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Abstract: Global climate change has led to more frequent occurrences of extreme, dangerous events;
therefore, it is urgent to enhance cities’ adaptation to climate change. Focusing on the impact of high
temperature, low temperature, drought, and flooding, we established multi-dimensional assessment
systems covering natural, economic, and social elements for cities’ climate change adaptations. Based
on the assessment systems, studies on adaptation to climate change were conducted in 248 cities in
China using the entropy weight method, coefficient of variation method, and exploratory spatial data
analysis; with the help of geographically weighted regression (GWR), the relationships between four
types of urbanization and cities’ adaptation to climate events were explored. The results showed the
following: (1) High-administrative-level cities had higher adaptation than ordinary prefecture-level
cities. (2) The differences in adaptation to the four types of climate events between cities within each
of the seven regions in China presented significantly different spatial patterns. (3) Under the four
types of climate events, the global spatial correlations of cities’ adaptations in China were positive.
The agglomeration characteristics of adaptation were mainly H–H and L–L agglomerations. (4) When
analyzing the impacts of four types of urbanization on cities’ adaptation to climate events, the fitting
effects of GWR models were far better than those of OLS models. Population urbanization, economic
urbanization, land urbanization, and industrial urbanization had different impacts on adaptation.
Under the influence of social and economic development, the urbanization regression coefficients of
different cities had significant spatial differences.

Keywords: adaptation; assessment system; climate change; GWR model; urbanization

1. Introduction

Since the Industrial Revolution, the amount of GHGs in the atmosphere has been
rising, and the global climate is now changing at an unprecedented rate. According to the
IPCC Sixth Assessment Report [1], the global surface temperature was 1.09 ◦C higher in
2011–2020 compared with that in 1850–1900. Climate warming has caused glacial retreat,
rising sea levels, ocean acidification, imbalance of water resource distribution, and serious
adverse effects on natural ecosystems and biodiversity. Meanwhile, with the increasing
frequency, impact scope, and degree of damage from extreme weather events, people’s
lives and property have suffered heavy losses, and the sustainable development of the
socioeconomic system is also facing severe challenges. Cities, as the main gathering place
for human activities, occupy just 2% of the Earth’s land but account for more than 60%
of energy consumption and 75% of carbon emissions [2]. As regions with a high risk of
global climate change disasters, cities have also become the main battlefield of the human
response to climate change and deserve more attention.

In terms of coping with climate change, the formulation of countermeasures has
changed from prevention and mitigation in the 1970s and mitigation in the 1980s to adapta-
tion, which is widely accepted today [3]. Adaptation, which first originated in ecology, is
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now widely used in climate research and has become one of the core concepts of global
change science. In the field of climate change, different scholars have different conceptual-
izations or definitions of adaptation according to their academic background or research
objects [4–7], but all of them emphasize the adjustment of systems to reduce vulnerability
and enhance coping capacity in the face of adverse climate change impacts. Research on
adaptation to climate change is diverse but mainly focuses on two aspects: (1) policy formu-
lation and framework design and (2) quantitative analysis of adaptation. These two aspects
complement each other. On the one hand, policy formulation and framework design can
provide methodological guidance and mechanism guarantees for climate change adapta-
tion assessment. On the other hand, the results of the quantitative analysis of adaptation
are conducive to dynamic improvement in policy and the refinement of frameworks.

Policy formulation and framework design: Constructing long-term mechanisms for
adaptation to climate change and formulating adaptation strategies or frameworks are
the most common means for governments to carry out climate change adaptation actions,
which can provide guidance for countries or regions in defining overall adaptation goals
and are also an important prerequisite for climate risk monitoring and adaptation assess-
ment. According to different national conditions, some countries have issued separate
“adaptation frameworks” or “national adaptation plans” to guide practice, while others
have issued action plans that match the strategies. For example, the relevant departments
of climate change adaptation in Japan have issued corresponding strategies, plans, guides,
etc. In academia, such research includes the following: based on the evaluation of the
effectiveness and benefit of the adaptation measures of related projects, the UNDP designed
a comprehensive monitoring and evaluation framework for climate change adaptation,
which is suitable for research at various scales [8]; Brink et al. [9] proposed an analytical
framework of urban ecosystem adaptation based on the relationships between climate
change adaptation, ecosystem services, and sustainability theories; Kuang et al. [10] pro-
posed a decision-making assessment tool for climate change impacts by discussing the
framework of adaptation assessment and management of international rivers under climate
change; and Aguiar et al. [11] investigated 147 local adaptation policies in Europe and
found that the main obstacles that needed to be overcome to promote the formulation
and implementation of climate adaptation plans are insufficient resources, lack of capacity,
unreliable commitments, and uncertain risks.

Quantitative analysis of adaptation: By establishing the monitoring and assessment
mechanisms, systematically collecting data on climate change and its risks, understanding
the level of socioeconomic readiness for potential climate change impacts, and scientifically
assessing the changing trends of climate change risks and the status quo of adaptation in
various fields, which is conducive to accurately guiding the practice of climate change adap-
tation, we can improve the pertinence and effectiveness of national adaptation measures.
The practices of major countries in climate change adaptation monitoring and assessment
can be summarized as follows: first, carrying out climate change risk monitoring, such
as climate change risk assessment and the identification of priority adaptation areas; sec-
ond, regularly evaluating the implementation progress and effects of adaptation work,
including conducting annual assessments of adaptation to climate change in accordance
with the laws and regulations, and establishing annual reporting systems for adaptation
to climate change; and third, researching and developing scientific monitoring and eval-
uation systems that are applicable to the actual situations. In academia, such research
includes Araya-Munoz et al. [12], who constructed an indicator system from the three
aspects of awareness, capacity, and action to evaluate the adaptation to climate change
in the Concepción metropolitan area in Chile and found that the adaptability of all cities
had improved significantly from 1992 to 2002, but the relative differences between cities
had not changed significantly. Zhao et al. [13] combined the SPRR model and the IPCC
assessment framework to establish an exposure–sensitivity–resilience indicator system and
evaluated the adaptation capacity of 12 urban agglomerations in China by using set-pair
analysis; they found that the adaptation level of different regions varied greatly and the
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level of economic development played a key role. Bachner et al. [14] proposed a general
modeling framework to comprehensively analyze how public adaptation to climate change
affects the federal budget and found that it could have substantial positive macroeconomic
effects on GDP, welfare, and employment. Cupać et al. [15] conducted a cost–benefit analy-
sis of the proposed climate change adaptation measures in Bosnia and Herzegovina and
explored their feasibility. Huang-Lachmann et al. [16] conducted an empirical study on
63 cities through multi-factor analysis and a logistic regression model, which showed that
the climate change adaptation plan had a positive impact on the economic opportunities
of cities.

Against the background of human sustainable development, the close relationship be-
tween climate change and urbanization has been widely considered. Many studies [17–21]
showed that, in the process of urbanization, the rising energy consumption and land-use
changes increase GHGs emissions and then exacerbate climate change. Some studies fo-
cused on the relationship between urbanization and climate change vulnerability [22–25].
For example, the SREX report [26] found with high confidence that urbanization along
with settlement patterns and changes in socioeconomic conditions have all influenced
observed trends in risk and vulnerability to climate extremes. Nowadays, the mainstream
perspective in the literature tends to focus on urbanization as a driver of climate change and
urban vulnerability, and few studies have explored the relationship between urbanization
and climate change adaptation. In fact, urbanization is likely to have both positive and
negative consequences for the overall adaptive capacity of cities and regions [27]. Applying
the urban environment transitional model, researchers found that although wealthy cities
in the Global North generate large amounts of GHG emissions, urbanization and urban
economic growth have made them rich enough to develop adaptive systems to counteract
the adverse effects of climate change [28,29]. Urbanization can also offer opportunities for
disaster risk management, which can be the main driving force to enhance the ability to
cope with climate change [30]. However, most of the urbanization defined in the above
literature is based on “population,” while, in fact, urbanization is a multi-dimensional
process with rich connotations [31], including population, economy, land, and industry.
The dynamic changes in these aspects may have very strong impacts on cities’ adaptations
to climate change. Therefore, it is necessary to deeply explore the relationships between
various types of urbanization and cities’ adaptations to climate change, which is beneficial
for city managers to scientifically carry out urban planning and climate governance.

As one of the most vulnerable countries to climate change and extreme events in
the world, China’s policies and actions to adapt to climate change are still at the initial
stage [32]. With the gradual advancement of China’s climate change adaptation actions, it
is urgent to carry out a large-scale and quantitative assessment of adaptation to climate
change at the city level. China has a large number of cities with different geographical
conditions and climate backgrounds and, therefore, these cities differ in the types and
occurrence probabilities of climate events they face. Meanwhile, since the implementation
of the economic reform in late 1978, China has experienced rapid economic growth and
urbanization [33,34], and there are great disparities in the urbanization process between
China’s cities, which make the mechanisms and impact degrees of urban adaptation to
climate change different. Considering the fact that the existing research mainly focuses on
the evaluation of urban adaptation in some regions of China, or mainly investigated urban
adaptation to climate change only from a social dimension, the comprehensive evaluation
of urban adaptability still needs to be further developed. In addition, the mechanism of
urbanization affecting climate change adaptation is not fully explored. Therefore, this study
explored cities’ adaptations to climate change in China to make up for the shortcomings
of the existing literature. First, by focusing on the four most common climate events in
China, namely, high temperature, low temperature, drought, and flooding, this study
constructed comprehensive assessment systems covering natural, economic, and social
factors to assess cities’ adaptations to climate change and discusses the spatial patterns of
adaptation. Second, we expanded the impact factors of cities’ adaptations to climate change.
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Specifically, differing from the common selection of urbanization indicators based on the
population mentioned above, this study explored the impact direction and magnitude on
adaptation from the perspective of different types of urbanization. This part of the research
is an important complement to the existing literature on cities’ adaptation to climate change.
The above two aspects are the important innovation points of this study, which are different
from previous studies.

Section 2 introduces the study area and data sources, which also includes the research
methods. The analysis results are shown in Sections 3 and 4. Section 5 presents the
conclusions and implications.

The research results have certain guiding significance and reference values for the de-
velopment of climate change adaptation assessment methods in cities and the formulation
of adaptation policies tailored to local conditions.

2. Data and Methods
2.1. Study Area and Data Sources

In this study, we chose 248 cities in China as the research objects: 4 municipalities,
5 state-plan cities, 27 provincial capital cities, and 212 ordinary prefecture-level cities. Cities
in Hong Kong, Macau, and Taiwan were excluded from this study due to the limitation of
data availability. As shown in Figure 1, these cities are distributed in seven major regions
of China, with the total population and GDP accounting for 83.30% and 92.92% of the
whole country, respectively. In addition, they have differences in social, economic, cultural,
and climate conditions, with the average population ranging from 0.25 to 30.75 million.
Therefore, the exploration results of these cities can represent the overall pattern of the
whole country.

Figure 1. Regional distributions of 248 Chinese cities.
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The data used in the research were mainly from 2017. The population, economic, and
social data (infrastructures, patents, etc.) involved in this study were mainly obtained from
the Sixth Population Census of various cities, China City Statistical Yearbook 2018, China
Real Estate Information, and Everbright Securities Research Report; the meteorological
data were derived from China Meteorological Data Service Centre, which was obtained by
spatial interpolation of meteorological station observation data. For some missing parts of
the data, statistical methods, such as data fitting and forecasting, were used or searching
through the Internet to supplement them. For details, see Appendix A.

2.2. The Framework

The purpose of this study was to conduct a comprehensive assessment of cities’ adap-
tation to climate change, determine the differences of adaptation in different cities and
regions, and explore the impacts of urbanization on adaptation. Based on the previous
literature research, combined with the actual situation in China, this study constructed
indicator systems, collected and standardized the data required for each dimension, deter-
mined the weight of each indicator by the entropy weight method, calculated the values
of cities’ adaptation to climate change by weighted comprehensive evaluation method,
classified the cities and analyzed the spatial distribution features of adaptation based on
spatial econometric approaches, and finally explored the role of urbanization in cities’
adaptation to climate change using a GWR model. Based on the research ideas depicted in
Figure 2, the main research methods of each step are introduced below.

Figure 2. Research ideas and technical routes.

2.3. The Assessment Indicator System

Referring to the climate adaptation assessment framework [35,36] established by the
Notre Dame Global Adaptation Initiative (ND-GAIN) and considering the actual situation
in China and the availability of data, a three-level structural assessment indicator system
for cities’ adaptations to high temperature, low temperature, drought, and flooding was
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constructed in this study. The ND-GAIN climate adaptation assessment indicator system
consists of two dimensions: vulnerability assessment and readiness assessment. Compared
with IPCC’s indicator system [37], ND-GAIN adds a readiness assessment, which can
make the system more comprehensively reflect cities’ adaptation characteristics, and the
framework is now widely used in adaptation studies [38–40].

Vulnerability reflects the sensitive reaction and self-recovery ability of the research
object to the disturbance of climate events in a specific space–time environment, which is
composed of exposure, sensitivity, and adaptive capacity; readiness, which is composed
of social readiness, governance readiness, and economic readiness, reflects the defense
characteristics of the research object to the disturbance of climate events in a complex
society–economy system and the capacity of it to mobilize adaptation investments from
private sectors and to target investments more effectively. The adaptation indicators under
different climate events are different to reflect the impact characteristics of each event, as
shown in Appendix A.

2.4. Entropy Weight Method

The key step of assessing cities’ adaptation to climate change is to determine the
weight of indicators. As an objective assignment method, the entropy weight method is
more scientific and reliable than subjective methods since it determines the weight of each
indicator according to the difference in data disorder degree. If the indicator information
entropy is smaller, it means that the indicator has a higher disorder degree and greater
range of change; therefore, it has a greater impact on the comprehensive assessment. See
Liu et al. [41] for the specific calculation formula.

After calculating the weight wj of each indicator using the entropy weight method,
the adaptation assessment model was constructed based on the weighted comprehensive
evaluation method that is commonly used in multiple indicators assessment, and the degree
of adaptation is expressed by the adaptation score. The specific assessment model is

AIi =
n

∑
j

wjYij (1)

where AIi is the adaptation score of city i. The calculation methods of vulnerability VI and
readiness RI are the same as that of adaptation, but the indicator sets are different.

2.5. Coefficient of Variation Method

The coefficient of variation can objectively reflect the degree of difference within a
set of data and avoid the deviation effect of absolute difference. Compared with range,
variance, standard deviation, and other statistical indicators, it has the advantage of more
accurately reflecting the degree of data dispersion. From a regional perspective, this study
used the coefficient of variation to explore the unbalanced state of the internal adaptation
differences in each region. The calculation formula is

CVi =
1
xi

√√√√ 1
n − 1

ni

∑
j=1

(xij − xi)2 (2)

where CVi is the coefficient of variation of region i, ni is the number of research units in
region i, xij is the adaptation value of research unit j in region i, and xi is the average value
of all research units in region i.

2.6. Exploratory Spatial Data Analysis

Exploratory spatial data analysis (ESDA) is the collection of a series of spatial data
analysis methods and techniques with the measurement of spatial association as the core,
through description and visualization of the spatial distribution pattern of things or phe-
nomena, to discover spatial agglomeration and anomalies to reveal the mechanism of
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spatial interactions among research objects. The common methods are Moran’s I index and
Moran’s scatter plot.

Moran’s I index ranges from −1 to 1. A value greater than 0 indicates a positive
spatial correlation, and the larger the value is, the stronger the spatial aggregation is. By
contrast, a value less than 0 is a negative spatial correlation and the smaller the value is, the
stronger the spatial difference is. A value equal to 0 is irrelevant, i.e., the spatial units are
randomly distributed. See Moran and Ap [42] for the specific calculation. Moran’s scatter
plot can further explore the differences in adaptation to climate change between cities from
a spatial perspective, which is divided into four quadrants corresponding to four types of
local spatial association between a city and its cities: H–H (quadrant I in the upper-right)
indicates a city with a high value surrounded by cities with high values, L–H (quadrant II
in the upper-left) indicates a city with a low value surrounded by cities with high values,
L–L (quadrant III in the lower-left) indicates a city with a low value surrounded by cities
with low values; H–L (quadrant IV in the lower right) indicates a city with a high value
surrounded by cities with low values. H–H and L–L (respectively, L–H and H–L) refer to
positive (respectively, negative) spatial autocorrelation, which indicates spatial clustering
of similar (respectively, dissimilar) values.

2.7. Geographically Weighted Regression Model

In contemporary research, regression analysis is often used to explain influencing fac-
tors. The geographically weighted regression model (GWR), proposed by Brunsdon et al.
in 1996 [43], is an extended local regression model based on the classical multiple linear
regression model (OLS), which considers the spatial characteristics of observation indi-
cators, and can explore the non-stationarity of spatial relations according to the change
in parameter estimation values with geographical location and the spatial differentiation
characteristics of the influence of various factors on explanatory variables in the study
area. By using this method, the results are more realistic and accurate. Based on these
advantages, the GWR model has been widely used in many fields, such as geography,
economics, ecology, environmental science, and epidemiology. For example, Benedict [44]
used the GWR to study the relationship between gambling behavior and the distribution of
non-entertainment gambling machines in a New Zealand island; Lianjun Zhang et al. [45]
found that the traditional linear or nonlinear models ignored the spatial variations when
studying the tree diameter–height relationships, where the GWR model performed signifi-
cantly better; and Fanglin Su [46] conducted an empirical study on China’s R&D knowledge
spillovers at the provincial level, finding that GWR was superior to OLS in estimating the
parameters of R&D knowledge production.

The model can be shown as

yi = β0(ui, vi) + ∑
k

βk(ui, vi)xik + εi (3)

where yi are the dependent variables, xik are the independent variables, (ui, vi) is the
geographic coordinate of sample spatial unit i, β0(ui, vi) are the intercept terms, βk(ui, vi)
are the regression coefficients, k is the number of independent variables, and εi are the
error terms.

3. Spatial Pattern Analysis of Adaptation
3.1. Perspective of Cities’ Administrative Level

Based on the calculation results of adaptation to climate change of 248 cities, it
was found that the average adaptation scores of each type of climate event in high-
administrative-level (HAL) cities (municipalities, state-plan cities, provincial capital cities)
were higher than those of ordinary prefecture-level (OPL) cities, and the average vulnera-
bility scores were lower and the average readiness scores were higher, as shown in Table 1.
In fact, high-administrative-level cities were more advantageous in adapting to climate
change because of their advanced economic development level, superior social security
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system, and mature governance institution. When setting up high-administrative-level
cities, China fully takes into account the climatic conditions, resource endowments, and
location conditions of the candidate cities, and the cities with a lower risk of being affected
by disasters are more likely to be selected. In addition to the ability to attract large amounts
of investment and financing in the field of climate, these cities are more likely to be favored
by national policies and financial support [47].

Table 1. AI, VI, and RI scores of HAL and OPL cities.

Climate Events
AI VI RI

HAL
Cities

OPL
Cities

HAL
Cities

OPL
Cities

HAL
Cities

OPL
Cities

High Temperature 0.6015 0.5009 0.4008 0.3522 0.2007 0.1488
Low Temperature 0.6141 0.5254 0.4131 0.3766 0.2010 0.1488

Drought 0.5829 0.4825 0.3294 0.2950 0.2535 0.1876
Flooding 0.5558 0.4847 0.3753 0.3508 0.1805 0.1339

A higher VI indicates a lower vulnerability. All the data in the table passed the nonparametric test of independent
samples, indicating that there were significant differences between the two groups of cities.

3.2. Perspective of Regions

According to the coefficient of variation formula, the degree of difference of adaptation
to climate change within each of the seven major regions of China was calculated, as shown
in Figure 3. As can be seen from the figure, the high-temperature (low-temperature)
adaptation gap between cities showed an overall decreasing spatial pattern from south to
north. The coefficients of variation for high- and low-temperature adaptations in southern
China were the largest, reaching 0.142517 and 0.115093, respectively, indicating that there
was a large difference in the high-temperature (low-temperature) adaptation between
cities within the region, and the adaptation ability was extremely uneven. Comparatively
speaking, the internal differences in Northeastern China were the smallest, showing a good
and balanced adaptation ability. The overall spatial pattern of the drought adaptation
gap among cities decreased from west to east, with the largest coefficient of variation in
Southwestern China and the smallest in Eastern China, but the differences in coefficients of
variation between regions were not significant, indicating that the adaptation gap between
cities within each of the regions showed a similar pattern. In addition, the coefficient of
variation of adaptation to flooding was still the largest in Southwestern China and the
smallest in Northeastern China. Comparing the four sub-figures, Southern China and
Southwestern China need to be focused on the following: cities within the former face
uneven adaptation to high temperature, low temperature, and flooding, and cities within
the latter face uneven adaptation to high temperature, drought, and flooding, indicating
that the adaptation gaps of cities within each of the two regions were very significant. The
high-adaptation cities should provide technology, experience, and knowledge of adaptation
to low-adaptation cities. Meanwhile, higher-level administrative units should strengthen
financial and policy support to cities with low adaptation to enhance their readiness.

The coefficient of variation only reflected the gaps between cities within each of the
regions. In addition, the adaptation gaps between regions were also worth exploring.
The average adaptation scores of cities covered by each region were used to represent the
regional score as shown in Figure 4. The scores of adaptation to high temperature, low tem-
perature, and flooding in Northern China, Northeastern China, and Northwestern China
were always ranked in the top three of the seven regions, and the scores of adaptation to low
temperature and flooding in Northwestern China were the highest. The top two regions
of adapting to drought were Eastern China and Southern China. The scores of adaptation
to high temperature and flooding were the lowest in Southern China, and the scores of
adaptation to low temperature and drought were the lowest in Southwestern China. To
some extent, this suggests that the north had a broader advantage in adapting to climate
change and climate events compared with the southern regions of China. Meanwhile, the
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score ranges for the adaptation to climate events in seven major regions were high temper-
ature 0.1245, low temperature 0.0375, drought 0.0657, and flooding 0.0808. The range of
adaptation to high temperature was 3.32 times that of low temperature, which indicated
that there was a small gap in adaptation to low temperature between regions, but there was
a significant gap in high temperature. The key to promoting balanced adaptation to climate
change in all regions of China lies in narrowing the gap of adaptation to high temperature.

Figure 3. Spatial pattern of adaptation from the regional perspective (coefficient of variation).

3.3. Spatial Distribution Pattern at Cities Level

Adaptation analysis from the regional perspective only reflected the macro spatial
distribution pattern. In order to more accurately explore the characteristics of cities’ adapta-
tion and carry out climate policies based on cities’ conditions, it was necessary to conduct
analysis and discussion at the city level, as shown in Figure 5.

High temperature: The overall pattern can be described as high in the north and low
in the south. High-level cities were mainly concentrated in the three northeastern provinces
(i.e., Heilongjiang, Jilin, and Liaoning), Inner Mongolia, Shandong, and the Beijing–Tianjin–
Hebei region. Medium-level cities were mainly distributed in Eastern China, Southwestern
China, and the vast areas north of the Huaihe River–Qinling Mountain Line. In addition,
some cities in southern Shaanxi near the Huaihe River–Qinling Mountain Line and some
in Hunan and Hubei were also in this level. Low-level cities were mainly located in
Guangdong, Guangxi, Sichuan, Chongqing, Henan, and the Eastern China region. In
addition, it can be observed from the figure that the vast majority of coastal cities were
in medium and high levels of adaptation. Most of the coastal cities are economically
developed [48,49], and they belong to a maritime climate; therefore, the infrastructures are
better, and it is usually cooler and more humid.
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Figure 4. Spatial pattern of adaptation from the regional perspective (adaptation index).

Low temperature: Most of the high-level cities were at the high-administrative level
and were widely distributed, but scattered in spots. Both medium-level and low-level cities
formed a relatively obvious agglomeration. The former were mainly located in Eastern
China, Northwestern China, the three northeastern provinces, and Inner Mongolia, which
was due to the improvement in adaptation ability to low temperature by heating in winter
in these areas [50]. Relatively speaking, cities located in Southwestern China, the Huaihe
River Basin, and Central China were less adaptable.

Drought: Cities’ adaptation showed an obvious decreasing trend from southeast to
northwest, forming significant agglomeration characteristics. The Jiangsu–Zhejiang–Anhui
region and the Pearl River Delta region presented two high-level clusters. In addition,
Fuzhou, Quanzhou, and Xiamen in Fujian Province were also cities of high-level adaptation
to drought. Furthermore, the medium-level cities were mainly concentrated in the southeast
coastal areas and the Pearl River Basin. The majority of cities located in China’s Second
Ladder showed low adaptation characteristics to drought, especially Northwestern China,
which had significant agglomeration characteristics.

Flooding: The spatial clustering characteristics of adaptation to flooding were also very
prominent, especially in the Pearl River Basin, the Huaihe River Basin, Hunan, and Jiangxi,
where the large hydrographic networks, copious rainfall, and low-lying flat terrain make
them face greater risks [51,52]. From south to north, the adaptation gradually increased,
and the cities with high adaptation ability were mainly distributed in Inner Mongolia, the
three northeast provinces, and the northwest area of Gansu Province.
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As shown in Table 2, there were 50 cities with low adaptation under the four types
of climate events, which indicated that these cities are facing greater climate risks, and
it is urgent to carry out research and development and the integration and promotion of
adaptation technology to effectively improve their adaptation levels. These cities account
for 20.16% of the study sample, covering a population of 230.901 million, mainly distributed
in the southern region of China. Hunan, Hubei, Anhui, Henan, Guangdong, Sichuan,
and Guangxi contain a large number of the above-mentioned cities, affecting more than
20 million people. To advance the construction of adaptation ability to a higher level, it is
extremely necessary to coordinate the work of adaptation to climate change, strengthen
communication and exchanges, and deepen cooperation actively among cities.

Figure 5. Spatial pattern of adaptation from a cities perspective.
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Table 2. List of cities with low adaptation under four types of climate events.

Provinces Cities Total Population
(Million)

Jiangsu Yancheng 7.2422
Shandong Heze 8.7360

Jiangxi Pingxiang, Ji’an 6.8669
Hunan Hengyang, Shaoyang, Yongzhou, Loudi 23.9780
Hubei Ezhou, Xiaogan, Jingzhou, Huanggang, Xianning, Suizhou 22.7202
Anhui Huainan, Huaibei, Anqing, Chuzhou, Fuyang, Suzhou, Bozhou 33.3530

Henan Pingdingshan, Puyang, Luohe, Nanyang, Shangqiu,
Xinyang, Zhumadian 42.0900

Guangdong Shaoguan, Shantou, Zhanjiang, Meizhou, Shanwei, Chaozhou, Jieyang 32.0568
Sichuan Zigong, Luzhou, Suining, Neijiang, Nanchong, Guang’an, Dazhou 29.5659

Guangxi Fangchenggang, Qinzhou, Guigang, Yulin, Hezhou, Hechi,
Laibin, Chongzuo 24.2920

3.4. Spatial Correlation Features

By using GeoDA software, the values of Moran’s I indexes of cities’ adaptation to four
types of climate events were calculated, as shown in Figure 6. It can be seen from the figure
that the values were all greater than 0: high temperature 0.503, low temperature 0.219,
drought 0.351, and flooding 0.425, all of which were positively correlated in space. In order
to enhance the robustness of the results, Moran’s I values were tested using Monte Carlo
simulation, and the p-values were all significant at the 0.01 level, indicating that the spatial
agglomerations of adaptation were significant. That is to say, cities with a higher adaptation
to climate change had a positive impact on the improvement of adaptation of neighboring
cities and vice versa. Meanwhile, according to Moran’s I values, there were differences in
the agglomeration characteristics of cities’ adaptation to the four types of climate events. For
high temperature, the spatial positive correlation was the most significant and the degree
of spatial agglomeration was the highest, followed by flooding, and the positive correlation
of low temperature was the weakest. The cities’ adaptation to climate change in China
showed four spatial patterns of H–H, L–H, L–L, and H–L, and the distribution quadrants
of these cities are also shown in Figure 6. In general, these cities are mainly distributed
in the first and third quadrants under all four types of climate events, indicating that the
agglomeration characteristics of adaptation were mainly H–H and L–L agglomerations,
which further validated the conclusion that the global spatial correlations were positive.
In addition, most of the cities in the Yangtze River Delta region were located in the first
quadrant (H–H). The geographical location of this region is superior, the degree of economic
integration is very high [53], and the development of cities in the region is fully coordinated
and integrated. Therefore, the cities in the fourth quadrant (H–L) had strong adaptation
to climate change, and the adaptation gap was small. Moreover, most of the cities in the
fourth quadrant (H–L) were high-administrative-level cities, which indicated that these
cities had stronger social, economic, and governance capabilities than the surrounding
cities [47] and had more significant advantages in coping with climate events.

The above analysis showed that it is meaningful to explore the characteristics of
adaptation differences and the underlying reasons from the spatial perspective, and it also
paved the way for later analysis of the impact factors on cities’ adaptation to climate change
in China by using spatial econometric methods to construct models.
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Figure 6. Spatial correlation features of adaptation. Note: 10 cities were removed due to the non-
existence of adjacent samples, but this did not affect the reliability of the conclusions.

4. Analysis on How Urbanization Affecting Adaptation
4.1. Variables Selection

Based on the interpretation and summary of the connotation of urbanization by
the existing literature [54–57] and considering the availability and scientificity of data,
this study selected four independent variables to explore the impact factors on spatial
differentiation of cities’ adaptation to climate change in China: population urbanization
(PU), economic urbanization (EU), land urbanization (LU), and industrial urbanization
(IU). These respectively represent four indicators: the proportion of urban residents, the
per capita disposable income of urban residents, the ratio of urban built-up area to the total
city area, and the proportion of secondary and tertiary industries.

One of the prerequisites for multiple regression is that there is no multicollinearity
between independent variables. In the regression analysis, after standardizing the four
indicators, the variance inflation factor (VIF) method was used to diagnose the existence
of multicollinearity. The regression results in Table 3 show that the VIF values of all
indicators were less than three, indicating that there was no multicollinearity or very
weak covariance between independent variables [58], which met the basic requirements of
regression analysis.
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Table 3. Multicollinearity test of influencing factors on adaptation.

Impact Factors Selected Variables
Collinearity Statistics

Tolerance VIF

Population urbanization (PU) The proportion of urban residents 0.345 2.896
Economic urbanization (EU) Per capita disposable income of urban residents 0.462 2.164

Land urbanization (LU) The ratio of urban built-up area to the total city area 0.648 1.544
Industrial urbanization (IU) The proportion of secondary and tertiary industries 0.436 2.292

4.2. Analysis of Regression Results

With the adaptation scores of all cities under four types of climate events as depen-
dent variables and four indicators as independent variables, the OLS stepwise regression
analysis was conducted. The regression results showed that at the 1% significance level,
only the proportion of urban residents was included in the high-temperature OLS model;
the proportion of urban residents and per capita disposable income of urban residents
were included in the low-temperature OLS model; the proportion of urban residents, per
capita disposable income of urban residents, and the proportion of secondary and tertiary
industries were included in the drought OLS model; and the proportion of urban residents,
per capita disposable income of urban residents, and the ratio of urban built-up area to total
city area were included in the flooding OLS model. All the above OLS models included
independent variables that had positive coefficients, except for the ratio of urban built-up
area to total city area, indicating that all three variables contributed positively to cities’
adaptation to climate events.

However, from the previous spatial autocorrelation analysis, it can be seen that the
spatial distribution pattern of adaptation was not completely random but showed signifi-
cant characteristics of spatial agglomeration and heterogeneity, which confirms Tobler’s
first law of geography: everything is related to everything else, but near things are more
related to each other [59]. Moreover, it also shows that the results and inferences estimated
by the classical linear regression model were likely to be less reliable because the OLS
model can only estimate the parameters in the “global” or “average” level. Hence, this
model failed to reflect the local changes in space, revealed the spatial dependence of cities’
adaptation, and showed that modification by introducing spatial factors (spatial differences
and dependencies) is extremely necessary and meaningful. Therefore, on the basis of
the OLS model, the component (coordinates) reflecting heterogeneity were included and
the GWR models were used for regression analysis. The results of the OLS and GWR
models were compared in Table 4, and the regression parameters of the GWR model were
statistically described in Table 5.

Table 4. Comparison of statistics between OLS and GWR models.

Climate Events Model AICc R2 Radj
2 RSS

High temperature OLS −724.861585 0.354301 0.349030 0.761955
GWR −932.710281 0.784834 0.743669 0.253906

Low temperature OLS −959.812847 0.549487 0.543948 0.293000
GWR −1030.611852 0.751280 0.694895 0.161760

Drought OLS −910.294683 0.597264 0.590635 0.037822
GWR −949.188338 0.730269 0.679576 0.237600

Flooding OLS −886.657301 0.375056 0.364769 0.390237
GWR −1056.719260 0.798689 0.733256 0.125705
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Table 5. The estimation results of the sGWR models.

Climate Event Urbanization Upper Quartile Median Lower Quartile Maximum Minimum Mean

High
temperature PU 0.003969 0.003603 0.00285 0.006340 0.001620 0.003490

Low
temperature

PU 0.002654 0.001833 0.001136 0.004500 −0.000300 0.001883
EU 0.042054 0.029774 0.016489 0.077246 −0.030578 0.027998

Drought
PU 0.002260 0.001134 0.000362 0.003704 −0.001385 0.001303
EU 0.039992 0.029926 0.013831 0.061970 −0.010707 0.026198
IU 0.002715 0.001678 0.000829 0.005290 −0.001081 0.001824

Flooding
PU 0.002978 0.001999 0.000715 0.005129 −0.001514 0.001923
EU 0.033977 0.022143 0.011767 0.067194 −0.036343 0.022239
LU −0.067807 −0.565335 −0.291919 1.110860 −1.957615 −0.281499

It can be seen from Table 4 that the adjusted goodness-of-fit indexes (Radj
2) of the

GWR models for the four types of climate events were 0.744, 0.695, 0.680, and 0.733 for high
temperature, low temperature, drought, and flooding, respectively, which were greater
than the values of the corresponding OLS models. Meanwhile, the RSS values of the GWR
models were far less than those of the OLS models, indicating that the fitting effects of the
GWR models were better than the OLS models, with small errors and a better interpretation
effect. In addition, the AICc values of the GWR models were smaller and the differences
from the OLS models were much greater than 3, which further showed that the GWR
models had better performance [60]. As mentioned above, the GWR models consider the
local aspect; therefore, the measurement results are better than the OLS models, which only
consider the mean parameters [46].

Table 5 shows the quintile statistics results. The mean values reflected the average
level of contribution of the impact factors to cities’ adaptation to climate change, and it can
be seen that all factors, except for the land urbanization factor, contributed positively to
adaptation in general, which was consistent with the analysis results of the OLS models.
There were significant directional heterogeneities in the maximum and minimum values of
the regression coefficients of some impact factors, which also indicated that the regression
coefficients were non-stationary according to the geographical locations of cities, i.e., there
were significant spatial differences in the degree and direction of the role of different impact
factors on cities’ adaptation to climate change.

The positive and negative distributions of the regression coefficients of the four types
of urbanization are statistically presented in Figure 7. It can be seen that PU, EU, and
IU had positive impacts on the adaptation to climate events in most cities, where PU
played a positive role in enhancing adaptation to high temperature in all cities, while land
urbanization has a negative impact, i.e., a hindering effect on adaptation to flooding in
most cities.

However, simple statistical analysis cannot reflect the specific differences between
cities. In order to more intuitively analyze the spatial variations of the impact factors on
cities’ adaptation to climate change in China, ArcGIS was used to draw spatial distribution
maps of the regression coefficients of each variable in the GWR models.
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Figure 7. Positive and negative statistics of the regression coefficients.

Population urbanization: As shown in Figure 8, the regression coefficients of PU
decreased from southwest to northeast. The Central Plains region, connecting the two
directions, was always at a high value, while the economically developed Pearl River Delta
region was always at a low–medium value. It is not difficult to see that Northeastern China
took the lead in industrialization and had an early and high starting point in urbanization
development [61], and as the vanguard of China’s reform and opening up, the Pearl River
Delta region has a high level of economic integration and complete infrastructure [62],
both of which are highly attractive to the population. Therefore, their urbanization rates
of the permanent resident population rank among the top in China. While Southwestern
China and Central Plains are both underdeveloped areas, and the urbanization rates still
lag behind the national average level, they are currently in the stage of rapid development.
Population overurbanization is characterized by massive population inflow or natural
population growth that outpaces the development of urban infrastructure, systems, and
services, meaning city governance will become more difficult, thereby increasing vulnera-
bility or decreasing readiness to climate change. The floating population in the Pearl River
Delta is mainly educated at the junior high school level, and most of them are engaged
in labor-intensive industries and business service industries rather than scientific and
technological industries, which does not help to improve the adaptation level from the
technical aspect. Meanwhile, a large number of urban villages pose challenges to land
use, urban landscape, planning and management, and community security. Nowadays,
the overall economy of Northeastern China is in recession, and the mismatch between
the economic development level and urbanization level means climate change may bring
greater risks and challenges [63]. Due to the existence of the marginal diminishing effect,
PU has weak and even negative effects on the adaptation of the two regions, while it has
positive effects on Southwestern China and the Central Plains. In addition, it is worth
noting that PU has a limited role in enhancing cities’ adaptation to high temperature in
Northwestern China, while it has a significant positive contribution to their adaptation
to low temperature and flooding, which also indicates that the PU sensitivity of cities’
adaptation varied significantly depending on climate events.
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Figure 8. Regression coefficients of population urbanization.

Economic urbanization: We can see from Figure 9 that the regression coefficients of PU
of adaptation to low temperature, drought, and flooding showed highly similar distribution
trends: the middle–high-value areas were mainly located to the east of the Hu Line, while
the low-value areas were distributed to the west of the line, with most cities having negative
coefficients. West of the Hu Line is the less developed area in China, where the economic
development is relatively backward. Therefore, the disposable income of urban residents
there is not high, and the adaptation to low temperature and drought are also at a low
level, which indicates that the development of EU in this area has limited pulling power
and a weak impact on the level of adaptation to low temperature and drought. The
cities with high values are located in the belt-shaped region consisting of Southern China,
Central China, Northern China, and Northeastern China, and the development of EU had
a significant positive impact on the improvement of their adaptation level. Since EU is
expressed by per capita disposable income of urban residents, it is possible that with more
income, residents can buy more facilities and services to protect against climate events,
thereby reducing personal and property damage and improving their adaptation ability.
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Figure 9. Regression coefficients of economic urbanization.

Land urbanization: As shown in Figure 10, the coefficients of LU varied greatly
between cities, with the range reaching 3.07, indicating that the process of LU varied
greatly between these cities. LU played an extremely critical role in cities’ adaptation
to flooding. High-value cities were clustered in Northwestern China, Southern China,
Central China, and Northeastern China; most cities with low coefficients were located in
Eastern China, especially in coastal provinces, and the coefficients were even negative.
The eastern cities have superior geographical locations, rapid economic development, and
early urban planning and infrastructure construction, which has lasted for a long time.
However, in recent years, the continuous expansion of urban boundaries has accelerated the
concentrated outbreak of urban problems, such as traffic congestion and housing shortages.
The resources and environment of these cities are under great pressure, and the disaster
resistance abilities and disaster management level are significantly inadequate. In this
context, it is not surprising that LU had a negative impact on these cities’ adaptation
to flooding.
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Figure 10. Regression coefficients of land urbanization.

Industrial urbanization: Figure 11 shows that the high-value areas presented a belt-
shaped distribution, mainly located in Jiangsu, Zhejiang, Shanghai, Anhui, and Jiangxi in
Eastern China and Hunan and Hubei in Central China, while the low-value areas were
mainly located in Fujian Province and the Shanxi–Hebei–Henan region. In addition, some
cities in Xinjiang, Gansu, and Shandong were also at a high-value level. The high coefficient
cities had a high level of IU relative to the rest of the country, with a diversified industrial
pattern or a large proportion of the output value of the dominant industry and, thus, IU
had a significant positive driving impact on their adaptation to drought. For example,
the city of Karamay in Xinjiang is an industrial city with petroleum and petrochemical
industries as the main industry. In 2019, the secondary industry accounted for 70%, while
agriculture only accounted for 1.5%. In comparison, low-value areas are either weak in
terms of their industrial economy or singular in their industrial structure. For example,
Henan is a typical agricultural province, and the level of secondary and tertiary industries
in its cities is relatively backward. From the assessment results, most of these cities have
low values, and the IU process cannot play a significant role in promoting adaptation to
drought. Moreover, Hebei is a large industrial province, not a powerful one, and mainly
contains iron and steel industries with high pollution, high energy consumption, and low
added value. Thus, the IU of Hebei did not play a significant positive role in economic
development and environmental health. The low-quality IU did not improve the adaptation
to drought but became an obstacle factor. To a certain extent, this also indicated that it is
very urgent to enhance the industrial output values of cities with low IU coefficients and
optimize and adjust their singular or unreasonable industrial structure.
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Figure 11. Regression coefficients of industrial urbanization.

5. Conclusions and Implications
5.1. Conclusions

Based on the data of 248 cities in China, this study constructed assessment indicator
systems of cities’ adaptation to climate change under four types of climate events: high
temperature, low temperature, flooding, and drought. In addition, the coefficient of
variation method and ESDA were used to analyze the spatial differences characteristics
of cities’ adaptation, and a GWR model was used to explore how urbanization affected
adaptation. The conclusions were as follows.

The spatial pattern analysis showed that the adaptation to climate change varied
substantially across China [13]. Compared with Southern China, Northern China had
a wider advantage in adapting to climate change and climate events and the key to im-
proving balanced adaptation to climate change in all regions of China lies in narrowing
the gap in adaptation to high temperature. The cities’ adaptation to high temperature
and flooding were characteristic of high in the north and low in the south; cities with
high adaptation to low temperature mainly belonged to high-administrative-level; cities’
adaptation to drought showed a significant trend of decreasing from southeast to northwest.
High-administrative-level cities had stronger adaptation, lower vulnerability, and higher
readiness than ordinary prefecture-level cities, but the agglomeration characteristics of
cities’ adaptation were mainly H–H and L–L agglomerations. These two findings showed
the importance of economic development level, social security system, governance in-
stitution, and social–economic integration from different aspects. The coordinated and
integrated development between cities was conducive to narrowing the adaptation gap,
which is consistent with earlier studies [64,65].
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When analyzing the factors, the fitting effects of the GWR models were far better
than those of the OLS models. Population urbanization affected cities’ adaptation to four
types of climate events; economic urbanization on low temperature, drought, and flooding;
industrial urbanization on drought; and land urbanization on flooding. Population, eco-
nomic, and industrial urbanization had positive impacts on the adaptation of most cities.
Population urbanization could improve the adaptation of all cities to high temperature,
while land urbanization hindered the adaptation of most cities to flooding. Under the
influence of social and economic development, the urbanization regression coefficients of
different cities had significant spatial differences.

5.2. Implications

The above findings suggested meaningful theoretical and policy implications. First,
there were adaptation gaps between cities at different levels and between regions. This was
not only due to natural conditions but also disparities in socioeconomic and technological
levels [13], as high-level cities were more dominant in all aspects. It is suggested that to
bring China’s adaptation to climate change to a higher level, when formulating adaptation
strategies, the Chinese government should fully consider these differences and provide
financial and technical support to low-adaptation cities or regions; moreover, paired as-
sistance between cities is also extremely necessary. In addition, the governing authorities
should attach importance to the development of economy, science, and technology; increase
the investment of adaptive funds; provide more basic protective infrastructure and services
for the public; help the relevant organizations to actively popularize adaptive knowledge
to the public; and help the public to gain more income to enhance economic readiness [35].

Second, the impacts of urbanization on adaptation showed that massive population
agglomeration to urban areas such as Northeastern China and the Pearl River Delta, and
the blind expansion of city construction land, such as eastern coastal areas, were both not
conducive to cities’ climate governance and will undermine cities’ sustainable development.
Therefore, when carrying out urban planning, managers should clarify the nature, scale, and
development direction of cities, make rational use of urban land, coordinate urban spatial
layout and various constructions, and fully consider cities’ resource-carrying capacity. At
the same time, inappropriate urbanization will contribute to social unrest, such as violence
in urban villages under the background of population overurbanization, which is not only
closely related to poverty [66] but also adversely affects the adaptation of communities
and individuals. Therefore, the authorities and relevant social organizations need to pay
attention to solving social contradictions and building a harmonious society.

Third, most of the cities are currently in the middle and low adaptation levels; therefore,
the following suggestions are put forward: cities should regularly carry out climate change
risk monitoring and assessment work with dynamic follow up, fully understand cities’
climate change risks and vulnerabilities, identify priority adaptation measures, and improve
cities’ adaptation effectiveness. Furthermore, the central and provincial governments need
to formulate adaptive policies tailored to local conditions for different types of cities,
especially by enhancing the ability of economic and social development to enhance cities’
adaptation to climate change to achieve synergy between addressing climate change and
sustainable development. The above suggestions may take China’s adaptation to climate
change to a higher level.

5.3. Limitations

Due to the limitation of time and data acquisition, a small part of the data for indicators
were derived from the Internet or estimation, which may make the results not robust
enough. Furthermore, the cross-sectional data cannot reflect the relative change in cities’
adaptation to climate change from the time dimension. Finally, urbanization is a dynamic
and long process, and cross-sectional urbanization variables cannot well reflect its dynamic
impact on cities’ adaptation to climate change. More accurate, comprehensive, and in-depth
comparative studies are still needed.
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Appendix A

Table A1. Details of data sources.

Indicators Abbreviations Reasons for Selection Source

Population density PD
The greater the number of people exposed to the
disaster-causing factors per unit area, the greater
the risk of life and health damage

China City Statistical Yearbook

GDP per square kilometer
(economic density) GPSK The higher the value of disaster-bearing body per

unit area is, the greater the economic loss will be

Percentage of employees
working outdoors PEWO People who work outdoors are vulnerable to high

and low temperatures, leading to health risks

Proportion of employees in
primary industry PEPI

It reflects the sensitivity of drought susceptible
industries to drought at the level of employment
structure

Proportion of primary
industry to GDP PPIG It reflects the sensitivity of drought susceptible

industries to drought at the level of the economy

Number of hospital beds
per capita NHBPC

Medical resources reflect the level of health
protection: the more beds per capita, the more
favorable is the post-disaster relief

Number of doctors per capita NDPC
Medical resources reflect the level of health
protection: the more doctors per capita, the more
favorable is the post-disaster relief

Greening coverage of
built-up areas GCBA

Green space provides a cooling function, which
can reduce the impact of extreme heat and
biophysical hazards

Mobile phone ownership rate MPOR Reflect the ability of early warning measures,
information exchange, etc.

Water resources per capita WRPC
Reflects the resource endowment to withstand
drought, as well as the ability to obtain drinking
water after floods

Number of buses per
10,000 people NBP

Vehicles provide a more reliable evacuation option
in the event of a flood, while also making it easier
for cities to recover from weather disasters

GDP per capita GPC

A low value may lead to insufficient investment in
the construction of climate adaptation
infrastructure and affect the implementation of
post-disaster recovery

Percentage of population
aged 65 and over PPA65O The elderly have poor physical resistance ability,

weak self-protection, and disaster response ability City-level Database of
Sixth CensusPercentage of population

aged 0–4 PPA0-4 Children have poor physical resistance ability,
weak self-protection, and disaster response ability
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Table A1. Cont.

Indicators Abbreviations Reasons for Selection Source

Percentage of population with
high school education
and above

PPHSEA Education helps raise a city’s awareness of how to
respond to climate events

Domestic water consumption
per capita DWCPC It reflects the sensitivity of water demand after

climate change and water shortage

City-level Database of China Real
Estate Information

Density of drainage pipes in
built-up areas DDPBA It reflects the drainage capacity in the case of

a‘flood

Patents granted per capita PGPC
It reflects innovation ability; the higher the value,
the better the ability to find countermeasures
against the incident

Loan-to-deposit ratio of
financial institutions LRFI

An indicator of economic development. If the
value is too low, it may indicate that the city is
unable to carry out the construction or investment
of adaptive projects

High-temperature days HTD
The number of days with daily maximum
temperature ≥ 35 ◦C; this is directly proportional
to the high-temperature risk

China Meteorological Data
Service Centre

Average value of highest
temperature in
high-temperature days

AVHTHTD It is proportional to the risk of high temperature

Low-temperature days LTD
The number of days with daily minimum
temperature ≤ 0 ◦C; this is directly proportional to
the low-temperature risk

Average value of lowest
temperature in
low-temperature days

AVLTLTD It is proportional to the risk of low temperature

Average annual precipitation AAP The larger the value is, the greater the flood risk is
and the smaller the drought risk is

Average annual temperature AAT The larger the value is, the more the city is
disturbed by drought

Housing price to income ratio HPIR

Housing cost burden is a high risk factor for
homelessness, and homeless or marginalized
populations are the most vulnerable to
adverse weather

https://www.creprice.cn/
(accessed on 17 January 2022),
China Meteorological Data
Service Centre

Percentage of impervious
surface area PISA The higher the value, the greater the amount of

surface runoff, exacerbating flooding Calculated by the research group

Heating situation HS Whether a city has heating or not indicates how
well it can cope with cold-weather events

Article of “map can talk” on
WeChat—Where is China’s
heating demarcation line?

Whether it is a
water-saving city WAWC

It reflects the water management ability, and
water-saving cities can rationally allocate, develop,
and utilize water resources to form a scientific
water use system and effectively deal with drought

Baidu Encyclopedia—National
water-saving cities

Government debt balance
per capita GDBPC

The higher the value is, the less investment is
likely to be put into the infrastructure construction
of adaptation to climate events, and the
implementation of post-disaster recovery will be
affected at the same time

Everbright Securities Research
Report—Special Report on
Regional Finance

Number of corruption and
bribery cases per
10,000 people

NCBC

It reflects the level of free from corruption, the
transparency and management capacity of local
governments, and the level of effective use of
climate funds

Harvard University—China
Corruption Survey Dataset

https://www.creprice.cn/
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Figure A1. Assessment system of cities’ adaptation to climate change. (Note: The values in parenthe-
ses are the weights of each indicator calculated based on the entropy weight method).
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