-
niors; and a house with a lightweight steel
structure has a better ability to withstand
earthquakes.

Table I gives a brief summary of the three types
of factors for five natural disasters, namely, flood,
typhoon, earthquake, tsunami, and landslide. Basi-
cally, these factors embody the domain knowledge
about the mechanism of disasters, that is, their oc-
currence and effects, which is the source for the sub-
sequent modeling of BN as described in the next
section.
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Table I. Division of Factors for Loss Risk in Five Disasters

Category Flood Typhoon Earthquake Tsunami Landslide

Typical inducing
factors

Heavy rainfall, dam
collapse, etc.

Extreme climate
events, for
example, El Nino

Release of
interstitial fluid
pressure

Earthquake deep at
sea

Heavy rainfall

Environmental
factors

Water, soil,
vegetation,
elevation, slope,
etc.

Location, close to
sea, vegetation,
elevation, etc.

Location, soil, close
to fault, etc.

Location, close to
sea, etc.

Water, soil,
vegetation,
elevation, slope,
etc.

Vulnerability Materials, structure and the number of stories of buildings; demographic and socioeconomic conditions; age,
knowledge, and income of individuals

2.2. Bayesian Network

A BN is a probabilistic graphical model that en-
codes a set of random variables and their proba-
bilistic interdependencies through a directed acyclic
graph (DAG) consisting of nodes and edges. It is a
good method for modeling uncertainties and interac-
tions between related factors inherent in monitoring
and prediction of catastrophic risk. Given below is a
brief introduction to BNs.

Definition 1: Given a set of random variables (rv), V,
a BN is an ordered pair (BS, BP) such that

1. BS = G(V, E) is a directed acyclic graph,
called the network structure of B, where E ∈
V × V is the set of directed edges, represent-
ing the probabilistic conditional dependency
relationship between rv nodes that satisfies
the Markov property, that is, there are no di-
rect dependencies in BS that are not already
explicitly shown via edges, E, and

2. BP = {γu : �u × �πu → [0 . . . 1] | u ∈ V} is a
set of assessment functions, where the state
space �u is the finite set of values of u; πu is
the set of parent nodes of u, indicated by BS;
if X is a set of variables, �X is the Cartesian
product of all state spaces of the variables in
X; and γ u uniquely defines the joint probabil-
ity distribution P(u | πu) of u conditional on its
parent set, πu.

BNs are based on the Bayesian theorem, that is,
inference of the posterior probability (a.k.a. belief )
of a hypothesis according to some evidence. In as-
sessment of catastrophic risk, evidence comes from
inducing factors and environmental and vulnerabil-
ity factors (Table I), while the hypothesis refers to
the risk that is classified as several states of loss. Let r

Table II. Different States of the Risk and Their
Damage Definition

Damage Damage Factor Central Damage
State Range (%) Factor (%)

None 0 0
Slight 0–1 0.5
Light 1–10 5
Moderate 10–30 20
Heavy 30–60 45
Major 60–100 80
Destroyed 100 100

be such a hypothesis variable of loss risk and its state
space is �r. The risk can be classified as seven states,
that is, �r = {none, slight, light, moderate, heavy,
major, destroyed} whose definitions of the damage
states are given in Table II. In practice, the risk can
be classified into two states, for example, �r = {low
loss, high loss}, or {no loss, loss} for convenience of
surveying the loss when the training samples just in-
volves two states of loss such as Wang’s(16) survey of
earthquake loss and the binary survey of flood loss
in our flood study. In our binary classification, the
threshold for the damage factor of “high risk” is 10%
(damage factor), that is, if over 10% of the properties
or people at a certain place are damaged, this place
will be classified as “high loss.”

In a specified BN, given some evidences at hand,
we can estimate the posterior probability or belief of
the target variable r as the risk probability by calcu-
lating the marginal probability:

Bel(rk) =
∑

ui ∈V,ui �=r

p(u1, u2, . . . , r, . . . , un), (2)

where p(u1, . . . , un) = ∏
ui ∈V p(ui | πui ) is the joint

probability over V.
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Fig. 2. Modeling framework of Bayesian network.

In practice, we often use an efficient algorithm of
exact inference or approximate inference rather than
the marginalization of the joint probability to com-
pute Bel in Equation (2).

2.3. Initial Network Framework

We devise an initial network framework of
BN according to domain knowledge. The domain
knowledge comes from the generalization and classi-
fication of factors associated with natural disasters as
described in Section 2.1. To simplify the implemen-
tation of the domain knowledge in the BN, we use
two relationships to represent the knowledge: one
is the relationship between quantitative independent
factors such as rainfall, elevation, and slope, and the
target variable, that is, loss risk, while the other is
the influence of qualitative factors such as vegetation,
landform, and soil type on the relationship between
quantitative factors and the target variable.

1. When a quantitative factor is closely associ-
ated with the target variable (risk), abnormal
values of the quantitative factor may indicate
higher loss risk (probability). This relation-
ship between quantitative factors and the loss
risk is similar to that between a disease and
the related symptoms of the patient catching
the disease: a certain disease often causes the
patient to have some abnormal test results or
symptoms. Similarly, if a study region has a

high loss risk, it often has a higher or abnor-
mal measurement value of some quantitative
factors. Based on empirical knowledge, such
a relationship becomes a basic pattern for our
Bayesian modeling framework. We call this
relationship the disease-test pattern or disease-
symptom pattern.

2. Another aspect of domain knowledge is the
influence of qualitative factors such as soil
type, geological type, and vegetation on the
relationship between quantitative factors and
loss risk. In this study, we regard these qual-
itative factors as contributing factors to the
disease-symptom pattern relationship. The in-
fluence of qualitative factors on quantitative
factors and loss risk naturally becomes our
second basic pattern for BN modeling and we
call it an influence pattern.

From the above two basic patterns (Fig. 2A), we
can construct the BN modeling framework (Fig. 2B).
We use a simple diverging connection(17) to model
the “disease-symptom” pattern. First, we assume
that the quantitative factors used are independent.
Under this assumption, we can specify this connec-
tion using the loss risk (“disease”) node as root and
quantitative nodes (“symptoms”) as leaves. In this
pattern, each leaf node has an edge directed from
the root node. If we do not temporarily consider the
influence from qualitative factors, the diverging con-
nection is a typical naı̈ve Bayes that is often used in
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medical diagnosis. From this connection, we get the
likelihood of the target node, r = “high loss”:

L(m1, . . . , mn | R) = P(m1 | R) · · · · · P(mn | R), (3)

where R is the target node of loss risk and mi the
ith node of the independent quantitative factors.
Then using the normalization constant, μ, we get the
posterior probability, or belief, of the risk variable:
Bel(R) = μP(R) ·L(m1, . . . , mn | R).

To model the influence pattern, we use the fun-
damental rule of probability calculus:(18)

P(A, B | C) = P(B | A, C)P(A| C). (4)

If we regard the risk factor as A, the independent
quantitative factors as B, and the qualitative factors
as C, according to the rule, it is natural to have the
edges directed from the qualitative factor nodes (C)
to the quantitative factor (B) and risk (A) nodes to
obtain our framework (Fig. 2B). In BN, an edge rep-
resents a probabilistic dependence (P(A | B)) and the
node (A) at the edge’s arrow is statistically depen-
dent on the one (B) at the edge’s source. According
to Equation (4), if C has a statistical influence on A
and B (i.e., A and B are statistically conditional on
C), this can be specified as the product of two proba-
bility dependencies, that is, P(B | A,C) and P(A | C),
and thus we can direct an edge from C to A to repre-
sent the dependence P(A | C), and direct two edges
from A and C to B to represent the dependence
P(B | A,C). According to the BN principle, such a
product of probabilities in Equation (4) can be imple-
mented in the network structure as in Fig. 2A. When
A represents different independent factors and B dif-
ferent qualitative factors, this interdependence be-
tween the three factors can be extended to multi-
ple factors with the independence assumption among
quantitative factors (C). This gives us the BN’s initial
framework (Fig. 2B). Furthermore, in order to de-
crease the computation burden, we can use domain
knowledge to confirm the interdependency relation-
ship between quantitative factors (B) and qualitative
factors (C). Thus, domain knowledge is used to select
the links in the final network by removing those non-
interdependent relationships. This method of remov-
ing the noninterdependence conforms to the simpli-
fication principle of Occam’s window(19) to select the
model. Thus, in Fig. 2, we use dotted lines to de-
note such a relationship finally determined by do-
main knowledge.

On the other hand, there may be interdependen-
cies between qualitative factors and these interde-
pendencies can be learned from the data set using

various search algorithms. Then, the learned interde-
pendencies from the data are used to determine the
local structure of the network framework, thereby
constructing a complete BN.

In the framework, we must ensure independence
between quantitative factors. Furthermore, since the
predictive-related factors are quantitative (continu-
ous) or qualitative (discrete or categorical), we need
to develop methods to fuse such different types of
variables in the BN. In our methodology, we use
PCA and Quinlan’s information measures to se-
lect independent quantitative factors, an optimal dis-
cretization algorithm to discretize the quantitative
factors, thus enabling the BN to integrate both quali-
tative and quantitative factors within a consistent sys-
tem, search algorithms to obtain the local structure,
and BMA to obtain a robust prediction of the loss
risk.

On the basis of the principles of naı̈ve Bayes,
Occam’s window’s simplification,(19) and probability
calculus, our BN framework is constructed. Given
its independence assumption and theoretical foun-
dation, our framework, although artificial, is reason-
able and adequately describes the probability re-
lationships between the variables. This framework
combines simple domain knowledge (relevant fac-
tors and their classification) and learning to obtain
a robust assessment of catastrophic risk. The frame-
work is practical and very useful, in particular when
we lack domain knowledge of the probability inter-
dependences among risk-related factors. But, if we
have a clearer knowledge of the interdependence, we
can directly construct the network.

3. BACKGROUND OF THE FLOOD
CASE STUDY

3.1. Study Area

The study area is one part of the basin of the
Heihe River that is located between east longitude
96◦42′ and 102◦04′ and between north latitude 36◦45′

and 42◦40′ in northwest China. Fig. 3 shows the study
area, which includes 11 counties, for example, Jinta,
Jia Yuguan, Jiuquan, Gaotai, Zhangye, etc. within
Gansu Province.

The study area, unlike the southern regions of
China, does not often experience heavy rainfalls. But
due to worsening local ecological systems and poor
water-soil conservation ability, a few heavy rainfalls
can cause moderate flood disasters as recorded in
history.(20) In the summer (July) of three successive
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Fig. 3. The study area.

years, 2006, 2007, and 2008, three flood disasters hap-
pened in this region.

3.2. Study Goal

The study goal is to use the flood disaster data
set and the related factors to construct a robust BN
learner that can be used to predict the flood’s loss
risk. Our methods are compared with nine other
probabilistic or nonprobabilistic models.

In the case study, we used three data sets of the
same study area from three successive years, July
2006, July 2007, and July 2008.

For model validation, the data from 2006 and
2007 were, respectively, employed to validate the
model using the usual 10 × 10 cross-validation. In this
validation, the data set was randomly divided into
10 buckets of equal size. Nine buckets were used for
training and the last bucket was used as the test. The
procedure was iterated 10 times and the results were
averaged. The various methods are compared using
scalar measures, that is, the probability of detection
(pd), probability of false alarms (pf ), precision, and
receiver operating characteristic (ROC) area.

Furthermore, the 2006 data set was used as the
training data to teach the models to predict the 2007
and 2008 loss risks. Thus, through four comparisons
(the 2006 and 2007 cross-validations, the 2007 and
2008 predictions), we validated our methodology.

3.3. Data Set

This study’s data set is based on the grid for-
mat. In this format, the study region is subdivided
into compartments or cells (pixels) on the basis of
a spatial data set obtained from a rectangular grid.
The grid’s resolution is about 500 m. The data set in-
cludes data of three relevant factors and loss survey
from 2006, 2007, and 2008, respectively. The involved
factors are described as follows.

3.3.1. Predictive Factors

The predictive factors cover the three aspects as
described in Section 2.1.

1. One inducing factor: heavy rainfalls (rf ) are
the direct cause of the flood.

2. Six environmental factors: elevation (e), slope
(s), daily mean wind velocity (dmn), daily max-
imum wind velocity (dmax), normalized differ-
ence vegetation index (NDVI, n), and geol-
ogy type (g). These factors correspond to the
physical geographical environment in which
the flood occurs and can aggregate or miti-
gate the flood’s destructive power: a higher
altitude (e) indicates less influence from the
flood; a larger wind velocity (dmn and dmax)
implies more destruction indirectly related to
the flood; geological conditions (g) have an in-
fluence on the indirect damages of the flood;
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Fig. 4. Procedure for risk assessment in our methodology.

NDVI (n) is an indicator of the study area’s
vegetation and also has secondary effects on
the flood disaster.

3. Three vulnerability-related factors: whether
close to residents (re), whether close to roads
(ro), and whether close to rivers (ri). These
factors are associated with the location and
surroundings of the vulnerable individuals
(e.g., human beings, houses, or constructions).
If individuals are closer to the flooded river
(ri), they are more vulnerable to the disaster’s
damage. If a flood is closer to a residential
area (re), this area can be more vulnerable to
the loss. Conversely, if individuals are closer
to a road, they can have a greater chance pro-
vided by the road (ro) for escaping the disaster
and thus have less vulnerability.

Among these factors, the inducing factor, rf , and
the five environmental factors, e, s, n, dmn, and dmax,
are quantitative factors, while the remaining environ-
mental factor, g, and the three vulnerability factors,
ri, ro, and re, are qualitative factors.

3.3.2. The Target Variable

The target variable is the loss caused by the
flood. We obtained the loss data using thematic map-
ping (TM) images in combination with yearbooks,
statistics, and references from practical surveys. Us-
ing TM images, we obtained the submergence depth

and duration of the flood and then we examined and
confirmed the loss situation within the submergence
range referring to other materials and statistics from
practical surveys.(21) We used a binary categorization
variable to indicate whether a unit (a cell in the grid
data set) has a “high loss” or “low loss” risk (“1”
representing “high loss” and “0” representing “low
loss”). Basically, the areas having “high loss” each
have a loss proportion of over 10%.

4. FLOOD RISK ASSESSMENT

The assessment of catastrophic risk is defined by
the following steps:

1. Preprocess the data set using a kernel density
function (Section 4.1).

2. Discretize quantitative factors using the opti-
mal multisplits algorithm (Section 4.2).

3. Select independent quantitative factors us-
ing principal component analysis (PCA) and
Quinlan’s information measures (Section 4.3).

4. Build the BN with discrete or categorical pre-
dictive factors (Section 4.4).

5. Perform a robust prediction of the catas-
trophic risk (Section 4.5).

Figure 4 shows the procedure of the flood risk
assessment. To obtain the grid data set from mul-
tiple heterogeneous sources, we apply various pre-
processing steps, for example, converting the vector
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data and resampling the grid data into the target grid
data set at the standardized resolution and projec-
tion. We perform these steps in a GIS environment
such as ARCGIS. The following sections describe
major techniques of the procedure in Fig. 4.

4.1. Using Kernel Density Functions
to Preprocess the Data Set

KDA is a nonparametric unsupervised learning
procedure. The kernel, k, is a probability density
function that is symmetric around the origin and de-
creases with an increasing distance from the origin.
We can use the normal density function to simulate
a kernel function, Kλ(z, Zi ).(15) Then, we can sum-
marize the kernel density values of any unit from
the sample (observation) units to obtain the intensity
value of any unit in the geographical area:

Density(z) = 1
n

n∑
i=1

Zi · Kλ(z, Zi ), (5)

where n is the number of sample units. According to
Density(z), we obtain the classification of the predic-
tive factors. Zi is a count of a certain type of event or
a quantity of the feature.

Kernel density estimation represents the concept
of a spatial correlation, that is, closer spatial dis-
tance (d) between geospatial features means more
correlation or more influence between them.(22) Con-
sideration of spatial correlation in using KDA to
quantify predictive factors is in particular useful for
risk analysis of natural disasters given its reasonable
assumption.

How to set the bandwidth or search radius, λ, is
determined by empirical knowledge and the design
goal. A big λ means more generalization over the en-
tire study area while a small λ means overlocalization
over the area. Since our goal is to reflect the influence
of relevant indicators such as rivers on the damage to
the individuals exposed to the flood, λ can be set ac-
cording to the biggest influence range of the relevant
indicators in practical disasters. In the flood disaster,
three variables, that is, re, ro, and ri, are quantified
and classified using KDA. Fig. 5 shows the classifica-
tions of the three variables via KDA (Fig. 5A for ri;
Fig. 5B for ro, and Fig. 5C for re).

4.2. Optimal Discretization of Quantitative Factors

This step involves discretizing the quantitative
factors. The discretization will be used first in the se-
lection of independent predictive factors described

Fig. 5. KDA classification of ri, ro, and re.

in Section 4.3, and then in BN modeling, as inputs
of the discrete state space �u. We use a supervised
learning algorithm to find the optimal splits to dis-
cretize quantitative factors for the BN to achieve the
data-adaptive prediction of the target variable. We
describe this in two parts: Section 4.2.1 introduces the
concept of Quinlan’s measure that is used later in our
algorithm, while Section 4.2.2 presents the discretiza-
tion algorithm.

4.2.1. Quinlan’s Information Measures

Quinlan’s information gain ratio (GR)(23) is used
to measure the contribution of the splits of each
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Table III. Splits of Quantitative Factors Discretized

Quantitative Factors Discretized Intervals (Splits)

Elevation (e) [0, 117), [117, 1411.5), [1411.5, 2285), [2285, +∞)
Slope (s) [0, 1.095), [1.095, 4.1), [4.1, 6.495), [6.495, 17.705), [17.705, +∞)
Rainfall (rf ) [0, 48.0), [48.0, 56.5), [56.5, 57.5), [57.5, 58.5), [58.5, 2515.0), [2515.0, 2764.5), [2764.5, 2850.5),

[2850.5, 3897.5), [3897.5, 4901.5), [4901.5, 4994.0), [4994.0, 7524.0), [7524.0, 7689.5), [7689.5, +∞)
Daily mean wind velocity (dmn) [0, 24.5), [24.5, 29.5), [29.5, 30.5), [30.5, +∞)
Daily max. wind velocity (dmax) [0, 72.5), [72.5, 73.5), [73.5, 76.5), [76.5, 77.5), [77.5, 80.5), [80.5, 81.5), [81.5, +∞)
NDVI (n) [0, 0.015), [0.015, 0.075), [0.075, 0.115), [0.115, 0.225), [0.225, 0.305), [0.305, 0.675) [0.675, +∞)

quantitative factor to risk prediction. GR measures
the information GR given the discretization of the
variable to be assessed. GR takes into account the
information that the discretized variable contains.
Qianlan’s GR also measures the contribution of an
indicator to the prediction and thus can be used as a
means of feature selection (Section 4.3).

4.2.2. Optimal Multisplitting Discretization
Algorithm

The algorithm is designed according to the “re-
cursion” idea in the algorithm by Fulton et al.(24) and
the minimal description length (MDL) stopping cri-
teria in Fayyad and Irani’s algorithm.(25) It recur-
sively finds the optimal splits of a continuous pre-
dictor based on the discretization’s contribution to
the class prediction. Compared with other supervised
methods, this algorithm can achieve the same or bet-
ter splits with the number of intervals adjusted adap-
tively, although we need to set the maximum number
of intervals.

This algorithm assumes that optimal cut points
fall on the boundary points that are defined as the
points between two successive attribute values of
the sorted instances that have two different class la-
bels. This assumption has been theoretically proven
to be reasonable.(26) The algorithm uses GR as the
goodness criterion for discretization. It recursively
searches the boundary points from big to small un-
til the optimal cut points with the maximum GR are
obtained:

GR(k, 1, i) = max
1≤ j<i

(GR(k − 1, 1, j)

+ GR(1, j + 1, i)), (6)

where GR(k, j, i) denotes the maximum GR that re-
sults when the training instances j through i are parti-
tioned into k intervals. The best k-split is the one that

maximizes GR(k,1,N), where N is the cardinality of
the set of values of the continuous predictor.

Although we can set a maximum number of in-
tervals, the algorithm makes use of Occam’s MDL
principle of information theory as the stopping cri-
terion,(27) thus adaptively adjusting the number of
discretization intervals. The algorithm can decide
whether a candidate cut point is acceptable and new
partitions are unnecessary according to the MDL
criterion.

This algorithm considers the characteristics of
the data such as the variance. If a factor has a big vari-
ance and a split can improve the discretization’s con-
tribution to classification, the split will be kept. The
even discretization is simple and easy to use but some
of its splits may be unnecessary (e.g., only the rainfall
beyond a certain threshold can result in a flood dis-
aster and the discretization below such a threshold is
meaningless for the flood risk prediction). So we can
use this algorithm to automatically detect and iden-
tify such threshold splits when we have little knowl-
edge of the risk-related factors and experts cannot
give precise splits. The splits identified by this algo-
rithm can be adjusted according to domain knowl-
edge if necessary.

In our study, six quantitative factors, namely,
rf , e, s, dmn, dmax, and n were discretized using
this algorithm. Table III gives the splits of these
factors.

Then, the splits were used to discretize the corre-
sponding factors of the validation and test data sets to
supply discrete versions of the continuous factors.

4.3. Feature Selection

To obtain independent quantitative factors, we
employ PCA to detect the underlying independence
among quantitative factors (Section 4.3.1) and then
use Quinlan’s GR to confirm the relationship of each
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Table IV. Loading and GR of Quantitative Factors

Measures E s rf dmn dmax n

Loading 0.76 0.979 0.811 0.883 0.965 0.981
#Component 5 2 4 1 1 3
GR 0.077 0.69 0.079 0.039 0.052 0.131

factor to the target variable (risk) to get the set of
independent quantitative factors (Section 4.3.2).

4.3.1. PCA to Detect Underlying Factors

PCA(28) is a classic statistical method used to ex-
plain variability among observed variables in terms
of fewer unobserved variables called principal com-
ponents (PC). In this study, we used the commonly
used varimax rotation strategy to make distinct the
PC. If a PC’s eigenvalue is greater than 1.0, it will be
selected as a predictive factor.

4.3.2. Selection of Quantitative Factors According
to Their Loadings and GR

From PCA, we obtain a subset of PCs with eigen-
values greater than 1.0. Next we select those quanti-
tative factors within each PC whose loading is maxi-
mum and close to or above 0.8 according to empirical
knowledge, and then from these responsible factors
for each PC, we select one predictive factor whose
GR is relatively large with the loading threshold 0.8
to avoid information loss while selecting independent
PCs. A loading value of 0.8 or more makes the quan-
titative factor contain most information of the princi-
pal component. If a PC has several predictive factors
whose loading coefficients are equal to or bigger than
0.8, we just select the one with the largest GR among
them. Thus the features selected, while maintaining
independence, are informative and beneficial for the
prediction of risk.

Using the above selection criteria, we selected
the predictive factors from the quantitative and qual-
itative factors in the flood’s study. Table IV shows
the loading and GR of the quantitative factors and
Table V shows the GR scores of qualitative factors.
In total, we selected nine predictive factors including
five quantitative factors, namely, n, rf , s, e, and dmax,
as well as four qualitative factors, namely, g, re, ro,
and ri.

Table V. GR of Qualitative Factors Used

Close to Geology Close to Close to
Residences? Type River? Road?

Measures (re) (g) (ri) (ro)

GR 0.066 0.056 0.132 0.0132

4.4. Model Construction and Estimation
of Parameters

This section describes learning of the BN’s lo-
cal structure (Section 4.4.1) and estimation of assess-
ment parameters (Section 4.4.2).

4.4.1. Learning of Local Structure of
Qualitative Factors

Once the independent quantitative factors have
been selected, they are used to construct an initial
network (Fig. 2). We then use the learning algorithms
to learn the local structure of the qualitative factors
from the training data set.

The learning uses a quality score to measure the
network’s quality. There are three kinds of score
measures that bear a close resemblance: the Bayesian
approach, the information criterion, and the mini-
mum description length. In this study, we used the
Bayesian approach, which uses the a posteriori prob-
ability of the learned structure given the training in-
stances as a quality measure. The Bayesian approach
can achieve a good effect as it is unaffected by the
specific structure, unlike other measures.(29)

A search algorithm can be applied to the space
of the network structures to find the locally optimal
network with a high-quality score. Table VI shows
various typical algorithms to obtain the topology of
local network. In this table, the methods in bold font
were used in our methodology.

4.4.2. Learning of Assessment Parameters

Once the BN’s structure has been constructed,
the CPT parameters for each node in the BN can be
obtained in two ways.

1. If the training data sets are missing, we can
elicit CPT from domain knowledge by con-
sulting domain experts, modeling, or using
various yearbooks, statistics, or references.

2. If we have enough data and we do not have
clear knowledge about a disaster, we can learn
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Table VI. Methods for Construction, Inference, and Prediction of BN

Steps Type Methods

Structure Domain knowledge based Construct BN according to domain or empirical knowledge
Dependency analysis based Conditional independence (CI)(17)

Search scoring based(29) Quality measure Bayesian approach, information criterion approach, and minimum
description length approach

Learning methods Heuristic search strategies: K2, hill climbing (HC), and TAN etc.
general-purpose search strategies: Tabu, simulated annealing
(SA), and genetic algorithm (GA), etc.

Parameter learning Domain knowledge based Reports, statistics, and experienced models
Distribution based Dirichlet-based parameter estimator
With missing data(17) Expectation maximization, Gibbs sampling

Inference Exact inference Joint probability, naı̈ve Bayesian, graph reduction, and polytree(30)

Approximate inference Forward simulation, random simulation(30)

CPT from the data set by using a learning al-
gorithm (Table VI).

4.5. Robust Prediction of the Flood Disaster Risk

To mitigate the sampling bias and model uncer-
tainties (also avoiding the overfitting problem), we
use BMA and Occam’s window(19,31) to produce a ro-
bust prediction of the flood risk.

Assume r to be the target variable of risk, D to
be the training data set, and Mi to be the ith model
of BN. Then we can get the averaged value of the
probability of the target variable being a certain state
using BMA:

pr(r | D) =
K∑

k=1

p(r | Mk, D)p(Mk | D), (7)

where K is the number of models selected and

p(Mk | D) = p(D | Mk)p(Mk)
K∑

k=1

p(D | Ml)p(Ml)

(8)

is the weight of Bayes factor that is ratios of marginal
likelihoods or of posterior odds to prior odds for dif-
ferent models. We use the BN’s inference algorithms
(Table VI) to obtain p(D | Mk) and assume that the
prior probability of each model (p(Mk)) is the same.

While BMA can average the predictions of the
models obtained using various learning algorithms
(Table VI), we can also use Occam’s window to select
the qualified models and remove those poor models,
thus improving the computation efficiency. Occam’s
window(19) has two principles: (1) if a model receives
much less support (e.g., the ratio of 20:1) than the

model with maximum posterior probability, then it
should be dropped; (2) complex models that receive
less support than their simpler counterparts should
be dropped.

We use six search algorithms shown in Table VI
(in bold font) to get the local structures of qualitative
factors and use BMA and Occam’s window to aver-
age the qualified models, thus decreasing model bias
and improving the robustness.

5. EVALUATION

To evaluate our method, we compared it with
other methods (Section 5.1) using scalar performance
measures (Section 5.2).

5.1. Methods Compared

Our methods were compared with other predic-
tion methods. This section provides a simple intro-
duction of these methods.

The methods compared include both nonprob-
abilistic and probabilistic methods. Nonprobabilistic
methods do not output the risk probability of each
predicted instance, but instead output its class la-
bel directly and these methods include J48, RF, RT,
SMO, and Winnow. Probabilistic methods predict
the risk probability distribution of each test instance
and classify the instance according to the distribu-
tion. These methods include LR, NB, RBF, MPer,
and our seven BN methods (six search algorithms
and the BMA averaged prediction). Table VII gives
brief descriptions and references for these methods,
and predictive factors used.
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Table VII. Prediction Methods Compared

T Method Description and Reference Predictive Factors Used

NP J48 A C4.5 decision tree(23) recursively partitions the training data by means
of attribute splits and generates a pruned or unpruned tree using the
information-theoretical concept of entrophy.

All predictive factors (no discretization):
quantitative: rf , e, s, dmn, dmax, n;
qualitative: ri, ro, re, g

RF A forest of random trees(32) is a meta learning scheme that embodies
several base-classifiers (CART) that are built independently and
participate in a voting procedure to obtain a final class prediction.

RT A tree that considers K randomly chosen attributes at each node without
pruning.(33)

SMO Sequential minimal optimization algorithm for training a support vector
classifier(34) globally transforms nominal attributes into binary ones and
multiclass problems are solved using pairwise classification.

Win Winnow and Balanced Winnow algorithm(35) updates a vector of
parameters used to construct its weight vector that has an inner product
with the vector of features as the prediction by repeated corrections.

P LR Logistic regression(36) directly estimates the posterior probabilities by
fitting data to a logistic curve.

Independent quantitative factors # (no
discretization): rf , e, s, dmax, n

NB Naı̈ve Bayes(37) assumes that the presence of a feature of a class is
unrelated to the presence of any other feature.

RBF Normalized Gaussian radial basis function (RBF) network(38) comprise a
hidden layer of RBF nodes and an output layer with linear nodes and
its output activity is normalized by the total input activity in the hidden
layer.

MPer Multilayer perceptron, a back-propagation classifier(38) whose network
can be built manually or created by an algorithm and can also be
monitored and modified during training time (the nodes in this network
are all sigmoid).

BN BNs are constructed based on our framework (Fig. 2) and six search
strategies (Table VI) for the local structures among qualitative factors.
Among the six search algorithms, K2 uses a hill climbing (HC)
algorithm restricted by an order of the variables; HC searches locally
optimal network by adding, deleting, and reversing arcs without any
restriction of the variables’ order; Tan determines the maximum weight
spanning tree and returns a NB network augmented with a tree; Tabu
uses tabu search for finding a well scoring and is similar to HC;
simulated annealing (SA) and genetic algorithm (GA) are generic
probabilistic metaheuristic algorithms (SA: physical mechanism; GA:
biological mechanism). All the predictions from the six strategies are
averaged to get a robust prediction using BMA.

Independent quantitative factors #

(discretization) and qualitative factors:
Quantitative: rf , e, s, dmax, n;
qualitative: ri, ro, re, g

Note: T = type; P = probabilistic methods; NP = nonprobabilistic methods.
#Independent quantitative factors include rf , e, s, dmax, n; see Section 4.3 regarding feature selection.

5.2. Performance Measures

We use four scalar measures, that is, pd, pf , pre-
cision, and ROC area, for the comparison.

1. Pd refers to the probability of detection of
“high loss” risk and it measures the propor-
tion of correctly predicted positive instances
among the actual positive ones. If a method
achieves a higher pd, it can detect more pos-
itive instances (more cell units of “high loss”
risk detected).

2. Pf refers to the probability of false alarms and
a good method has a low pf .

3. Precision refers to the proportion of true pos-
itives among the instances predicted as posi-
tive, but it cannot measure how the method
detects the actual positive instances. Good
precision does not always mean a good pd.
A method with high precision but a lower pd
is less useful since it cannot detect significant
positive instances (less units of “high loss” risk
detected).

4. ROC area is the area between the horizontal
axis and the ROC curve, and it is a compre-
hensive scalar value representing the model’s
expected performance. The ROC area is
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between 0.5 and 1, where a value close to 0.5 is
less precise, while a value close to 1.0 is more
precise. A larger ROC area indicates better
prediction performance.

In terms of risk assessment, security and warning
are the major concerns and a good method should
detect more positive (“high loss” risk) instances (a
high pd and lower pf ). Thus pd and pf are the main
scalar measures of performance. Precision is a sec-
ondary measure used with pd. In other words, a good
method should have a high pd and low pf with an ac-
ceptable precision.

6. RESULTS

This section presents the results that include the
learned topologies of the BNs (Section 6.1) and the
prediction comparisons of the different methods us-
ing both 10 × 10 cross-validation (Section 6.2) and
using the historical data to predict the new situations
(Section 6.3).

6.1. Network Topologies of Local Structure

We constructed the BNs according to the mod-
eling framework (Fig. 2). Specifically, we first ob-
tained an initial framework of the BN using the
selected independent quantitative factors and qual-
itative factors. On the basis of this framework, we
used six search strategies, namely, K2, hill climb-
ing(HC), Tan, Tabu, simulated annealing (SA), and
genetic algorithm (GA), to search the qualified local
structure among the four qualitative factors, namely,
ri, g, re, and ro. The searches help fine-tune the net-
work structure. Fig. 6 shows partial topologies of the
local structure constructed.

6.2. Performance Comparison Using
Cross-Validation

This section presents the comparison of our
methods (six search strategies and the BMA method)
with nine other methods using 10 × 10 cross-
validation. We respectively used the 2006 and 2007
data as the validation data set.

Tables VIII and IX, respectively, list the scalar
measures, pd, balance, and precision, for all the 16
methods. As seen from these tables, totally, our
methods have a relatively good pd, precision, and
ROC area that indicates that our methods were able
to capture many units (cells) of high risk in the

Qualitative factors

Quantitative factors

risk

rig re

e s rfn

ro

dmax

(a) Initial network framework according to domain knowledge

rig re ro

rig re ro

rig re ro

rig re ro

(e)  Topology searched with Tabu and GA(c)  Topology searched with Tan

(d)  Topology searched with SA(b)  Topology searched with K2, HC

Fig. 6. Initial framework (a) and partial topologies of local struc-
ture (among qualitative factors) searched using the six algorithms.

Table VIII. Comparison of Prediction Models in the 2006
Cross-Validation

ROC
Model Type Model pd pf Precision Area

Probabilistic BN (BMA) 0.876 0.161 0.783 0.924
models BN (K2) 0.875 0.188 0.693 0.917

BN (HC) 0.875 0.188 0.693 0.916
BN (Tan) 0.836 0.143 0.739 0.922
BN (Tabu) 0.837 0.175 0.699 0.911
BN (AN) 0.766 0.129 0.742 0.904
BN (GA) 0.874 0.188 0.693 0.917

LR 0.638 0.107 0.743 0.879
NB 0.783 0.144 0.725 0.891
RBF 0.797 0.171 0.693 0.879
MPer 0.733 0.105 0.742 0.828

Nonprobabilistic J48 0.801 0.133 0.745 0.88
models RF 0.747 0.093 0.746 0.901

RT 0.709 0.125 0.734 0.798
SMO 0.774 0.127 0.747 0.823
Win 0.711 0.167 0.711 0.772

flood disaster. On the other hand, although some of
our methods such as BN(Tabu) in Table VIII and
BN(HC) in Table IX do not have the highest preci-
sion, the difference in precision between them and
the other non-BN models is small. In particular, we
can see that the prediction of BMA has an improve-
ment either in the 2006 or 2007 validation although
such an improvement is slight or small in pd and
ROC area but significant in precision. The averaged
BN prediction using BMA has the best pd (0.876
for 2006; 0.873 for 2007), the best precision (0.783
for 2006; 0.835 for 2007), and the best ROC area
(0.924 for 2006; 0.890 for 2007) compared with other
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Table IX. Comparison of Prediction Models in the 2007
Cross-Validation

ROC
Model Type Model pd pf Precision Area

Probabilistic BN (BMA) 0.873 0.403 0.835 0.890
models BN (K2) 0.825 0.229 0.606 0.881

BN (HC) 0.830 0.231 0.605 0.879
BN (Tan) 0.771 0.161 0.670 0.889
BN (Tabu) 0.792 0.214 0.613 0.871
BN (AN) 0.596 0.126 0.668 0.869
BN (GA) 0.805 0.205 0.626 0.869

LR 0.635 0.117 0.629 0.850
NB 0.715 0.188 0.619 0.822
RBF 0.691 0.183 0.618 0.819
MPer 0.619 0.122 0.681 0.845

Nonprobabilistic J48 0.634 0.115 0.702 0.801
models RF 0.651 0.102 0.731 0.810

RT 0.627 0.125 0.682 0.801
SMO 0.659 0.118 0.706 0.771
Win 0.474 0.142 0.586 0.665

non-BN methods. Across all the compared models,
the 2006 and 2007 cross-validations demonstrated
that BMA effectively decreased the model bias and
improved the robustness of the risk prediction.

6.3. Performance Comparison of Prediction

This section presents the comparison of our BN-
based methods with nine other methods using the
2006 data to train the learners used to predict the risk
of the 2007 and 2008 flood disaster in the same area.

Tables X and XI, respectively, list the scalar mea-
sures, pd, pf , precision, and ROC area of the 2007
and 2008 risk prediction for all the 16 methods. These
tables show that, totally, our methods have a rela-
tively good pd that indicates that our methods are
able to predict most units of high risk in the flood dis-
aster. From these tables, we can see that our method
also has a reasonable probability of false alarms (pf ).
In particular, the BN-based average prediction us-
ing BMA has moderately improved the probability
of detection (pd: 0.828 vs. 0.250–0.740, an improve-
ment of about 12–200% for 2007; 0.914 vs. 0.349–
0.718, an improvement of about 27–162% for 2008)
and precision (0.851 vs. 0.454–0.640, an improvement
of about 32–88% for 2007; 0.805 vs. 0.554–0.763, an
improvement of about 6–45% for 2007). The BMA
prediction also has a slightly better ROC area in ei-
ther 2007 or 2008 prediction (0.881–0.887). Across all
the compared models, the 2007 and 2008 predictions

Table X. Comparison of Prediction Models Using the 2006 Data
to Predict the Disaster Risk of the 2007 Flood

ROC
Model Type Model pd pf Precision Area

Probabilistic BN (BMA) 0.828 0.205 0.851 0.887
models BN (K2) 0.673 0.179 0.616 0.856

BN (HC) 0.673 0.178 0.612 0.836
BN (Tan) 0.687 0.21 0.62 0.823
BN (Tabu) 0.741 0.223 0.62 0.823
BN (AN) 0.532 0.211 0.454 0.754
BN (GA) 0.673 0.179 0.6166 0.756

LR 0.250 0.062 0.633 0.761
NB 0.671 0.181 0.613 0.755
RBF 0.705 0.199 0.602 0.842
MPer 0.479 0.142 0.591 0.826

Nonprobabilistic J48 0.680 0.202 0.591 0.807
models RF 0.544 0.169 0.579 0.820

RT 0.566 0.202 0.546 0.684
SMO 0.548 0.135 0.634 0.706
Win 0.331 0.077 0.640 0.627

Table XI. Comparison of Prediction Models Using the 2006 Data
to Predict the Disaster Risk of the 2008 Flood

ROC
Model Type Model pd pf Precision Area

Probabilistic BN (BMA) 0.914 0.123 0.805 0.881
models BN (K2) 0.642 0.122 0.718 0.877

BN (HC) 0.629 0.126 0.707 0.851
BN (Tan) 0.718 0.20 0.634 0.852
BN (Tabu) 0.632 0.122 0.633 0.814
BN (AN) 0.509 0.199 0.554 0.679
BN (GA) 0.645 0.123 0.722 0.870

LR 0.617 0.233 0.616 0.814
NB 0.645 0.124 0.722 0.728
RBF 0.641 0.125 0.714 0.810
MPer 0.614 0.096 0.756 0.828

Nonprobabilistc J48 0.52 0.084 0.750 0.733
models RF 0.473 0.086 0.725 0.830

RT 0.420 0.079 0.721 0.775
SMO 0.559 0.112 0.708 0.724
Win 0.349 0.053 0.763 0.648

demonstrated that BMA considerably decreased the
model bias and improved the robustness of the risk
prediction.

Figs. 7 and 8, respectively, show the maps of the
2007 and 2008 BMA prediction of risk probability. In
these two figures, the degree of grayness represents
the probability of high risk. We can see that the re-
gion of higher risk (darker region) is close to rivers
and residential areas and this result is consistent with
the practical situation. From Figs. 7 and 8, we can see
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Fig. 7. Robust prediction map of risk
probability using the 2006 data to train
our BN to predict the risk probability of
the 2007 flood disaster.

Fig. 8. Robust prediction map of risk
probability using the 2006 data to train
our BN to predict the risk probability of
the 2008 flood disaster.

that the pattern of the 2007 predicted risk probabil-
ity is somewhat different from that of the 2008 pre-
diction. In the 2007 prediction, the upper half of the
study area has more parts (cells) of high risk (higher
probability of “high loss” risk) than that in the 2008
prediction while in the 2007 prediction the lower half
of the area has fewer parts (units) of high risk than
that in the 2008 prediction. The 2007 and 2008 pre-
dictions of high risk are consistent with the practi-
cal situation of the flood loss and their probability of
detection (pd), respectively, reached 0.828 and 0.914
moderately greater than that of the other methods
(0.250–0.741).

6.4. Sensitivity Analysis

Sensitivity analysis tries to detect how much im-
pact the predictive factors each have on the uncer-

tainty of the target variable, loss risk. We use Shan-
non’s mutual information(30) to measure the sensitiv-
ity of the target variable. Using this analysis, we can
find the indicator with the largest uncertainty that
affects risk assessment.

Table XII presents the result of sensitivity anal-
ysis in the 2006 cross-validation, listing Shannon mu-
tual information of nine variables with the loss risk as
the target variable. From this table, we can see that r,
n, ri, and g have relatively larger values, which indi-
cate their greater influence on the loss risk. The sensi-
tivity analysis is reasonable given the domain knowl-
edge: (1) rainfall (r) is the direct cause of the flood;
(2) the vegetation (indirectly indicated by NDVI, n)
and the geology condition (g) have a significant influ-
ence on the ability of the water-soil conservation (a
poor water-soil conservation can result in serious loss
under a flood); (3) being closer to a flooded river (ri)
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Table XII. Shannon Mutual Information with the Loss Risk as
the Target Variable

Shannon Mutual
Predictive Factors Information

Rainfall (r) 0.287
NDVI (n) 0.260
Close to river? (ri) 0.223
Geology type (g) 0.202
Elevation (e) 0.158
Slope(s) 0.122
Daily maximum wind speed (dmax) 0.099
Close to residences? (re) 0.051
Close to road? (ro) 0.031

indicates more vulnerability. According to the sensi-
tivity analysis, we can focus our efforts on significant
aspects (e.g., improving the water-soil conservation)
that help mitigate the loss risk of natural disasters.

7. DISCUSSION

Only a few applications of BNs in catastrophic
risk analysis have been reported.(13,39−41) Basically,
the reported studies used domain knowledge to con-
struct the BN and obtained the BN’s assessment
parameters from experts or by kind of modeling.
Different from these previous studies, our study pro-
poses a generic modeling framework of BN that in-
tegrates relevant quantitative and qualitative factors
within a consistent system for assessment of catas-
trophic risk. Our method focuses on robustness of the
model’s prediction and this is also distinct from previ-
ous studies. Our methodology integrates an optimal
discretizer, informative feature selector, and search
strategies within the modeling system to obtain a ro-
bust prediction. In the study of flood disaster, the
BMA prediction performed better than other meth-
ods based on the results from both cross-validations
and prediction from historic data. With a better preci-
sion and pd, our method can detect more units (cells)
of “high loss” risk than the other methods, in partic-
ular when using the historic data to predict the new
situation. Note that detection of more units of “high
loss” risk is significant for monitoring and manage-
ment of catastrophic risk.

Although previous studies reported good appli-
cations of the BN in the assessment of catastrophic
risk, we have no idea how well the BN performed in
these applications when compared with other meth-
ods, since few of these studies provide such compar-

isons. In this study, we not only proposed a BN risk
assessment methodology but also compared it with
other methods. In the comparison, our methodol-
ogy’s robustness in pd, precision, and ROC area has
been clearly tested. If a prediction method like ours is
able to maintain a robust prediction, more high-risk
units can be detected. This means an improvement in
the risk’s predictability and a corresponding decrease
or avoidance of loss according to Fig. 1.

8. CONCLUSIONS AND FUTURE WORK

In this article, we develop a BN methodology of
risk assessment of natural disasters. The methodol-
ogy is based on a generic modeling framework of
BN and can be generalized as an integration of tech-
niques, namely, an optimal discretizer, informative
feature selector, search strategies for local topolo-
gies, and robust predictor.

In the flood study, our methodology achieved
a better pd, precision, and ROC area in cross-
validations and predictions of new situations. This
illustrates that our method is able to detect more
units of “high loss” risk. This improved detection of
high risk has implications for risk assessment and
management in that the robust prediction can sup-
port more precise information for decision making.
Our methodology is based on a general modeling
framework and the techniques used are applicable
for other natural disasters. Thus, our methodology
can be easily extended to other natural disasters if
relevant domain knowledge is incorporated in this
framework and relevant data are available.

In the future, we will consider the following as-
pects as the extension of this work:

1. We will add nodes of utility and decision ac-
tions to the learned BN and test how different
actions result in different loss risk probability
and thus different expected utility of loss. The
expected values of loss serve as important in-
formation for decision making and resource
allocation.

2. We will extend the BN modeling by incorpo-
rating the exposure models, that is, to model
the occurrence probability of a natural haz-
ard. The incorporation of exposure informa-
tion of natural hazards within the modeling
system is beneficial for enhancing the pre-
dictability of natural disasters.
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3. We will consider influence of the temporal in-
dicator on relevant factors: to test how statis-
tical variables (e.g., rainfall) of different pe-
riods (daily, weekly, monthly, seasonable) in-
fluence the prediction of the risk probability.

4. We will explore the underlying sparsity of the
feature selection that may be beneficial for en-
hancing the robust prediction of catastrophic
risk.
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Liège, Belgium: University of Liège, 2002.
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