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Comprehensive understanding of the human protein-protein interaction (PPI)
network, aka the human interactome, can provide important insights into the
molecular mechanisms of complex biological processes and diseases. Despite
the remarkable experimental efforts undertaken to date to determine the
structure of the human interactome, many PPIs remain unmapped. Compu-
tational approaches, especially network-based methods, can facilitate the
identification of previously uncharacterized PPIs. Many such methods have
been proposed. Yet, a systematic evaluation of existing network-based meth-
ods in predicting PPIs is still lacking. Here, we report community efforts
initiated by the International NetworkMedicine Consortium to benchmark the
ability of 26 representative network-based methods to predict PPIs across six
different interactomes of four different organisms: A. thaliana, C. elegans, S.
cerevisiae, andH. sapiens. Through extensive computational and experimental
validations, we found that advanced similarity-basedmethods, which leverage
the underlying network characteristics of PPIs, show superior performance
over other general link predictionmethods in the interactomeswe considered.

A comprehensive understanding of the human PPI network (also
known as the human interactome) could offer global insights into
cellular organization, genome function, and genotype–phenotype
relationships1,2. The discovery of previously uncharacterized PPIs
could facilitate important interventional goals, such as drug target
identification and therapeutic design3. Despite remarkable experi-
mental efforts in high-throughput mapping, the human interactome
map remains sparse and incomplete2,4, and is subject to noise and
investigative biases2. These factors represent a severe limitation to the

accurate understanding of cellular organization and genome function.
Computational methods can accelerate knowledge acquisition in bio-
medical networks by significantly reducing the number of alternatives
to be confirmed in bench experiments5–9. Yet, high incompleteness of
the human interactome mapmay reduce the effectiveness of state-of-
the-art computational methods. In this context, the computational
predictionof previously uncharacterized PPIs based on experimentally
observed PPIs becomes a particularly challenging but potentially
highly rewarding task.
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Fig. 1 | Workflow of the INMC PPI prediction project. 26 representative network-
based methods were systematically evaluated to predict PPIs in the interactome of
four different organisms: A. thaliana19, C. elegans20, S. cerevisiae21, H. sapiens: HuRI4,
STRING22 and BioGRID23 (using rTRM package82). During the computational valida-
tion, the PPIs of each interactome were divided into training set and validation set
through 10-fold cross-validation. The performance of each method was evaluated
using four standard metrics: AUROC, AUPRC, P@500, NDCG. For each method, an
overall score was defined as the sum of z-scores of three metrics (AUPRC, P@500

and NDCG) for each interactome. Top-seven methods were selected based on their
performance in predicting human PPIs during the computational validation. Using
the entire human interactome, eachof the top-sevenmethodspredicted the top-500
human PPIs for experimental validation using the Y2H assay. PPI: protein–protein
interaction. AUROC: Area Under the Receiver Operating Characteristic curve.
AUPRC: Area Under the Precision-Recall Curve. P@500: Precision of the top-500
predicted PPIs. NDCG: Normalized Discounted Cumulative Gain. Y2H: yeast two-
hybrid assay. v1-v3: assay 1-assay 3.
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Recognizing the advantages and limitations of different compu-
tational methods in the context of PPI prediction is critical, providing
the insight required to select the best predictive strategy10–14. To
accelerate this process, the International Network Medicine Con-
sortium (INMC) initiated a project to systematically benchmark 26
representative network-based methods in PPI prediction through
standardized performance metrics and standardized, unbiased inter-
actome analysis (see Fig. 1 for a summary of the workflow of this
project). The 26 methods (with acronyms and brief descriptions listed
in Table 1) were selected from the rich literature on link prediction10,11,15

as well as the recent advancement in the field of deep graph
learning16,17. Our selection covers major categories of link prediction
from similarity-basedmethods to probabilisticmethods, factorization-
basedmethods, diffusion-basedmethods, andmachine learning-based
methods (Fig. 2). Note that three of 26 network-based methods also
utilize biological data (i.e., the sequence information of proteins) in
addition to the topology information for the PPI predictions.

To evaluate the performance of those methods, we need reli-
able and unbiased benchmark interactomes. Literature-curated
interactomes of PPIs with multiple lines of supporting evidence
might be highly reliable, but they are largely influenced by selection
biases2,18. Therefore, here we focused on interactomes emerging
from systematic screens that lack selection biases. For simplicity,
we mainly focused on binary datasets where co-complex member-
ship annotations are not included. We used the following six
benchmark interactomes for performance evaluation: (1) A plant
interactome including 2774 proteins and 6205 PPIs, derived from
the PPIs in the A. thaliana Interactome, version 1 (AI-1) and literature
databases19; (2) a worm interactome including 2528 proteins and
3864 PPIs, derived from C. elegans version 8 (WI8), which is
assembled from high-quality yeast two-hybrid (Y2H) PPIs20; (3) a
yeast interactome of S. cerevisiae including 2018 proteins and 2930
PPIs, derived from the union of CCSB-YI1, Ito-core and Uetz-screen
datasets21; (4) a human interactome including 8274 proteins and
52,548 PPIs, derived from HuRI4, which is assembled from binary
protein interactions from three separate high-quality Y2H screens.
To confirm the generality of our evaluations, we also used two
additional interactomes derived from different methods: (5) a
human interactome including 6926 proteins and 41,948 physical
PPIs, derived from STRING22 after filtering PPIs with normalized
score lower than 0.9 to keep the high-confidence PPIs and (6) a
human interactome including 19,665 proteins and 713,793 physical
PPIs, derived from BioGRID23.

For each of the six interactomes, we first performed 10-fold cross-
validation to evaluate four performance metrics of the 26 different
methods (here we refer to this process as “computational validation”).
This analysis allowed us to rank the methods. Next, the top-seven
methods were selected based on their performance in predicting
interactions in the human interactome, and their top-500 predicted
human PPIs (yielding a cumulative of 3276 PPIs) were chosen for a
systematic and unbiased experimental validation through Y2H assays.
In total, we validated 1177 previously uncharacterized PPIs involving
633 human proteins. To the best of our knowledge, no other
consortium-based evaluations of PPI prediction algorithms in the lit-
erature incorporated such a large experimental validation effort.

In this paper, we report the results of this community effort,
where we evaluated the performance of various link prediction algo-
rithms in the context of PPI prediction and provided insights into the
optimal computational tools required to detect the unmapped PPIs.
We found that advanced similarity-basedmethods, which leverage the
underlying characteristics of PPIs, show superior performance over
other link prediction methods in both computational and experi-
mental validations in the interactomes we considered. We described
the details of these methods. The full datasets (including all of the
benchmark interactomes and the experimental validation results), as
well as the code for all of the testedmethods and scoring functions, are
freely provided to the scientific community.

Results
Correlations between different performance metrics
Figure 3 summarizes the results of the computational evaluation of all
tested methods using 10-fold cross-validation. The metrics used to
quantify the performance of each method are (i) AUROC: Area Under
the Receiver Operating Characteristic; (ii) AUPRC: Area Under the
Precision-Recall Curve; (iii) NDCG: Normalized Discounted Cumulative
Gain; and (iv) P@500: Proportion of Positive PPIs, i.e., precision, in the
top-500 prediction. To better rank the overall performance of differ-
ent methods, we also computed a combined z-score for each method
that summarizes its performance using different evaluation metrics.
We next highlight the following key observations and insights from the
analysis.

Considering that the distribution of links is highly imbalanced in
the PPI prediction problem due to the sparsity of interactome maps
across organisms24,25, AUROC may overestimate the performance of a
link prediction method, while AUPRC can provide more pertinent
evaluation26,27. Indeed, by systematically comparing the performance
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Fig. 2 | Diagram of the five major categories of link prediction methods. (1)
Similarity-basedmethods. Thesemethods quantify the likelihood of links based on
predefined similarity functions among nodes in the graph, i.e., the common
neighbors (green area). (2) Probabilistic methods. These methods assume that real
networks have some structure, e.g., community structure. The goal of these algo-
rithms is to select model parameters that can maximize the likelihood of the
observed structure. The connecting probability of nodes within a community is
higher than that between different communities (gray matrix). (3) Factorization-
based: The goal of thesemethods is to learn a lower dimensional representation for
each node in the graph by preserving the global network patterns. Next, the

compressed representation is leveraged to predict unobserved PPIs by either cal-
culating a similarity function or training a classifier. (4)Machine learning: There are
numerous methods among machine learning categories; here, we illustrate this
category using the state-of-the-art graph neural networks (GNN). Those methods
embed node information by aggregating the node features, link features and graph
structure using a neural network and passing the information through links in the
graph. Thereafter, the learned representations are used to train a supervisedmodel
to predict the missing links. (5) Diffusion-based: These methods use techniques
based on the analysis of the information gleaned from the movement of a random
walker diffusion over the network (paths indicated by red arrows).
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metrics of various PPI prediction methods, we found clear evidence
that AUROC largely overestimates the performance of any particular
method. For example, the average AUROC over 10-fold cross-valida-
tion of one of the top methods, SEAL, inH. sapiens (HuRI) is 0.94. This
very high AUROCmight lead us tomistakenly conclude that SEAL is an
almost perfect predictionmethod since themaximumvalue of AUROC
is 1. In fact, however, we found the average AUPRC of SEAL is only
0.012, implying a poor performance in finding PPIs (Fig. 3a). Since
AUROC has been widely used in the link prediction literature28–32, we
investigated whether or not the AUROC-based ranking of link predic-
tion methods is consistent with rankings based on AUPRC or other
metrics. First, we calculated the correlations between AUROC and
other metrics over all methods (see Supplementary Fig. 1a–c). We
found that AUROC is significantly correlated with AUPRC (Spearman
R=0:75,p<2:2 × 10�16) andNDCG (SpearmanR=0:76,p= 1:6× 10�14),
but not with P@500 (Spearman R =0:18,p=0:028). Second, we found
that the combined z-scores of different methods, including and
excluding the AUROC metric, are quite consistent (Pearson
R=0:97,p<2:2 × 10�16, see Supplementary Fig. 1d). Note that the
strong correlationbetweenAUROCandAUPRCdoes notmean that the
former is as good as the latter in evaluating the performance of any
particular link predictionmethod. Instead, it justmeanswe can still use
AUROC to rank different methods (and the ranking will be roughly the

same as if we use AUPRC), even though the AUROC values are sys-
tematically inflated (due to the data imbalance issue). Hereafter, we
will, therefore, exclude AUROC in calculating the combined z-score as
well as interpretation of the performance for each method.

Predictability of interactomes is weak
Notably, both AUPRC and P@500 of most methods are quite small for
five interactomes, except H. sapiens (STRING) (Fig. 3a). This observa-
tion suggests that successfully predicting missing links among a large
unmapped PPI space remains a challenging task. To quantify the pre-
dictability of each interactome,we calculated its structural consistency
index σc based on the first-order perturbation of the interactome’s
adjacency matrix33. It is important to note that a network is highly
predictable (with high σc) if the removal or addition of a set of ran-
domly selected links does not significantly change the network’s
structural features (characterized by the eigenvectors of its adjacency
matrix). We found that H. sapiens (STRING) is most predictable
(σc>0:58) and σc<0:25 for all other five interactomes (see Supple-
mentary Fig. 2a), which is much lower than that of social networks33

(e.g., Jazz34 and NetSci35 for which we have σc =0:65 and 0.60,
respectively). This might imply that H. sapiens (STRING) is the most
unbiased and such a low structural consistency for other interactomes
indicates that the unobserved parts of the five interactomes
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Fig. 3 | Computational evaluation of the PPI predictionmethods. The details of
eachmethod are summarized in Table 1. aHeatmap plots show the performance of
each method on each interactome with the following evaluation metrics: AUROC,
AUPRC, P@500, and NDCG. The overall performance is calculated from z-scores of
three metrics. For each metric, darker color represents better performance. b The

ranking of the 26 methods on the six interactomes by z-scores. Note that, the
performances of ReGSP1, cGAN1, SEAL and SkipGNNon the BioGRID databasewere
not evaluated due to the prohibitive computational cost. Wemarked their rankings
as N/A. Note that AUROC was excluded in calculating the combined z-score and
ranking for each method.
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considered in this project do not have very similar structural features
as their currently observed part, which might be due to the high
incompleteness of those interactome maps. Indeed, for the social
networks Jazz and NetSci, if we remove 90% of its links, their σc values
drop from 0.65 to 0:16 ±0:06 and from 0.60 to 0:25 ±0:09, respec-
tively (calculated from 50 random removals). We also examined the
predictability of interactomes with different edge densities generated
by the duplication-mutation-complementation model36, finding that
the predictability increases with edge density (see Supplementary
Fig. 2b). Note that the seeming “inconsistency” between the predict-
ability and P@500 is because predictability is essentially P@10%L,
where L is the number of total PPIs. For HuRI, this is about P@5255,
which is much lower than P@500 (see Supplementary Fig. 3).

Performances of most PPI prediction methods vary con-
siderably across different interactomes
We found that PPIs fromH. sapiens (HuRI and STRING) were predicted
more accurately thanPPIs from theother threeorganismsdespite their
very similar edge density (Supplementary Table 1). To better demon-
strate the performance variability of the different methods, we ranked
those methods based on their combined z-scores of AUPRC, P@500
and NDCG. As shown in Fig. 3b, somemethods (e.g., RNM) show quite
robust rankings (or consistent performance) across different inter-
actomes, while the rankings of other methods show very large varia-
bility across interactomes. This variability is likely due, in part, to the
different network characteristics, i.e., the number of links and average
degree (Supplementary Table 1). These, in turn, to some degree
depend on the degree of completeness of existing PPIs, which can vary
broadly across different interactomes37. To evaluate the mean per-
formance versus variability systematically, we calculated themean and
standard deviation of rankings across all six interactomes for each
method, respectively, finding that RNM yielded the highest mean
ranking and lowest variability. This suggests that RNM is robust and
able to perform well on interactomes with quite different network
characteristics (Supplementary Fig. 4).

Traditional similarity-based methods do not perform well
Traditional similarity-based link predictionmethods have been heavily
used in benchmark studies10,11. Thesemethods are based on a range of
simple node similarity scores, such as the number of common neigh-
bors, the Katz index, the Jaccard index, and the resource allocation
index, to quantify the likelihood of potential links (see Table 1). Hence,
they are more interpretable and scalable than other methods. How-
ever, the predefined local and global similarity score functions might
significantly impact their predictive power for some networks, such as
PPI networks. For example, the mere presence of two proteins in an
interactomewithmany common neighbors does not necessarily imply
that they should be connected to each other because interacting
proteins are not necessarily similar and similar proteins do not
necessarily interact38. We found that most of the traditional similarity-
based methods, i.e., common neighbors (CN), Adamic-Adar index
(AA), and Jaccard index (JC), yield negative z-scores, indicating their
performance is below the average performance of all methods
(Fig. 3a).

There are six consistently high-performing methods
Among all the methods we tested, we found that RNM, L3, MPS(T),
MPS(B&T), RepGSP2 and SEAL yield relatively high AUPRC and P@500
in their computational evaluations over six interactomes. RNM is an
advanced similarity-based method that integrates a diagonal noise
model, a spectral noise model, and the L3 principle which shows that
two proteins are expected to interact if they are linked by multiple
paths of length three in the interactome38. RNM displays excellent
performance across all six interactomes: it ranked No.1 in the PPI
prediction for A. thaliana and H. sapiens (BioGRID) interactomes, and

No.2 for C. elegans, S. cerevisiae, H. sapiens HuRI and STRING inter-
actomes. MPS(T) and MPS(B&T) are also advanced similarity-based
methods. MPS(T) leverages the L3 principle, but at a higher level. In
particular, it highly ranks a protein pair ði,jÞ if protein-i has similar
neighborhoodas that of protein-j’s neighbors. ComparedwithMPS(T),
MPS(B&T) also takes into account the sequence similarity of a protein
pair. Both MPS(T) and MPS(B&T) display good performance in PPI
prediction. In particular, MPS(T) is ranked as No.1 in the PPI prediction
for H. sapiens (HuRI and STRING). RepGSP leverages Graph Signal
Processing to learn the graph edges. SEAL is a deep graph learning
model based onGraphNeural Networks (GNNs). SEAL can leverage the
sequence information of proteins. Moreover, it can learn a function
that maps the subgraph patterns to link existence from a given net-
work instead of using any traditional predefined similarity indices16.
RNM, RepGSP and SEAL show high performance consistently in the six
benchmark interactomes. In particular, we found RNM and MPS(T)
also show high AP@K (average precision at K) against different K
values (see Supplementary Fig. 5).

It Is interesting to note that, compared with MPS(T), SEAL yields
higher performance in the C. elegans and S. cerevisiae interactomes,
but lower performance in the H. sapiens interactomes. This perfor-
mance difference might be due to the different graph mining techni-
ques used by thesemethods. One of the similarity metrics in MPS(T) is
defined as a function of the Jaccard index of the neighborhoods of two
nodes, and it is reasonable that this metric should benefit from higher
degree nodes for classification rather than those with small neigh-
borhoods. Instead, SEAL uses GNNs to define the features of a node by
aggregating values from its nearest neighbors. In a case where nodes
have many neighbors with similar features (e.g., nodes in the same
biological modules), aggregation functions (e.g., the average function)
could lead to nodes with similar embeddings, which are harder to
distinguish.

Stacking models do not perform significantly better than indi-
vidual methods within each interactome
It has been suggested previously that constructing a series of “stacked”
models and combining them into a single predictive algorithm can
achieve optimal or nearly optimal accuracy39. To confirm whether a
stackingmodel is superior to individual methods in PPI prediction, we
constructed four different stacking models. Stacking-model-1 (Super-
vised): stack 36 individual topological predictors, which come in three
types, global (functions of the entire network), pairwise (function of
the joint topological properties of node pair i,j) and node-based
(functions of the independent topological properties of node i and j),
into a single algorithm, then train a classifier to predict the missing
links. Stacking-model-2 (Unsupervised): for each link, take the average
of its ranking (in percentile form) calculated from RNM and MPS(T).
Stacking-model-3 (Unsupervised): for each link, take the maximum of
its ranking calculated from RNM and MPS(T). Stacking-model-4
(Unsupervised): for each link, we aggregated the rankings from RNM
and MPS(T) using the Kemeny consensus40 approximated by the
Dowdall41 or cRank42 method. Interestingly, we found that none of
these stacking models can significantly outperform individual meth-
ods (see Supplementary Fig. 6). In general, the advantage of Stacking-
model-1 is that the meta-classifier can learn to select the best pre-
dictors through supervised training; thus, the overall performance of
the stacking model outperforms any individual predictor. However, in
our case, the predictors of the two highest ranking methods can be
directly used in PPI predictions without training a classifier. Moreover,
the overlap between the PPIs predicted by different methods is very
low (see Supplementary Fig. 7 for Cohen’s kappa coefficient and the
Jaccard index). Therefore, simply averaging the scores (Stacking-
model-2) from different methods will decrease the ranking of those
correctly predicted PPIs and, hence, degrade the predictive perfor-
mance accordingly. Stacking-model-3 can yield slightly higher AUROC
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and NDCG than each individual method in some interactomes, but its
AUPRC and P@500 still cannot surpass the best individual method.
These results suggest that for a given network domain (e.g., PPI net-
works) stacking models do not always significantly outperform the
best individual methods in link prediction.

Patterns of predicted PPIs
Based on their performance in predicting PPIs for theH. sapiens (HuRI)
interactome, we selected the top-seven methods: MPS(T), RNM,
MPS(B&T), cGAN, SEAL, SBM and DNN+node2vec (see Methods for
the selection process). To examine whether there is any particular
pattern among the top-500 PPIs predicted by each of the top-seven
methods, we calculated the distribution of degree difference of pro-
teins involved in the predicted PPIs (Fig. 4a). We found that RNM,
MPS(T), MPS(B&T), and SBM tend to predict PPIs involving proteins
with larger degree difference than that of randomly selected PPIs in
HuRI (with degree difference 16:56± 1:33 calculated from 10 random
samplings of 500 PPIs in HuRI). The remaining methods cGAN, SEAL
and DNN+ node2vec tend to predict PPIs between nodes with similar
degrees. In addition, for each method, we plotted the average degree
of the proteins involved in their top-500 predicted PPIs on top of the
degree distribution PðkÞ of the human interactome (with average
degree 12.7) (Fig. 4b). We found that RNM, SBM, MPS(T), and
MPS(B&T) tend to predict PPIs involving proteins of high degrees,
while the average degree of proteins in the top-500 PPIs from deep
learning methods, such as DNN+node2vec and SEAL, is much lower.
This difference could be due to the fact that RNM provides more
predictions for high-degree nodes (see Fig. 4b) andMPS also leverages
the L3 principle at a high level, while DNN+node2vec focusesmore on
local network topological structure rather than on degree. The per-
formanceof all those fourmethodswill decrease on degree-preserving
randomized interactomes (see Supplementary Fig. 8).

Performance of prediction methods in experimental validation
To the best of our knowledge, this is an unprecedentedly large-scale
experimental validation of network-based PPI prediction methods in a
systematic benchmark study. To validate the performance of the PPI
prediction methods experimentally, we applied each of the top-seven
methods (MPS(T), RNM, MPS(B&T), cGAN, SEAL, SBM and DNN+
node2vec) to the human interactome (HuRI) and predicted the top-

500 unmapped human PPIs. The union of the top-500 predicted
human PPIs from the top-sevenmethods includes 3276 unique protein
pairs. Next, we validated those protein pairs using the three orthogo-
nal Y2H assays formerly used to obtain the HuRI map. The set of pre-
dicted PPIs were collectively recovered at a rate that was on par with
the recovery of high-confidence binary PPIs from the literature (see
Supplementary Fig. 9). In total, from the successfully tested pairs, we
identified 1177 previously uncharacterized human PPIs (involving 633
proteins) by considering a protein pair to be positive if it is positive in
at least one of the three assays, and negative if it is scored negative in
all the three assays for which it was successfully tested. Note that some
protein pairs were not successfully tested due to technical issues (see
Methods). Overall, we found that MPS(B&T) is the most promising
method in the sense that it simultaneously offers the highest number
(376) of positive pairs and the lowest number (54) of negative pairs
among its top-500 predicted PPIs, yielding a precision of 87.4% (see
Fig. 5). The other two promising methods are MPS(T) and RNM, with
precision75.9% and69.5%, respectively (see Supplementary Table 3 for
the precision of other methods).

Note that in computational validation MPS(B&T) is ranked No.3
(in terms of the combined z-score in predicting human PPIs), while
MPS(T) is ranked No.1, and RNM is ranked No.2. The ranking dif-
ference in computational and experimental validations is not a big
surprise. This might be due to multiple reasons. First, in computa-
tional and experimental validations, methods were ranked based on
different measures. In the computational validation, several per-
formance measures were computed based on 10-fold cross-valida-
tion, and then different methods were ranked based on the
combined z-score of the performance measures. In the experi-
mental validation, only the top-500 predicted PPIs (leveraging the
whole human interactome) of eachmethod were validated and then
the precision measures of different methods were ranked. Second,
the different numbers of unsuccessfully tested PPIs in experimental
validation might affect the performance ranking of different
methods. For example, among the top-500 predicted PPIs, 70 142,
or 106 pairs were not successfully tested for MPS(B&T), MPS(T), or
RNM, respectively. Despite some changes in the ranking, the top-3
methods in computational validation, i.e., MPS(T), RNM and
MPS(B&T) are still the top-3 methods in experimental validation.
Only their relative rankings changed.
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Fig. 4 | Patterns of top-500 PPIs predicted by the top-seven human PPI pre-
dictionmethods. a For these top-sevenmethods, we examined the distribution of
absolute value between the degrees of each protein pair. b Degree distribution of

the H. sapiens (HuRI) interactome and the mean degree of proteins involved in the
top-500 predicted PPIs of each method in log-log plot. k denotes the degree of a
protein.
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Interestingly, we found that those PPIs simultaneously predicted
by multiple methods tend to be positive. For example, the 11 PPIs
simultaneously predicted by RNM, MPS(T) and MPS(B&T) are all
positive. (Note that those threemethods all use the L3principle in their
own manner.) Yet, most of the positive PPIs were uniquely predicted
by a particular method (see Supplementary Fig 10a for the Venn dia-
gram). Another interesting aspect is that several tested methods
showed experimental precision largely exceeding cross-validation
results. While we suspect this might largely result from investigative
biases reflected in available interactomes43, exploring this aspect is
beyond the scope of this work.

Note that the human interactome map HuRI contains self-loops,
i.e., some proteins interact with themselves, representing the diagonal
elements of the adjacency matrix of HuRI. We understand that the
prediction of diagonal elements is orders-of-magnitude easier task
than the prediction of off-diagonal elements in the adjacency matrix,
due to themuch largerdensity of self-interactions: InHuRI, the average
degree of those self-interacting proteins is 35.05, while the mean
degree of those non-self-interacting proteins is only 11.33. Among all
predictionmethods tested in this project, most of them tend to ignore
self-loop prediction, but some of them (especially cGAN) do not. In
fact, 495 of the top-500 PPIs predicted by cGAN are self-loops.We also
found that those positive PPIs tend to connect high-degree proteins
(see Supplementary Fig. 11).

Combining predictions from the top three methods does not
yield better precision
The predicted PPIs with higher ranking positions (i.e., in the top of
the top-500 list) presumably should have higher probabilities of
being positive in experimental validation than those predicted PPIs
with a lower rank (i.e., in the bottom of the top-500 list). To test this
assumption, for each of the top-three methods in human PPI pre-
diction, we plotted the ranking position distribution of the

predicted PPIs that were validated to be positive in the Y2H
experiments. As shown in Supplementary Fig. 12a, surprisingly,
these positive PPIs do not tend to appear more often at the top of
the list. Instead, they appear almost randomly in the top-500 PPIs
predicted by each method. (It is unclear if this intriguing phenom-
enon will continue to hold if we test more pairs, e.g., top-1000 PPIs.)
Consequently, combining the top-500 PPIs predicted by those top-
ranking methods into a new top-500 list does not yield a better
performance in experimental validation. To demonstrate quantita-
tively this point, we combined the top-Nk PPIs predicted by
MPS(B&T) and top-½ð500� NkÞ=2� PPIs from MPS(T) and RNM,
respectively, with Nk 2 ½0,500� defined as a tuning parameter. We
ensured that those PPIs predicted by different methods appear only
once in the combined list. We found that the number of positive
PPIs monotonically decreases with Nk , indicating that combining
the PPIs of greatest confidence predicted by differentmethods does
not at all improve predictive performance (see Supplementary
Fig. 12b).

Structural and functional relationships of the validated and
previously uncharacterized human PPIs
To explore the structural relationships of these predicted PPIs that
tested positive in the Y2H assay, we visualized the network constituted
by them (in total 1,177 PPIs involving 633proteins),finding four distinct
clusters (Fig. 6). These clusterswere largely contributed by RNM, SBM,
andMPSmethods.We also found that the subnetworks contributed by
RNM and SBM are close to each other. MPS(B&T) and MPS(T) con-
tributes to a cluster together. In addition, MPS(B&T) contributed to a
cluster itself. As shown in Supplementary Table 2, those methods
leveraging the connectivity features, i.e., MPS, RNM, and SBM, tend to
predict PPIs in dense neighborhoods (with higher edge density and
shorter characteristic path length) of the interactome. By contrast,
deep learning methods (e.g., SEAL, and DNN+ node2vec) tend to
predict PPIs that are more scattered in the interactome, and the
induced subgraphs have lower edge density and longer characteristic
path length. To quantify the distance between the proteins involved in
the positive PPIs predicted by different methods, we computed their
network-based separation3 defined as sαβ = hdαβi � ðhdααi + hdββiÞ=2,
where α and β represent the set of proteins involved in the positive
PPIs predicted by two methods, respectively. hdαβi is the average
shortest distance between proteins in α and β, hdααi (or hdββi) is the
average shortest distance between proteins within α (or β) in the ori-
ginal human interactome4. We found that almost all methods pre-
dicted PPIs in specific and separated areas of the interactome
(Supplementary Fig. 10b), as each method is more likely to reflect
different topological characteristics.

We also investigated the functional relationships of these positive
PPIs, finding that they contribute to three functional modules, and each
of those functional domains is associatedwith a distinctive, enrichedGO
term (Supplementary Fig. 13). This observation is also consistent with
the previous finding that physical binding assembles proteins into large
functional communities, thus providing insights into the global func-
tional organization of the human cell4. Specifically, we found that the
proteins involved in those top-500 predicted PPIs are involved in epi-
dermis, e.g., cornification, keratin filament and keratinization and this is
also valid for experimentally validated positive PPIs (see Supplementary
Fig. 14a–c). For instance, previously uncharacterized PPIs associated
with keratinization process from two dense clusters (see Supplementary
Fig. 14d), which might be due to the fact that keratins and keratin
association proteins are highly connected in HuRI. Of course, more
function clusters will emerge if we focus on proteins involved in the top-
5000 predicted PPIs. For example, when we analyzed the functions
associated with the proteins in top-5000 PPIs predicted by MPS(B&T)
and MPS(T), we found more function clusters, e.g., the one associated
with extracellular exosome (see Supplementary Fig. 14).
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Fig. 5 | Experimental evaluation of the top-seven human PPI prediction
methods.Aprotein pair is considered to be positive if it is positive in at least one of
the three Y2H assays, and negative if it is negative in all the three assays. MPS(B&T)
is the most promising method, which simultaneously offers the highest number
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cessfully tested protein pairs (e.g., due to a pipetting failure) is not included in the
precision calculation and this figure. See Supplementary Table 3 for the positive
count, negative count, unsuccessful test count, and theprecision ofothermethods.
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Discussion
As knowledge of human PPIs can help us understand complex biolo-
gical and disease mechanisms, developing computational algorithms
to discover previously unrecognized PPIs and, thereby, to improve the
comprehensiveness of the human interactome map is critical. To
achieve this goal, we have evaluated 26 representative network-based
PPI predictionmethods across six different interactomes using 10-fold
cross-validation. We then selected top-seven methods based on their
performance in predicting PPIs in the human interactome. We applied
each of the top-seven methods to the human interactome and pre-
dicted the top-500 unmapped human PPIs. We finally validated the
union of the top-500 predicted human PPIs from the top-seven
methods using the three orthogonal Y2H assays.

As a result of this systematic evaluation and validation effort, we
identified the top-performing methods that prove useful for PPI pre-
diction. Our analysis showed that the predictive power of traditional

similarity-based methods is limited, although they are more easily por-
table without the need to rely on organism-specific annotations. Fur-
thermore, generic link prediction methods based on deep machine
learning methods, including embedding and graph neural networks
approaches, performed consistently across different interactomes stu-
died in this project with higher robustness, although their performances
are not top-ranking. By contrast, link predictionmethodsMPS andRNM,
which leverage specific connectivity properties of PPI networks (i.e., the
L3 principle), displayed the most promising performance in the inter-
actomes we considered. Similarity-based methods are already a pro-
mising way to guide protein–protein interaction assays, by prioritizing
interactions with a high predicted score. More importantly, we found
that differentmethods typically predicted positive PPIs that, rather than
being scattered randomly in the interactome, are concentrated in spe-
cific areas (often associated with specific biological processes), and,
furthermore, these areas overlap minimally among different methods.

RNM
SBM
MPS(B&T)
MPS(T)

SEAL

cGAN1
Multiple methods

DNN+node2vec
Component-1
Component-2
Component-3
Component-4

Fig. 6 | Structural relationships among previously uncharacterized human
PPIs. This network consists of all the 1177 previously uncharacterized human PPIs
predicted by the top-seven methods and validated by Y2H assays. Those PPIs that
were predicted by a single method were colored based on the method that pre-
dicted them. Those PPIs that were predicted (i.e., among the top-500 predicted

PPIs) by multiple methods were colored in black, with edge width proportional to
the number of methods predicting this PPI. Nodes (proteins) are colored based on
the connected component to which they belong. Node size is proportional to its
degree. Note that there are in total 174 isolated nodes, representing self-interacting
proteins (which were mostly detected by cGAN1).
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This minimal overlap is due to the underlying assumptions of each
method that highlight particular network patterns, suggesting that we
may need to use different methods simultaneously to reflect the vari-
able patterns in the interactome and offer complementary predictions.
From a network perspective, it would also be interesting to analyze in
more detail the association between biological processes and the
structural patterns they express in the interactome, a research topic that
we leave for future studies.

Encouragingly, the top-rankingmethods were robust and seemed
suitable for all the interactomes we studied in this project. However,
we cannot comment on the applicability to link prediction in general as
we validated thesemethodsonlyon PPI networks rather thannetworks
from different scientific domains. In our analysis, stacking models did
not show higher performance than any individual method in PPI pre-
diction, which could be attributed to the low overlap between PPIs
predicted by different methods, as the overall search space is

enormous. For consistency, in this project we focused on reference
interactomes generated from the Y2H system and the experimental
validations were also conducted using the Y2H system, which is one of
themost popular and powerful tools to study PPIs.Of course, there are
other PPI-mapping techniques available, e.g., mass spectrometry44. We
anticipate that the top-ranking methods presented here will still offer
excellent performance in predicting PPIs for interactomes mapped by
other techniques.

Despite their relatively high performance compared to other
methods, deep learning-based methods (i.e., SEAL, SkipGNN, and
DNN + node2vec) are not in the top three rank order in both
computational and experimental validations. A reason for this
failing could be the difference in the patterns of predicted PPIs,
as remarked upon previously. For example, DNN + node2vec
tends to predict PPIs involving proteins with lower degree than
the top-three methods.

Table 1 | Computational Methods tested in the INMC PPI prediction project

ID Synopsis U/S Ref

I. Similarity-based: the existence probability of a link is measured as the prior knowledge-based similarity between two nodes ði,jÞ.
1. Common Neighbor (CN): similarity of a link is computed as the number of common neighbors between two nodes. U 61

2. Resource Allocation (RA): similarity of a link is computed as resource allocation of node pair. U 62

3. Preferential Attachment (PA): similarity of a link is computed as the degree product of node pair. U 63

4. Jaccard Index (JC): similarity of a link is computed as Jaccard index of node pair. U 64

5. Adamic Adar (AA): similarity of a link is defined as the Adamic-Adar index. U 65

6. Katz: similarity of a link is defined as the Katz index. U 66

7. Similarity (SIM): similarity score integrating L3 and Jaccard index. U 67

8. Ensemble: integrate several similarity scores. U

9. Maximum similarity, Preferential attachment Score (MPS(T)): integrate two scores of topological features. U 68

10. Maximum similarity, Preferential attachment and sequence Score (MPS(B&T))*: integrate two scores of topological features and one score from the protein
sequence.

U 68

11. Root Noise Model (RNM): an ensemble method that integrates a diagonal noise model, a spectral noise model and L3 model. U 38

12. L3: paths of length three capture similarity to existing partners. U 38

13. CRA: similarity of a link is computed as CAR-based resource allocation. U 69

II. Probabilisticmethods: assume that real networkshave some structure, i.e., community structure. Thegoal of thesealgorithms is to selectmodel parameters that
can maximize the likelihood of the observed structure.

1. Stochastic Block Model (SBM): assume nodes are distributed into blocks and links between two nodes depends on the block they belong to. U 70

2. Repulsive Graph Signal Processing (RepGSP): learn PPIs via graph signal processing. RepGSP rewards links between “repulsive nodes” (i.e., nodes belonging to
different communities).

U 71–73

III. Factorization-based methods: factorize the network adjacency matrix to reduce the high-dimensional nodes in the graph into a lower dimensional repre-
sentation space by conserving the node neighborhood structures.

1. Non-Negative Matrix Factorization (NNMF): dimension reduction using non-negative matrix factorization and the existence probability is defined as the cosine
similarity of latent features.

U 74

2. Geometric Laplacian Eigenmap Embedding (GLEE): dimension reduction using Geometric Laplacian Eigenmap, then defines existence probability as the cosine
similarity of latent features.

U 75

3. Spectral Clustering (SPC): dimension reduction using symmetric normalized Laplacianmatrix, then the existence probability is defined as the cosine similarity of
latent features.

U 76

IV. Machine Learning: methods based on machine learning techniques. S

1. Conditional Generative Adversarial Network (cGAN): generative adversarial network performing image-to-image translation conditioned on either embedding
(cGAN1) or raw information (cGAN2) of the network topology.

U 57

2. Skip similarity Graph Neural Network (SkipGNN): receive neural messages from two-hop and immediate neighbors in the interaction network and non‐linearly
transforms the messages.

S 17

3. Subgraphs, Embedding and Attributes for Link prediction (SEAL)*: learn general graph structure features from local enclosing subgraphs. S 16

V. Diffusion-based methods: methods using techniques based on the analysis of the information diffusion over the network, e.g., random walks. This includes
methods integrating techniques of other categories.

1. Average Commute Time (ACT): similarity is defined as the average number of movements/steps required by a randomwalker to reach the destination node and
come back to the starting node

U 32

2. RandomWalks with Restart (RWR): similarity is defined as the probability of a random walker node to reach the target node. U 77

3. Structural-Context Similarity (SimRank): measure the structural context similarity and shows object-to-object relationships. U 78

4. Deep Neural Network and Feature Representations for Nodes (DNN+ node2vec): compute node and edge embeddings by the node2vec, then feeds the results
into a deep neural network.

S 58,79,80

5. Random Watcher-Walker (RW2)*: integrate network construction, network representation learning and classification. U 81

TheU/Scolumn is valuedwithU for unsupervisedmethods, otherwiseS for supervisedor semi-supervisedmethods. The * symbol indicates the level-2methods,whichmakeuseofnodeor node-pair
attributes.
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In this project, we focused on benchmarking 26 network-based
methods covering different categories. Among the 26 methods, three
of them (i.e., MPS(B&T), SEAL, and RW2) also leveraged protein
sequence information.Wewere aware of those purely sequence-based
PPI prediction methods (e.g., SVM45–48, RF49,50, FCTP51, and DPPI52), as
well as those methods leveraging additional biological information
such as 3D protein structure and protein annotations53,54. We did not
consider thosemethods in this benchmark study for two reasons. First,
those methods need to define a feature space for each link, which will
lead to significant time complexity andmemory requirement for HuRI
(which has ~35 million unmapped PPIs). Systematically benchmarking
those methods is simply beyond the scope of the current project.
Second, structural information has relatively little impact on con-
structing the interactomes, primarily because there is a great differ-
ence between the number of proteins with known sequences and
those with an experimentally determined tertiary or quaternary
structure53. In other words, this type of information is too incomplete
to be efficiently exploited at the level of the entire interactome. The
recent success of AlphaFold55, a deep learning-based method to pre-
dict protein structure with atomic accuracy, is shedding light on
resolving this limitation. In addition, we only considered six inter-
actomes from four species, which certainly does not cover the variety
and quality of all the available PPI datasets from different species.

Based on these findings, we recommend the following con-
siderations for effective PPI prediction. First, the method needs to
leverage the inherent properties of the interactome (e.g., the L3 prin-
ciple) to improve the predictive performance. Second, the unmapped
PPI space is over several hundred times larger than the currently
mapped space, causing a limited overlap of the most probable PPIs
predicted by different methods, which obviously reduces the efficacy
of ensemble or stacking models. Finally, incorporating protein
sequence and structure attributes into network-based methods
appropriately could further improve the performance of PPI predic-
tion, as soon as this type of information becomes available on a
larger scale.

Methods
The INMC protein–protein interaction prediction project
This community effort was initiated by INMC aiming to provide a fra-
mework to assess the network-based computational methods in
protein–protein interaction (PPI) prediction through standardized
performance measures and common benchmarks. The INMC mem-
bers were required to run their selected methods on six benchmark
interactomes. For each interactome, members were required to sub-
mit two sets of results: (1) 10-fold cross-validation to compute the four
performance measures; and (2) top-500 previously uncharacterized
human PPIs predicted by their methods by leveraging the whole
human interactome. In total, we tested 26 link prediction methods.
The top-500 previously uncharacterized human PPIs provided by the
top-7 high performance methods were further evaluated experimen-
tally through yeast two-hybrid (Y2H) assays.

PPI prediction methods
We compared in total 26 different methods that fall into five
categories based on the adopted prediction strategy: similarity-
based methods, probabilistic methods, factorization-based
methods, machine learning methods, and diffusion-based meth-
ods (see Fig. 2). Based on the information used in the prediction,
these methods can also be divided into two categories: level-1
(based on network structure only) and level-2 (based on both
network structure and node attributes) (see Table 1). Based on
the usage of training PPIs labels, they can be further divided into
supervised and unsupervised methods. In the following, we will
provide an overview of each category. All the methods are briefly

described in Table 1. Additional details can be found in Supple-
mentary Information (SI).

• Similarity-based methods: these link prediction methods use a
similarity score function based on local properties of network
nodes tomeasure the likelihood of links. Two nodes with higher
similarity score are considered to have a link between themwith
higher probability. For example, two nodes with more common
neighbors are considered to be more similar and tend to link to
each other. Note that when applied to PPI prediction, the
adopted similarity measures are mostly based on interconnec-
tion properties of the nodes rather than on specific node
features. The main advantages of these methods are that they
are agnostic to any annotation-dependent features, making
them easily applicable across organisms; and that theymake few
assumptions about global network structure. We selected the
classical similarity-based methods that were widely used in link
prediction, i.e., CN, PA, RA, Katz and L3-basedmethods, i.e., MPS
and RNMwhich showed superior performance in the prediction
of PPIs.

• Probabilistic methods: The probabilistic and maximum
likelihood algorithms assume that real networks have some
structure, i.e., hierarchical or community structure. The
goal of these algorithms is to select model parameters that
can maximize the likelihood of the observed structure. As
one of the most general network models, the stochastic
block model (SBM) assumes that nodes are partitioned into
groups with the probability that two nodes are connected
depending solely on the groups to which they belong. We
selected the classical probabilistic method SBM, and a new
method RepGSP developed by ourselves.

• Factorization-based methods: These methods use matrix factor-
ization techniques to find a mapping to embed the original
dimensional nodes in the network into a lower dimension so that
similar nodes in the original network tend to have similar
representation features. The resulting embedded lower dimen-
sional vectors (feature representations) can be used for many
tasks, such as visualization, node classification, and link
prediction. The link prediction task can be achieved by directly
defining the likelihood of a link as the similarity of two nodes’
embedded features or using other complex classifiers, e.g.,
linear regression or deep neural networks. We selected two
classical factorization-based methods: NNFM, SPC, and a
recently developed method GLEE.

• Machine learning: Machine learning (ML) is a growing field of
pattern recognition algorithms that are trained on a given set of
input data to make predictions based on the extracted patterns.
Deep learning (DL) is a branch ofmachine learning composed of
multi-layered neural network models. The recent success of
deep neural networks is due to their ability to extract complex
patterns in high-dimensional data by using non-linear functions.
Graph neural networks (GNNs) are designed for learning over a
graph. The graph convolution layers of the GNN are used to
extract local substructure features for each node, and the graph
aggregation layer aggregates node-level features into a graph-
level feature vector16. These methods can learn parameters
describing the general graph structural features andmay include
both node and connectivity features, showing promising
performance in many network types56. We used two methods
developed by ourselves (i.e., cGAN and DNN+node2vec), and
two existingmethods (SkipGNN and SEAL). The initial version of
the cGAN (conditional generative adversarial network) method
also utilizes features extracted via node2vec, which is a popular
algorithmic framework for representational learning on graphs.
The later refined version, cGAN2 relies solely on raw topological
data57. Both SkipGNN and SEAL are GNN-based methods.
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• Diffusion-based methods: These methods use techniques based
on the analysis of the information gleaned from diffusion
(typically from a random walker) over the network. We selected
three widely used methods ACT, SimRank and RWR; and two
additional methods developed by ourselves DNN+node2vec
and RW2.

Details on the selected methods can be found in the SI. We note
that most of the selected methods do not have hyperparameters. For
those methods having hyperparameters (e.g., SEAL), we used their
default or custom values without hyperparameter tuning. All surveyed
methods use network (connectivity) information, while only a few (i.e.,
MPS(B&T), SEAL, RW2) incorporate information on protein sequence
information.

Performance metrics
We assessed the performance of each protein interaction prediction
method using four metrics: Area Under the Receiver Operating Char-
acteristic (ROC) curve (AUROC), AreaUnder the Precision-Recall Curve
(AUPRC), Precision of the top-500 predicted PPIs (P@500), and Nor-
malized Discounted Cumulative Gain (NDCG). Notice that we included
AUROC since it is widely used in the link prediction literature28–32

despite the fact that previous studies pointed out that AUROC is not a
good performance metric for highly imbalanced data26,27. As the total
number ofPPIs forC. elegans and S. cerevisiae is less than 5000, the test
PPIs in 10-fold cross-validation is less than 500, which means that the
maximum P@500 is not 1. Given that the interactomes considered
here are expected to be sparse, the number of true positive (i.e.,
existence) links will be dwarfed by the number of true negative (i.e.,
non-existent) links. In the literature, data imbalance is addressed by
randomly selecting the same number of negative links to obtain a
balanced validation list. Considering that we have also chosen three
other metrics that can be used to quantify the classification methods
and that are more robust to imbalanced data, we still reported the
AUROC on the original imbalanced data.

Since the absolute values of AUROC and NDCG could be much
larger than AUPRC and P@500, the values of AUPRC, P@500, and
NDCG were each separately transformed into z-scores so that they
have the same distribution, with mean value of 0 and standard devia-
tion of 1. To compute a combined score that summarizes the perfor-
mance of eachmethod using the different evaluationmetrics, we used
the sum of the three z-scores, which is defined as:

score= zAUPRC + zP@500 + zNDCG ð1Þ

Evaluation strategy
To validate the methods, we applied two strategies: computational
validation and experimental validation. Computational validation
refers to a computational assessment of the 26 methods using the
aforementioned performance metrics. Experimental validation evalu-
ates the top-seven methods (criteria for the selection of which are
described below) according to their rank in the computational vali-
dationby applyingwet laboratory experiments on their predicted PPIs.

Computational validation
For each of the 26 methods, we performed computational validation
using the 10-fold cross-validation approach. We randomly split the
observed link set E into 10 subsets. For each iteration, one subset is
selected as the probe set EP and links in this subset are removed from
thenetwork. Links in the remainingnine subsets constitute the training
set ET and form the residual network. Note that somemethods model
both existing and non-existing links in training. For thesemethods, we
added to the training set negative (non-existing) links generated by
using balanced randomsampling58,59. To compare differentmethods in

a systematic way, we computed the aforementioned performance
metrics considering the test set as the union of the probe set EP and all
the non-existing links not in the training set.

Selection of the top-seven methods in human PPI prediction
Based on the results of the computational validation in the human
PPI prediction, we selected the top-seven methods as follows. First,
we ranked the 26 methods based on their combined z-scores, and
focused on the top-10 methods: MPS(T), RNM, MPS(B&T), cGAN,
SEAL, SBM, SkipGNN, CN, AA, and DNN+ node2vec. L338 is already
integrated in RNM, therefore it was not selected. Second, among the
top-10 methods, we found that the top-6 methods (MPS(T), RNM,
MPS(B&T), cGAN, SEAL, and SBM) have much higher combined
z-scores than other methods, suggesting their superior performance
over other methods. These six methods were selected for experi-
mental validation. Finally, among the other four methods (SkipGNN,
CN, AA, and DNN+ node2vec), we found that their combined
z-scores (as well as their AUPRC and NDCG) are quite close to each
other. Considering the practical use case of PPI prediction methods,
the P@500 metric might be the best performance measurement to
estimate the applicability of a method in the real world, where only a
portion of the predictions with the highest confidence scores will be
experimentally evaluated. We selected DNN + node2vec as the
seventh method to be validated experimentally, because its P@500
is much higher than that of the other three methods. Note that, we
upgraded the RepGSP1 to RepGSP2, cGAN1 to cGAN2 after experi-
mental validation, therefore RepGSP2 and cGAN2 were not selected
though their performance is superior. For each of the selected seven
methods (MPS(T), RNM, MPS(B&T), cGAN, SEAL, SBM, and DNN +
node2vec), we validated its top-500 predicted PPIs based on the
whole human interactome.

Experimental validation
The union of the top-500 human PPIs predicted by the top-seven
methods includes 3276 unique protein pairs. In addition, to bench-
mark the performance of the experiment, we tested a set of high-
confidencebinary PPIs curated from the published literature (PRS) and
a set of pairs selected at random from the search space (RRS) (see
Supplementary 9 for their recovery rate). We systematically tested
those protein pairs by performing three complementary yeast two-
hybrid (Y2H) assays. Briefly, 5 μl of glycerol stocks of Y8930:DB-ORF
and Y8800:AD-ORF haploid strains were picked from the hORFeome
collection into 200 μl of selective media (Synthetic Complete media
without Leucine [SC-Leu] or Synthetic Complete media without
Tryptophan [SC-Trp], respectively) and arrayed to generate the pairs
to be tested. After overnight growth, 5 μl of Y8930:DB-ORF and 5 μl of
Y8800:AD-ORF culture were transferred into YEPD (Yeast Extract
PeptoneDextrose). After incubating overnight at 30 °C to allowmating
to occur, 10 μl of yeast culture was transferred into 120 μl SC-Leu-Trp
media to allow for selection of diploid yeast cells. The next day, diploid
yeast cultures were spotted on Synthetic Complete media without
leucine, tryptophan and histidine with 1mM 3-Amino-1,2,4-triazole
(SC-Leu-Trp-His+1mM 3AT) to test for interactions and SC-Leu-His
+1mM 3AT supplemented with either 1mg/L cycloheximide (CHX) for
assay version 1 or 10mg/L for assay versions 2 and 3 to test for auto-
activation. After 72 h incubation at 30 °C, diploid cells that grew on SC-
Leu-Trp-His+3ATmedia but not on SC-Leu-His+3AT +CHXmedia were
scored positive. If a pair had a similar or higher frequency of yeast
colonies on the CHX plate compared to the test plate, then it was
scored as a spontaneous auto-activator (AA). Cases showing con-
tamination orwherenodiploid yeastwere spotted (for example due to
a pipetting failure), were reported as “not-tested”. Experiments were
only considered complete where both controls performed as expec-
ted. Plasmid details are described in ref. 4 and http://www.interactome-
atlas.org.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data are available at https://github.com/spxuw/PPI-Prediction-
Project. Source data are provided with this paper.

Code availability
All data, Python andMatlab scripts developed by authors are available
at https://github.com/spxuw/PPI-Prediction-Project or under Zenodo
at https://doi.org/10.5281/zenodo.768181760, where the links to all
other publicly available methods are also provided.

References
1. Vidal, M., Cusick, M. E. & Barabási, A.-L. Interactome networks and

human disease. Cell 144, 986–998 (2011).
2. Rolland, T. et al. A proteome-scale map of the human interactome

network. Cell 159, 1212–1226 (2014).
3. Menche, J. et al. Uncovering disease-disease relationships through

the incomplete interactome. Science 347, 1257601 (2015).
4. Luck, K. et al. A reference map of the human binary protein inter-

actome. Nature 580, 402–408 (2020).
5. Keskin, O., Tuncbag, N. & Gursoy, A. Predicting protein–protein

interactions from the molecular to the proteome level. Chem. Rev.
116, 4884–4909 (2016).

6. Szilagyi, A., Grimm, V., Arakaki, A. K. & Skolnick, J. Prediction of
physical protein–protein interactions. Phys. Biol. 2, S1 (2005).

7. Albert, I. & Albert, R. Conserved network motifs allow
protein–protein interaction prediction. Bioinformatics 20,
3346–3352 (2004).

8. Wang, X.-W., Chen, Y. & Liu, Y.-Y. Link prediction through deep
generative model. iScience 23, 101626 (2020).

9. Schoenrock, A. et al. Efficient prediction of human protein-protein
interactions at a global scale. BMC Bioinform. 15, 383 (2014).

10. Kumar, A., Singh, S. S., Singh, K. & Biswas, B. Link prediction tech-
niques, applications, and performance: A survey. Phys. Stat. Mech.
Appl. 553, 124289 (2020).

11. Martínez, V., Berzal, F. & Cubero, J.-C. A survey of link prediction in
complex networks. ACM Comput. Surv. 49, 1–33 (2017).

12. Zahiri, J., Hannon Bozorgmehr, J. & Masoudi-Nejad, A. Computa-
tional prediction of protein–protein interaction networks: algo-
rithms and resources. Curr. Genomics 14, 397–414 (2013).

13. Valencia, A. & Pazos, F. Computational methods for the prediction
of protein interactions. Curr. Opin. Struct. Biol. 12, 368–373 (2002).

14. Rao, V. S., Srinivas, K., Sujini, G. N. & Kumar, G. N. Protein-protein
interaction detection: methods and analysis. Int. J. Proteom. 2014,
147648 (2014).

15. Lü, L. & Zhou, T. Link prediction in complex networks: a survey.
Phys. Stat. Mech. Appl. 390, 1150–1170 (2011).

16. Zhang, M. & Chen, Y. Link prediction based on graph neural net-
works. In Proc. International Conference on Neural Information
Processing 5171–5181 (Curran Associates Inc., 2018).

17. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: pre-
dicting molecular interactions with skip-graph networks. Sci. Rep.
10, 21092 (2020).

18. Loscalzo, J. Network Medicine (Harvard University Press, 2017).
19. Arabidopsis Interactome Mapping Consortium. Evidence for net-

work evolution in an Arabidopsis interactome map. Science 333,
601–607 (2011).

20. Simonis, N. et al. Empirically-controlled mapping of the Cae-
norhabditis elegans protein-protein interactome network. Nat.
Methods 6, 47–54 (2009).

21. Schwikowski, B., Uetz, P. & Fields, S. A network of protein–protein
interactions in yeast. Nat. Biotechnol. 18, 1257–1261 (2000).

22. Franceschini, A. et al. STRING v9. 1: protein-protein interaction
networks, with increased coverage and integration. Nucleic Acids
Res. 41, D808–D815 (2012).

23. Stark,C. et al. BioGRID: a general repository for interaction datasets.
Nucleic Acids Res. 34, D535–D539 (2006).

24. Stumpf, M. P. et al. Estimating the size of the human interactome.
Proc. Natl Acad. Sci. 105, 6959–6964 (2008).

25. Venkatesan, K. et al. An empirical framework for binary interactome
mapping. Nat. Methods 6, 83–90 (2009).

26. Saito, T. & Rehmsmeier, M. The precision-recall plot is more infor-
mative than the ROC plot when evaluating binary classifiers on
imbalanced datasets. PLoS ONE 10, e0118432 (2015).

27. Ozenne, B., Subtil, F. & Maucort-Boulch, D. The precision–recall
curve overcame the optimism of the receiver operating character-
istic curve in rare diseases. J. Clin. Epidemiol. 68, 855–859 (2015).

28. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett.
27, 861–874 (2006).

29. Davis, J. & Goadrich, M. The relationship between Precision-Recall
and ROC curves. In Proc. 23rd International Conference onMachine
Learning, 2006; Pittsburgh, Pennsylvania (eds Cohen, W. W. &
Moore, A.) 233–240 (ACM Press, 2006).

30. Yang, Y., Lichtenwalter, R. N. & Chawla, N. V. Evaluating link pre-
diction methods. Knowl. Inf. Syst. 45, 751–782 (2015).

31. Clauset, A., Moore, C. & Newman, M. E. Hierarchical structure and
the prediction of missing links in networks. Nature 453,
98–101 (2008).

32. Liu, W. & Lü, L. Link prediction based on local random walk. EPL
Europhys. Lett. 89, 58007 (2010).

33. Lü, L., Pan, L., Zhou, T., Zhang, Y.-C. & Stanley, H. E. Toward link
predictability of complex networks. Proc. Natl Acad. Sci. 112,
2325–2330 (2015).

34. Gleiser, P. M. & Danon, L. Community structure in jazz. Adv. Com-
plex Syst. 6, 565–573 (2003).

35. Newman, M. E. Finding community structure in networks using the
eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006).

36. Vázquez, A., Flammini, A., Maritan, A. & Vespignani, A. Modeling of
protein interaction networks. Complexus 1, 38–44 (2003).

37. Hart, G. T., Ramani, A. K. & Marcotte, E. M. How complete are cur-
rent yeast and human protein-interaction networks? Genome Biol.
7, 1–9 (2006).

38. Kovács, I. A. et al. Network-based prediction of protein interactions.
Nat. Commun. 10, 1240 (2019).

39. Ghasemian, A., Hosseinmardi, H., Galstyan, A., Airoldi, E. M. &
Clauset, A. Stacking models for nearly optimal link prediction
in complex networks. Proc. Natl Acad. Sci. 117, 23393–23400
(2020).

40. Dwork, C., Kumar, R., Naor, M., Sivakumar, D. Rank aggregation
methods for the web, In: Proc. 10th Int. Conf. on World Wide Web,
613–622 (Association for Computing Machinery, New York, NY,
USA, 2001). https://doi.org/10.1145/371920.372165.

41. Reilly, B. Social choice in the south seas: electoral innovation and
theBorda count in thepacific islandcountries. Int. Polit. Sci. Rev.23,
355–372 (2002).

42. Zitnik, M. & Leskovec, J. Prioritizing network communities. Nat.
Commun. 9, 1–9 (2018).

43. Gillis, J., Ballouz, S. & Pavlidis, P. Bias tradeoffs in the creation and
analysis of protein–protein interaction networks. J. Proteom. 100,
44–54 (2014).

44. Smits, A. H. & Vermeulen, M. Characterizing protein–protein inter-
actions using mass spectrometry: challenges and opportunities.
Trends Biotechnol. 34, 825–834 (2016).

45. Guo, Y., Yu, L., Wen, Z. & Li, M. Using support vector machine
combined with auto covariance to predict protein–protein interac-
tions from protein sequences. Nucleic Acids Res. 36, 3025–3030
(2008).

Article https://doi.org/10.1038/s41467-023-37079-7

Nature Communications |         (2023) 14:1582 12

https://github.com/spxuw/PPI-Prediction-Project
https://github.com/spxuw/PPI-Prediction-Project
https://github.com/spxuw/PPI-Prediction-Project
https://doi.org/10.5281/zenodo.7681817
https://doi.org/10.1145/371920.372165


46. You, Z.-H. et al. Detecting protein-protein interactions with a novel
matrix-based protein sequence representation and support vector
machines. BioMed. Res. Int. 2015, 1–9 (2015).

47. Zhang, S.-W., Hao, L.-Y. & Zhang, T.-H. Prediction of protein–protein
interaction with pairwise kernel support vector machine. Int. J. Mol.
Sci. 15, 3220–3233 (2014).

48. Sun, T., Zhou, B., Lai, L. & Pei, J. Sequence-based prediction of
protein protein interaction using a deep-learning algorithm. BMC
Bioinform. 18, 277 (2017).

49. Yu, B., Chen, C., Wang, X., Yu, Z., Ma, A. & Liu, B. Prediction of
protein–protein interactions based on elastic net and deep forest.
Expert Systems with Applications. 176, 114876 (2021).

50. You, Z. H., Li, X., & Chan, K. C. An improved sequence-based pre-
diction protocol for protein-protein interactions using amino acids
substitution matrix and rotation forest ensemble classifiers. Neu-
rocomputing 228, 277–282 (2017).

51. Kong, M., Zhang, Y., Xu, D., Chen, W. & Dehmer, M. FCTP-WSRC:
protein–protein interactions prediction via weighted sparse repre-
sentation based classification. Front. Genet. 11, 18 (2020).

52. Hashemifar, S., Neyshabur, B., Khan, A. A. & Xu, J. Predicting
protein–protein interactions through sequence-based deep learn-
ing. Bioinformatics 34, i802–i810 (2018).

53. Gainza, P. et al. Deciphering interaction fingerprints from protein
molecular surfaces using geometric deep learning. Nat. Methods
17, 184–192 (2020).

54. Chen, K.-H., Wang, T.-F. & Hu, Y.-J. Protein-protein interaction pre-
diction using a hybrid feature representation and a stacked gen-
eralization scheme. BMC Bioinform. 20, 1–17 (2019).

55. Jumper, J. et al. Highly accurate protein structure prediction with
AlphaFold. Nature 596, 583–589 (2021).

56. Zhang, M., Li, P., Xia, Y., Wang, K. & Jin, L. Labeling trick: A theory
of using graph neural networks for multi-node representation
learning. Adv. in Neural Inf. Processing Syst. 34, 9061–9073
(2021).

57. Balogh, O. M. et al. Efficient link prediction in the protein–protein
interaction network using topological information in a generative
adversarial network machine learning model. BMC Bioinform. 23,
78 (2022).

58. Yu, J. et al. Simple sequence-based kernels do not predict
protein–protein interactions. Bioinformatics 26,
2610–2614 (2010).

59. Park, Y. & Marcotte, E. M. Revisiting the negative example sampling
problem for predicting protein–protein interactions. Bioinformatics
27, 3024–3028 (2011).

60. Wang, X.-W. spxuw/PPI-prediction: v1.0. https://doi.org/10.5281/
zenodo.7681817 (2023).

61. Newman, M. E. Clustering and preferential attachment in growing
networks. Phys. Rev. E 64, 025102 (2001).

62. Zhou, T., Lü, L. & Zhang, Y.-C. Predicting missing links via local
information. Eur. Phys. J. B 71, 623–630 (2009).

63. Barabâsi, A.-L. et al. Evolution of the social network of scientific
collaborations. Phys. Stat. Mech. Appl. 311, 590–614 (2002).

64. Jaccard, P. Distribution de la flore alpine dans le bassin des Dranses
et dans quelques régions voisines. Bull. Soc. Vaud. Sci. Nat. 37,
241–272 (1901).

65. Adamic, L. A. & Adar, E. Friends and neighbors on the web. Soc.
Netw. 25, 211–230 (2003).

66. Katz, L. A new status index derived from sociometric analysis. Psy-
chometrika 18, 39–43 (1953).

67. Chen, Y., Wang, W., Liu, J., Feng, J. & Gong, X. Protein interface
complementarity and gene duplication improve link prediction of
protein-protein interaction network. Front. Genet. 11, 291 (2020).

68. Becchetti, L., Fazzone, A. &Martini, L. Network and sequence-based
prediction of protein-protein interactions. Preprint at https://arxiv.
org/abs/2107.03694 (2021).

69. Cannistraci, C. V., Alanis-Lobato,G. &Ravasi, T. From link-prediction
in brain connectomes and protein interactomes to the local-
community-paradigm in complex networks. Sci. Rep. 3, 1–14 (2013).

70. Guimerà, R.&Sales-Pardo,M.Missing and spurious interactions and
the reconstruction of complex networks. Proc. Natl Acad. Sci. 106,
22073–22078 (2009).

71. Colonnese, S., Petti, M., Farina, L., Scarano, G. & Cuomo, F. Protein-
protein interaction prediction via graph signal processing. IEEE
Access 9, 142681–142692 (2021).

72. Colonnese, S., Di Lorenzo, P., Cattai, T., Scarano,G. & Fallani, F. D. V.
A joint Markov model for communities, connectivity and signals
definedover graphs. IEEESignal Process. Lett.27, 1160–1164 (2020).

73. Tremblay, N. & Borgnat, P. Graph wavelets for multiscale commu-
nity mining. IEEE Trans. Signal Process 62, 5227–5239 (2014).

74. Wu, Z. & Chen, Y. Link prediction using matrix factorization with
bagging. In: 2016 IEEE/ACIS 15th Int. Conf. on Computer and Infor-
mation Science (ICIS) (ed. Uehara, K.) 1–6 (IEEE, 2016).

75. Torres, L., Chan, K. S. & Eliassi-Rad, T. GLEE: geometric Laplacian
eigenmap embedding. J. Complex Netw. 8, cnaa007 (2020).

76. Symeonidis, P. &Mantas, N. Spectral clustering for link prediction in
social networks with positive and negative links. Soc. Netw. Anal.
Min. 3, 1433–1447 (2013).

77. Tong,H., Faloutsos,C. &Pan, J. Fast randomwalkwith restart and its
applications. In: Proc. Sixth International Conference on DataMining
(ICDM’06) (eds. Clifton, C.W., Zhong, N., Liu, J.,Wah, B.W. &Wu,X.)
613–622 (IEEE, 2006).

78. Jeh, G. & Widom, J. Simrank: a measure of structural-context simi-
larity. In: Proc. 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining 538–543 (2002).

79. Grover, A. & Leskovec, J. node2vec. In Proceedings of the 22ndACM
SIGKDD The International Conference on Knowledge Discovery and
Data Mining, 855–864 (ACM, New York, NY, USA, 2016).

80. Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. Self-
normalizing neural networks. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems,
pp. 972–981 (2017).

81. Madeddu, L., Stilo,G. &Velardi, P. A feature-learning-basedmethod
for the disease-gene prediction problem. Int. J. Data Min. Bioinform.
24, 16–37 (2020).

82. Diez, D., Hutchins, A. P. & Miranda-Saavedra, D. Systematic identi-
fication of transcriptional regulatory modules from protein–protein
interaction networks. Nucleic Acids Res. 42, e6 (2014).

Acknowledgements
L.M., A.F., and L.B. were partially supported by the ERC Advanced Grant
788893 AMDROMA “Algorithmic and Mechanism Design Research in
Online Markets”, the EC H2020RIA project “SoBigData++” (871042), and
the MIUR PRIN project ALGADIMAR “Algorithms, Games, and Digital
Markets”. F.L. was supported by a Wallonia-Brussels International (WBI)-
World Excellence Fellowship, a Fonds de la Recherche Scientifique
(FRS-FNRS)-Télévie Grant (FC31747, Crédit no. 7459421F), a Herman-van
Beneden Prize and a Léon Frédéricq Foundation-Josée & Jean Schmets
Prize. M.V. is a Chercheur Qualifié Honoraire from the Fonds de la
Recherche Scientifique (FRS-FNRS, Wallonia-Brussels Federation, Bel-
gium). M.V acknowledges support from the National Institute of Health
(R01GM130885). P.F. andB.Á.were supportedby theNational Research,
Development and InnovationOffice of Hungary (National Heart Program
NVKP 16-1-2016-0017) and the Thematic Excellence Programme (2020-
4.1.1.-TKP2020) of the Ministry for Innovation and Technology in Hun-
gary, within the framework of the Therapeutic Development and Bioi-
maging thematicprogrammesof theSemmelweisUniversity. Project no.
RRF-2.3.1-21-2022-00003 has been implemented with the support pro-
vided by the European Union. JL acknowledges support from the
National Institutes of Health (R01 HL155107, R01 HL155096, U01
HG007690, and U54 HL119145); and from the American Heart

Article https://doi.org/10.1038/s41467-023-37079-7

Nature Communications |         (2023) 14:1582 13

https://doi.org/10.5281/zenodo.7681817
https://doi.org/10.5281/zenodo.7681817
https://arxiv.org/abs/2107.03694
https://arxiv.org/abs/2107.03694


Association (D700382 and CV-19). A-LB is supported by the Veteran’s
Affairs Medical Center of Boston Contract #36C24122N0769, the NIH
grant #1P01HL132825 And the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 810115 –

DYNASNET. Y.-Y.L. acknowledges grants from National Institutes of
Health (R01AI141529, R01HD093761, RF1AG067744, UH3OD023268,
U19AI095219, and U01HL089856).

Author contributions
Y.-Y.L. and P.V. conceived and designed the project. L.M., A.F. and L.B.
developed and tested the MPS(T) and MPS(B&T) methods. T.W. and I.K.
developed and tested the RNM method. O.M.B., B.B., M.P., B.Á., and P.F.
developed and tested the cGAN method. L.V. and J.M. developed and
tested the DNN+node2vec method. S.C., M.P., G.S., and F.C. developed
and tested the RepGSP method. L.M. tested the RW method. X.-W.W.
tested the other 19 methods. K.S., T.H., F.L., L.W., J.-C.T., and M.A.C. con-
ducted the experimental validations. X.-W.W., L.M., P.V. and Y.-Y.L. ana-
lyzed the results. X.-W.W. and Y.-Y.L. wrote themanuscript with assistance
fromL.M., P.V., and K.S., L.B., I.K., B.Á., L.V., S.C., M.A.C., A.-L.B., E.K.S., and
J.L. edited the manuscript. All authors approved the final manuscript.

Competing interests
PF is the founder and CEO of Pharmahungary Group, a group of R&D
companies. EKS has received institutional grant support from Bayer and
GlaxoSimthKline. A-LB is co-scientific founder of and is supported by
Scipher Medicine, Inc., which applies network medicine strategies to
biomarker development and personalized drug selection, and is the
founder of Naring Inc., which applies data science to health and nutri-
tion. The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-37079-7.

Correspondence and requests for materials should be addressed to
Paola Velardi or Yang-Yu Liu.

Peer review information Nature Communications thanks Bing Zhang
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

1Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA.
2Translational andPrecisionMedicine Department SapienzaUniversity of Rome, Rome, Italy. 3Center for Cancer SystemsBiology (CCSB), Dana-Farber Cancer
Institute, Boston, MA 02215, USA. 4Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA. 5Department of Cancer
Biology,Dana-FarberCancer Institute, Boston,MA02215, USA. 6Department of Computer,Control, andManagement Engineering “AntonioRubert”, Sapienza
University of Rome, Rome, Italy. 7CENTAI Institute, Turin, Italy. 8Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA.
9Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA. 10Cardiometabolic and MTA-SE System Pharmacology
Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary. 11Pharmahungary Group, 6722
Szeged, Hungary. 12CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. 13Department of Structural and
Computational Biology,MaxPerutz Labs, University of Vienna, Vienna, Austria. 14FacultyofMathematics, University of Vienna, Vienna, Austria. 15Department of
Information Engineering, Electronics, and Telecommunications (DIET), University of Rome “Sapienza”, Rome, Italy. 16Laboratory of Molecular and Cellular
Epigenetic, GIGA Institute, University of Liège, Liège, Belgium. 17Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium. 18TERRA
Teaching and Research Centre, University of Liège, Gembloux, Belgium. 19Department of Medicine, Brigham and Women’s Hospital and Harvard Medical
School, Boston, MA 02115, USA. 20Department of General Internal Medicine and Primary Care, Brigham and Women’s Hospital, Boston, MA 02115, USA.
21Network Science Institute and Department of Physics, Northeastern University, Boston, MA02115, USA. 22Department of Network and Data Science, Central
European University, Budapest H-1051, Hungary. 23Center for Artificial Intelligence andModeling, The Carl R.Woese Institute for Genomic Biology, University
of Illinois at Urbana-Champaign, Champaign, IL 61801, USA. e-mail: velardi@di.uniroma1.it; yyl@channing.harvard.edu

Article https://doi.org/10.1038/s41467-023-37079-7

Nature Communications |         (2023) 14:1582 14

https://doi.org/10.1038/s41467-023-37079-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:velardi@di.uniroma1.it
mailto:yyl@channing.harvard.edu

	Assessment of community efforts to advance network-based prediction of protein–protein interactions
	Results
	Correlations between different performance metrics
	Predictability of interactomes is weak
	Performances of most PPI prediction methods vary considerably across different interactomes
	Traditional similarity-based methods do not perform well
	There are six consistently high-performing methods
	Stacking models do not perform significantly better than individual methods within each interactome
	Patterns of predicted PPIs
	Performance of prediction methods in experimental validation
	Combining predictions from the top three methods does not yield better precision
	Structural and functional relationships of the validated and previously uncharacterized human PPIs

	Discussion
	Methods
	The INMC protein–protein interaction prediction project
	PPI prediction methods
	Performance metrics
	Evaluation strategy
	Computational validation
	Selection of the top-seven methods in human PPI prediction
	Experimental validation
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




