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Abstract: Incalculable numbers of patients in hospitals as a result of COVID-19 made the screen-
ing of heart patients arduous. Patients who need regular heart monitoring were affected the most.
Telecardiology is used for regular remote heart monitoring of such patients. However, the resultant
huge electrocardiogram (ECG) data obtained through regular monitoring affects available storage
space and transmission bandwidth. These signals can take less space if stored or sent in a com-
pressed form. To recover them at the receiver end, they are decompressed. We have combined
telecardiology with automatic ECG arrhythmia classification using CNN and proposed an algorithm
named TELecardiology using a Deep Convolution Neural Network (TELDCNN). Discrete cosine
transform (DCT), 16-bit quantization, and run length encoding (RLE) were used for compression,
and a convolution neural network (CNN) was applied for classification. The database was formed
by combining real-time signals (taken from a designed ECG device) with an online database from
Physionet. Four kinds of databases were considered and classified. The attained compression ratio
was 2.56, and the classification accuracies for compressed and decompressed databases were 0.966
and 0.990, respectively. Comparing the classification performance of compressed and decompressed
databases shows that the decompressed signals can classify the arrhythmias more appropriately than
their compressed-only form, although at the cost of increased computational time.

Keywords: electrocardiogram (ECG); telecardiology; Discrete Cosine Transform (DCT); Inverse
Discrete Cosine Transform (IDCT); convolution neural network (CNN); Arduino UNO

1. Introduction

There are many abnormal untimely human deaths due to cardiac arrest. It is the
biggest issue that needs to be managed now. The severity of the disease has increased to the
extent that not only people from remote areas with limited access to health care utilities are
affected, but also people living in urban areas with unhealthy lifestyles [1]. Apart from the
mentioned causes, the true motivation of this study is to address the effects of over-flooded
hospitals as a result of COVID-19 [2–4]. Many studies have shown the effects of COVID-19
on heart patients and vice versa. A heart patient is at the highest risk of infection, and
COVID-19 patients are at an elevated risk of heart attacks [5,6]. This makes a real-time
ECG acquisition device for sick and quarantined patients of utmost significance [7]. ECG
is the most reliable and most straightforward non-invasive technique to determine the
pathological condition of the heart. The graphical signals obtained through this consist of a
series of peaks and peak intervals, viz. P, Q, R, S, T, and PQ, QRS, ST, etc. A normal ECG
signal often termed normal sinus rhythm (NSR) has definite parameters, viz. amplitude
and duration preset for each peak and peak intervals, respectively [8]. Changes in any of
these fixed values lead to heart arrhythmia. Heart arrhythmia is the change in the heart’s
normal rhythm that, if endured, leads to for sudden cardiac death (SCD) [9]. Arrhythmias
can be categorized into two types: morphological, i.e., one irregular beat, and rhythmic,
i.e., set of irregular rhythms [10].
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Our heart is divided into two chambers—atrium and the ventricle. The arrhythmia
originating from the atrium chamber is called a supraventricular arrhythmia (SVA) as it
is above the ventricle chamber and includes several regular and life-threatening arrhyth-
mias [8]. One critical arrhythmia originating from the atrium is Atrial FIBrillation (AFIB).
It can be visually identified through the appearance of some fibrillatory waves instead of
P-waves. During AFIB, the heartbeat increases up to 175 bpm, resulting in heart failure
and atrial thrombosis [11]. Changes in this chamber disturb heart functioning and alter
the conduction process of the ventricle chamber [12]. It is in the ventricle chamber that
arrhythmias called ventricular arrhythmias (VA) occur. A patient suffering from ventricular
disease often experiences several premature beats before the regular beats. These beats
are termed ectopy beats. These beats affect the depolarization process of ventricles and
interrupt the blood pumping function. The beats can be either benign or malignant [13].
The malignant heart condition or malignant ventricular ectopy beat (MVE) is fatal as the
heart’s contraction may be responsible for SCD, but the benign ectopy beats are not severe.
All of these arrhythmias appear alone or in combination. A sample rhythm of all four
classes is shown below in Figure 1.

Figure 1. A set of four sample rhythms: (i) NSR, (ii) AFIB, (iii) MVE, and (iv) SVA (from databases).

By studying several ECG patterns and databases, we have discovered some gaps.
Firstly, the appearance of an arrhythmia cannot be tracked by short-time monitoring.
Secondly, one arrhythmia can appear in a combination of two or more. Thirdly, the
beat-by-beat classification can be replaced by database classification. Fourthly, correct
arrhythmia recognition requires a high resolution of the signals [14]. To fill the above
gaps here, a longer duration of signal is monitored from the same number of people
at different times in a day. The longer signals increase the volume of the data to be
transmitted, reducing the transmission efficiency too. The problem is intensified when
approx. 300 million ECG recordings need to be sent every year [14]. In this way, a
new dilemma of big data handling appears. These big data not only increase desired
transmission bandwidth and data rate but also increase the cost of sending it through
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wired or wireless channels [15]. The literature suggests that the best way to handle this
is through compression [16,17]. These signals are compressed at the sending end so that
more data can be sent utilizing the available fixed bandwidth and recovered through
decompression at the receiver end [18]. Researchers are already working toward finding a
good compression scheme and many techniques are already in use [16,17,19–23]. These
compression schemes are divided into lossy and lossless techniques. The lossy signals
take less space than the losses signals but often distort the signals [16]. These signals lose
their medical credibility and mislead the diagnostic process [24]. For this reason, lossless
techniques are used for medical signal processing. Lossless compression provides less
compression but could retain almost all essential diagnostic information. These schemes
are grouped into time domain and frequency domain compression. For telecardiology and
automated, computer-aided classification, the time domain features are often affected by
the noise present in the physical ECG signals [25]. These noises can be reduced, but the
uncertainty present in defining the boundaries of peaks and peak intervals may reduce the
usability of these methods [26]. Frequency-domain techniques such as Fourier transform
(FT), discrete Fourier transform (DFT), Discrete Cosine Transform (DCT) [27], and discrete
wavelet transform (DWT) [9,28–30] are used to transform the time domain signals into
the frequency domain. The ECG is a non-stationary signal, and FT cannot determine the
time of the occurrence of the frequency component [9]. It requires a constant window
size to locate all the frequency components, and this can be achieved through short-time
Fourier transform (STFT). Appropriate window size selection is quite difficult to address.
However, the WT can address the issue more appropriately by choosing a higher or lower
window size for the respective frequency signals of non-stationary ECG [31]. The wavelet
transforms work upon a suitable selection of mother wavelet according to the signal’s
shape, making the process complex.

In addition, WT is a lossy transform. DCT transform provides a lack of discontinuities
and keeps the input signal shape intact after transformation. It computes only real coef-
ficients [26]. It is an invertible process. The inverse of DCT, i.e., IDCT, can be applied for
inversion of the output usable at the practitioner end. Compression should be designed
in a way that it can balance the high compression ratio with the quality of rebuilding
of a signal. The DCT coefficients are quantized through the 16 bit quantization method.
This method assigns more bits to the significant coefficients and less to the non-significant
ones. This improves the resolution of the image. 16 bit quantization is generally used for
medical images where retention of diagnostic details is vital. After quantization, the signal
coefficients are run length encoded (RLE) and run length decoded (RLD) before IDCT.

Conventionally, Holter monitors are used for this purpose of real-time monitoring
but are expensive with an intricate setup to be used in rural scenarios [19]. Replacing this,
the rural areas may benefit from the myriad of wearable sensor innovations. For this, the
revolutionary Arduino microcontroller-based easy wearable sensors are being designed.
They are economical as well as easy to handle even by a novice. An ECG sensor Ad8232 is
an excellent choice because it is pre-implemented by various researchers and gives realistic
heart signals [32–35]. The signal obtained from the device can be stored for later processing
or sent for real-time monitoring.

The whole telecardiology system is designed based on the requirement of computer-
based automatic real-time remote ECG systems [36]. It is expected that such kinds of
systems can classify the signals on their own. Classifying different types of arrhythmia into
their appropriate cardiac condition is called classification [37].

The conventional classification process includes vigorous manual work, including
feature selection and feature extraction through machine learning algorithms [11]. To
avoid these shortcomings, the neural network (NN)-based deep learning (DL) can be
immensely utilized even for 1-D ECG signals. These models utilize many feature sets by
extracting and selecting intrinsic features from neurons on their own. The DLNN (deep
learning neural network) method works on layered architecture, and each layer contains a
certain number of neurons. Classification accuracy is directly proportional to the number
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of hidden layers, but comes with the cost of being overburdened by complexity and the
computations of the model. Keeping this in mind, the number of hidden layers should
be appropriate. Examples of some DL methods are artificial neural networks (ANN) [38],
convolution neural networks (CNN) [35,39,40], multilayer perceptron (MLP) [41], long
short-term memory (LSTM), deep belief networks (DBN), and recurrent neural networks
(RNN) [42]. The usual ANN has only two layers that limit accuracy. In the deep learning
ANN, the number of layers was increased for processing. It is based on gradient descent
back and forth propagation that adjusts weights. Deep ANN supports parallel processing
but has hardware dependency [38]. Even after the compression of signals, real-time devices
need more memory to store the data. For this purpose, CNN is recommended to be used
on such devices [43]. CNN works in a convolution window to extract the local features of
the input signal. This convolution matrix window scans the signal from left to right and
top to bottom. This is a non-varying translation, and CNN applies it to other segments
through pattern learning [38].

For classification purposes, we performed two experiments—one by classifying com-
pressed data only and the other by classifying decompressed data—to determine whether,
during automatic classification, the compressed signals would classify signals efficiently, as
decompression of signals increases the time, computation, and complexity of the model.
The resultant method with the highest accuracy will be suggested for telecardiology.

This study aims to nurture the area of telecardiology research by analyzing several
arrhythmia dataset types to put off SCDs. The process compresses and decompresses the
whole database and compares both for classification through a less complex CNN structure.
The CNN is feasible for classifying major databases that contain almost all the arrhythmias
in real time that can predict the onset of a heart attack. This paper has contributed to
various facets of real-time monitoring, which are summarized as follows:

1. A real-time ECG signal acquisition device was designed and developed. Additionally,
ECG signals were recorded from 18 volunteers. Thus, our database is based on
realistic signals.

2. Real ECG signals and online ECG signals were combined to form a new database.
3. A suitable form of a database for telecardiology was identified using DCT and IDCT

in combination through the deep learning classification method CNN.
4. The methodology also presents a suitable data augmentation technique for increasing

the data points in the database.

The designed algorithm TELDCNN is unique and has the potential use in telecardiol-
ogy architectures in real-time remote setups. To implement the designed algorithm, this
paper is organized as follows: The first section is the introduction; the second section is the
methodology of the proposed model that is providing details of the TELDCNN algorithm
and divided into subsections; the third section presents the result of the designed method-
ology; the fourth section presents a comparison of the results with the most prominent
findings from the literature; finally, the fifth section concludes the developed algorithm, its
findings, and its importance.

2. Materials and Methods

We first started with designing and developing a wearable heart sensor device using
Arduino UNO. The obtained real-time signals were compiled with downloaded signals
from open-source Physionet datasets on Kaggle’s online python programming environment.
An appropriate series of algorithms were planned to achieve the intended outcome. These
sequenced algorithms include filtering, compression, decompression, and classification.
The process individually classifies the datasets for compressed and decompressed signals
using deep CNN methodology. The designed TELDCNN model architecture is well
explained in Figure 2. A concise description of each building block of the proposed
architecture is given in the following subsections.
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Figure 2. Processing paradigm for TELDCNN.

2.1. Data Compilation

The data compilation step was added to form a new database that is a combination
of both real-time and online databases. The following subsection presents the process of
capturing real-time data implemented in this work.

2.1.1. Real-Time Setup

The home health monitoring system was designed using the portable Arduino Uno
microcontroller and the ECG sensor chip AD8232. The ECG chip, with three sensor patches
and connecting wires, captures the biopotential signals from the skin’s surface. The setup
of the proposed work is shown in Figure 3 given below.

Arduino UNO (R3) works on an ATmega328-based MCU, with a speed of 16 MHz,
a memory of 32 Kb, an operating frequency of170 µA (ultra-low frequency), a common-
mode rejection ratio of 80 dB with 100 times amplification factor and filters the signals
extracted. The pin-wise connections of Arduino UNO with the ECG sensor board AD8232
is visualized in Figure 4.
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Figure 3. Overview of our real-time smart wearable ECG acquisition setup.

Figure 4. Pin connection and electrode placement of AD8232.

Figure 4 shows the connections between the Arduino UNO unit and ECG sensor unit
AD8232. The connections articulate that the sensor patches attached to the Left Arm LA
(yellow wire), Right Arm RA (red wire), and Right Leg RL (green wire) provide heart
signals to the AD8232ECG sensor unit [10]. The AD8232 changes the collected heartbeat
into an analogue signal. The output is a noisy ECG signal that can be suppressed by the
AD8232 Single Lead Heart Rate Monitor. This works similar to an op-amp. This unit has a
total of six-pin outings out of which the output is given to A3 of Arduino UNO, GND is
connected to GND, 3.3 V connected to 3.3 V, LO− is connected to the pin no. 10 and LO+
to the 11 of Arduino UNO. Another pin SDN of the ECG sensor is left unconnected. The
output from Arduino UNO can be visualized on the processing IDE of the serial plotter.

2.1.2. Online Database

For the online database Physionet’s open source, the ECG database was downloaded.
Four arrhythmia databases viz. atrial fibrillation, supraventricular, malignant ventricular
ectopy beats, and normal sinus rhythms were considered. Specification of each database is
given in Table 1 below.

MIT-BIH-based ECG databases are the most credible open-source databases available
online. They follow the Association for the Advancement of Medical Instrumentation
(AAMI) standard for the labeling of the classes.
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Table 1. Database specification [44].

S.No. Databases Records Digitization
Resolution Duration Fs: Sampling

Frequency (Hz) Subjects Channels

[1] MIT-BIH Normal Sinus Rhythm 18 12 (bit/sample) 24 h ECG
recordings

Digitized at
128 Hz 18 2

[2] MIT-BIH Atrial Fibrillation (AF) 23 12 (bit/sample) 10 h ECG
recordings

Digitized at
250 Hz 23 2

[3] MIT-BIH Malignant Ventricular
Arrhythmia Database (MVE) 22 12 (bit/sample) half-hour ECG

recordings
Digitized at

250 Hz 16 2

[4] MIT-BIH Supraventricular
Arrhythmia Database (SVA) 78 10 (bit/sample) half-hour ECG

recordings
Digitized at

128 Hz N/A 2

2.2. Preprocessing

The preprocessing of the ECG signal database comprises filtration and compression.
The ECG signals are contaminated through various noises that are due to a number of
reasons such as contraction of muscles or movement of electrodes. Baseline wander, and
power-line interference are types of noise; of which, baseline wander is placed under
low-frequency noise and is related to baseline displacement. There are also high- or low-
frequency types. A combination of high- and low-pass filters is required to remove both
kinds of noise. The Butterworth bandpass filter (BBF) provides both, i.e., HPF (at 1 Hz) and
LPF (at 30 Hz), and improves the quality of the signal. A third-order BBF was used, which
can be mathematically defined by the following equation.

H(jw) =
1√

1 + ε2
(

w
wp

)2n
, n = 3 (1)

where n is the filter order, w is the angular gain and wp is the cut-off frequency. ′ε′ is the
maximum passband gain. Its value is 1 at −3dB corner point cutoff. Otherwise, it can be
calculated by the relation H1 = H0√

1+ε2.
, where H0 is the maximum pass band and H1 is the

minimum pass band gain. The process gives a de-noised real-time signal illustrated in the
results section.

A lossy compression codec methodology is applied to accomplish preprocessing of
the ECG signals after filtering, which is a combination of DCT, quantization, run length
encoding, run length decoding and IDCT. Figure 5 explains the compression codec process.

Figure 5. Compression codec of TELDCNN.
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DCT is a lossless, frequency domain-based predesigned compression algorithm that
has already been applied by many studies and performs remarkably. It is an orthogonal
Fourier transform-based technique that uses only positive components and can reduce re-
dundancy with its transform coefficients containing most signal information. It divides the
signal into N no. of subparts and computes DCT on them. After DCT computation, thresh-
olding and quantization of the transform coefficients are performed. The mathematical
representation of DCT can be explained through Equations (2) and (3):

X(n) =

√(
2

N

)
a(d)

N−1

∑
n=0

f (n) cos
[

Πd
2N

(2n + 1)
]

(2)

In the process, the ECG signal is divided into the non-overlapping blocks of size 8 × 8.
The basis of the ECG signals changes by computing the DCT of each block. To reduce the
size of the image, further quantization of the DCT coefficients is performed. Quantization is
the process of slicing the amplitude or intensity of the signal into the discrete level. To retain
the diagnostic details of the signal and to improve the resolution, a 16 bit quantization was
used. The idea behind this is to allocate more bits to the important coefficients. For this
purpose, a threshold value was used. The calculation of the threshold value was performed
through the following steps:

maxX = min(X(n));
maxX = max(X(n));

N = 16;
Stepsize = (maxX−minX)

2N ;

X(f) = X(n)
Stepsize ;

X(f) is the quantized DCT signal coefficient.
After quantization, lossless run length encoding of quantized DCT coefficients was

performed. X(f) is the input to the encoder. The encoding process was followed by the
decoding process applying the same phenomenon. The output of the decoded signal was
taken as X(d).

In the decompression phase, the inverse of DCT, i.e., IDCT, is applied and it is given by

f(n) =

√(
2

N

) N−1

∑
d=0

α(d) ∗ X(d)∗ cos
[

Πd
2N

(2n + 1)
]

(3)

where α(d) =

{
1√
2
, d = 0

1, f orK = 1, . . . ., N − 1
.

For IDCT, X(d) coefficients is the input, transforming them into f(n) back.
After this stage, we obtained two databases, i.e., a compressed signals database and a

decompressed signals database. These two databases contain four classes of arrhythmic
datasets. The compressed and decompressed outputs are illustrated in the results section.

2.3. Data Augmentation

A high volume of training data is required for classification through deep learning
algorithms. In the process of making the length of each database equal by reducing the
number of signals in each class and creating them equal to the signal having the lowest
length, the total available data volume was reduced. The data augmentation technique can
be used to increase the data points to be accessed for classification. Table 2 shows below
the duration of data before and after augmentation from each database class.
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Table 2. Illustration of data augmentation outcomes.

Dataset
Duration of Data before Augmentation Applied Duration of Augmented Data

TRAIN TEST VALIDATION TOTAL TRAIN TEST VALIDATION TOTAL

Atrial Fibrillation 863 s 108 s 94 s 1065 s 2849 s 359 s 320 s 3528 s
Malignant Ventricular

Ectopy 883 s 108 s 93 s 1084 s 2879 s 315 s 334 s 3528 s

Normal Sinus Rhythm 877 s 108 s 94 s 1079 s 2873 s 356 s 309 s 3538 s
Supraventricular

Arrhythmia 876 s 108 s 108 s 1092 s 2837 s 383 s 308 s 3528 s

TOTAL 3499 s 432 s 389 s 4320 s 11,438 s 1413 s 1271 s 14,122 s

The augmentation increases data artificially by up to 6-fold the original by generating
new data points [45] and reduces overfitting during classification. In the proposed work, a
sliding window technique was implemented that takes one-third of the previous recording
and remains from the following sample. In this work, the total duration of the original
data was 4320 s, and it becomes 14,122 s, i.e., more than 3-fold the original duration.
This whole database can now be finally divided into training, test, and validation signals
for classification.

2.4. CNN Structure and Parameter Detail

This section is regarding the elaboration of the deep CNN structure implied for the
proposed work. CNN mainly uses two operations, i.e., convolution and pooling, to reduce
the input image into its crucial features. These features are used for the classification of
input images into different classes. It is mostly made up of convolution, pooling, and
fully connected layers. First, a mask is created that moves through the input, and the
corresponding mask filter elements or weights are multiplied with the input pixels and
sum up the products. The process is repeated until all the values of an image are calculated.
Table 3 shows the layer-by-layer description of applied CNN.

Table 3. Designed CNN sequential model structure.

LAYER (TYPE) OUTPUT SHAPE PARAM#

Conv1d (Conv1D) (None, 82, 64) 384
Batch_normalization (None, 82, 64) 256
Max_pooling1d (MaxPooling1D) (None, 41, 64) 0
Conv1d_1 (Conv1D) (None, 13, 64) 20,544
Batch_normalization (None, 13, 64) 256
Max_pooling1d (MaxPooling1D) (None, 6, 64) 0
Dropout_6 (Dropout) (None, 6, 64) 0
Flatten (Flatten) (None, 384) 0
Dense_7 (Dense) (None, 512) 197,120
Dropout_7 (Dropout) (None, 512) 0
Dense_8 (Dense) (None, 4) 2052

Total Params: 220,612

Trainable Params: 220,356

Non-Trainable Params: 256

Table 3 above shows a two-layer CNN structure, where each layer consists of a
convolution, batch normalization and max pooling layer, respectively. Here, kernel size
was taken as 5, which is the size of the filter used for the input image and stride size was
taken as 3. With this size of the stride, the filter was advanced by three pixels at each step
of sliding over the input image and divides the image into fewer steps. The larger stride
sizes down sample the image quality. The batch normalization layer is used to reduce the
internal covariate shift of the network and works on mini-batches [45]. The max-pooling
layer used to generate new feature maps by taking the maximum values in the prescribed
region on the feature map attained from the last layer hence reduces the dimension again [9].
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The output from the first convolution layer is [none, 82, 64], whereas the output image
size of the second convolution layer is [none, 13, 64]. The output image size represents the
batch size, height, and width, respectively. The two-layer CNN structure is connected with
the flattened layer through a dropout layer. The dropout layer here is inserted to reduce
overfitting, and the flattened layer is inserted to change the output into a single column
matrix. The resultant features from the flattened layer are fed to a dense-connected neural
network layer of [512] nodes. Then, a dropout layer is again added.

By using the dropout technique, the random samples of the activations are made zero
and deleted. This makes the network only learn the features that increase classification
accuracy [9]. Finally, the last dense layer shows the number of output classes required. The
sigmoid function was used to predict the class to which the input test data belong. Loss
calculation was performed through categorical cross-entropy, and the adaptive moment
(ADAM) optimizer was implied. The ADAM optimizer is used for back propagation. It
only updates weights based on value and gradient during CNN training [46]. A total of
100 epochs were used during network training, and network weights were updated during
each epoch.

2.5. Performance Parameter Used

To determine the effectiveness of the designed algorithm, the proposed work utilizes
performance metrics such as MSE, PSNR, CR, accuracy, sensitivity, F-measure, and precision.
The formula for calculating all of these is given by Equations (4)–(11).

1. Peak Signal-To-Noise Ratio (PSNR) is used to compare image compression quality.
Mean Square Error (MSE) will be calculated. MSE is the cumulative squared error
between the compressed and the original image, which can be given by

MSE =
∑M,N [I1(m, n)− I2(m, n)]2

M ∗ N
(4)

PSNR is the ratio of signal power to noise power and is given using the value of MSE,
expressed in dB.

PSNR = 10log10

(
R2

MSE

)
(5)

2. The compression ratio (CR) is defined as the ratio of the number of bits required to
show an image before compression to the bits required after compression.

CR =
Xuncomp

XComp
(6)

where Xuncomp is with the uncompressed signal and Xcomp is the compressed output signal.

3. Accuracy is defined as the ratio of the number of correctly classified cases.

TP + TN
TP + FN + FP + FN

(7)

4. Sensitivity is also called recall. It gives the fraction of correctly predicted positive
samples out of the true-positive and false-negative samples within the class. It is a
true-positive rate [47].

TP
TP + FN

(8)

5. Specificity is defined as the capability of the model to calculate true-negative values
correctly identified within the class. It determines the number of true-negative-labeled
beats identified by the model.
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TN
FP + TN

(9)

6. F—measure—calculates the recall and precision metrics balance. It is beneficialto use
this in the case of imbalanced classes.

2× P × R
P + R

(10)

7. Precision is a measure of positive predictivity. It gives a ratio of the true positive
observations, and the total predicted positive samples. Higher values indicate a low
false-positive rate.

TP
TP + FP

(11)

3. Results

In this section, we present the outcomes from each building block described in the pro-
posed work’s opted methodology. According to the method, the foremost task is gathering
volunteers’ real-time signals. For this purpose, the design of the device has already been
discussed. Now, the following sub-section illustrates the real-time sample outputs.

3.1. Real-Time ECG Signals

The real-time signals taken from the designed setup consist of 1 min-long ECG rhythms
(from 18 volunteers). These people were in the age group of 24–47 years. All the received
signals have shown normal heart rhythm. A 780s long database was obtained. The CSV file
of each of the volunteers shows some 15,000 samples that include high-frequency noise
peaks also. The ECG graph plotted by readings shows 55 to 110 cycles per minute. That
means all the signals come under NSR. Figure 6 illustrates signal no.1 and signal no.2 out
of 18 signal files for 200 samples that make approximately one ECG signal cycle. Similarly,
Figure 6 shows 15,000 samples of signals 1 and 2.

Figure 6. First 200 samples from (i) signal 1 and (ii) signal 2.

It is evident from the above figures that our designed real-time device is working
perfectly and capturing ECG signals which the clinician also verifies. However, these
signals are contaminated through high-frequency and low-frequency noise, as visualized
in Figures 6 and 7. Both noises can be cleaned through the pre-explained Butterworth
bandpass filtering in the following sub-section.
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Figure 7. First 15,000 samples from (i) signal 1 and (ii) signal 2.

3.2. Filtered Signal Output

The filtered output of the applied BBF on the real-time ECG signal and its raw input
signal can be illustrated in Figure 8.

Figure 8. Illustration of sample raw and filtered signal from real-time database.

Figure 8ii is the sample output signal of the BBF. It shows that the BBF can eliminate
both high and low-frequency noise and make the valuable signal for further processing
and classification. The next step in the processing of the filtered signal is its compression;
the results of which are elaborated in the following sub-section.

3.3. Compression andDecompression Outcomes

After filtering, a series of operations viz. DCT, 16 bit quantization, run length encoding,
and run length decoding were applied to reduce the size of the signals. The compressed
form of the signals is sent to the receiver end, where the signals are decompressed by IDCT.
Here, we have shown in Figure 9 the DCT, quantized and IDCT sample signals from the
filtered data of the last stage.
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Figure 9. Sample signal representation of compressed and decompressed signals.

While comparing the output of Figure 8, i.e., the noiseless input signal of the DCT with
the final output of the IDCT, the visual difference between both the signals is significantly
less. Hence, the implied compression has not deteriorated the quality of the signal and
can be used for classification. A detailed explanation of both the techniques was given in
Section 2.2, i.e., ‘Preprocessing’.

By applying a 16 bit quantization on the DCT coefficients, the PSNR becomes 43.6 dB,
while the CR value obtained was 1:2.56.

3.4. Final Classification Result

The performance of the proposed algorithm was determined based on the ECG
database created through signals taken from real-time devices and the Physionet. All
the signals were re-sampled at a 250 Hz sampling frequency. The real-time signals are
mostly normal sinus rhythms added with the NSR Physionet database. All the databases are
compressed through DCT and then decompressed through IDCT. Now two new databases
were created, i.e., compressed and decompressed. A similar deep CNN classification algo-
rithm was applied on both individually. To evaluate the classification performance of the
designed CNN, both databases will be evaluated separately and then compare based on
performance factors. A confusion matrix for both compressed and decompressed databases,
respectively, is drawn in Figure 10.

Figure 10. Confusion matrixes for (i) the compressed database and (ii) the decompressed database.
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Using the above confusion matrix, parameters such as true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) can be calculated, which are Tp = 321,
FP = 45, FN = 38 and TN = 1009 for the compressed signal database and for the decom-
pressed signal database Tp = 348, FP = 15, FN = 11 and TN = 1026. The performance factors
of the database classification method were estimated based on these values. Table 4, shown
below, explains this using numeric values.

Table 4. Classification performance of the compressed signal and the decompressed signal database.

Performance Parameter Compressed Signal Decompressed Signal

Accuracy 0.966 0.990
Sensitivity 0.976 0.992
Specificity 0.957 0.988
Precision 0.955 0.988

f1 0.965 0.990

Consequently, Table 4 elaborates on the finding attained after the deep CNN was
applied to the compressed and decompressed signals. It shows 96.6% accuracy and 99%
accuracy, respectively. This indicates that the decompressed signals performed better
during telecardiology and classified the databases efficiently.

4. Discussion

It is clear from the above results that a deep CNN gives the highest possibility of
classifying the arrhythmia data class in the right cluster when applied to the decompressed
signal database. Table 5 shows the importance of the work in comparison to many existing
recent algorithms.

Table 5. Comparison of TELDCNN with other state-of-the-art algorithms.

Year Reference Methodology Dataset Type Accuracy Sensitivity F1 CR

2021 C.K. Jha et al. [16] Q-wavelet transform+SVM Decompressed 98.35% 95.77% NC 20.61

2021 G.Laudata et al. [48] 1 bit quantization compression
+Random Forest Classification Raw 0.94 0.945 0.969 NC

2020 J.S.Huang et al. [49] FCResNet-MOWPT+CNN Raw 8.79% 95.16 97.23 NC

2019 U. Erdenebayer
et al. [50] FDResNet Raw 93.54% 90.27 91.86 NC

2019 XC Cao et al. [51] 2D-CNN Raw 98.75% 95.12 96.76 NC
2016 A. Singh et al. [17] MMV approach Decompressed 73.2% NC NC 10%
2017 G. Da Poian et al. [11] Wavelet compression +SVM Decompressed 94.05% NC NC 75%
2021 Y. Cheng et al. [20] BSBLO+1D CNN Decompressed 98.21% NC 0.9812 20%

2020 S. Mian Qaisar
et al. [22] Rotation Forest + EDADC Decompressed 94.07% NC 0.941 2.6

2020 D.K. Atal et al. [23] MDC+DMG Decompressed 98.39% NC NC 4.55

2020 H. Makimoto
et al. [52] Lead reduction and CNN Decompressed 0.80 ± 0.06 0.88 ± 0.07 0.81 ± 0.05 FULL

2015 M.A.Escalona-Moranet al. [53] Reservoir Computing Raw 98.43%. 84.83% NC NC
2021 W. Li et al. [54] Compressed sensing +CNN Decompressed 99% 93.2% 0.9214 0.2
2022 ProposedAlgoirthmTELDCNN DCT + IDCT +CNN Decompressed 0.990 0.992 0.99 2.56

MOWPT-maximal overlap wavelet packet transform, MMV—Multiple measurement vector, SVM—Support
Vector Machine, BSBLO—Block Sparse Bayesian Learning with Bound-Optimization, EDADC—event-driven
analog to digital converters, MDC—Modified Dynamic Classification, and DMG—Dictionary Matrix Generation.

The Q-wavelet-based method in [9] has less CR with less accuracy and sensitivity
of classification through machine learning-based algorithm SVM. The machine learning-
based algorithms are lengthy and not automatic as they depend upon manual ECG feature
extraction and selection process. A random forest-based classification was performed in [23]
for the signals compressed through the 1 bit quantization compression technique. It attained
0.94 accuracy, which is lower than our compressed classification output. Similarly, other
methods such as MOWPT compression, FDResNet, 2D-CNN, multiple measurement vector
(MMV) were accessed to compare the results obtained through the designed algorithm.

This shows that the designed TELDCNN algorithm is unique and supportive in
developing telecardiology.
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5. Conclusions

The methodology was designed to benefit the many people who cannot access expen-
sive health care services and are in remote areas. This makes the telecardiology system
prompt and efficient. To realize this system, ECG acquisition and processing techniques
are combined with the goal of arrhythmia recognition. The designed system includes a
low-power and a low-cost handheld ECG recording device. The developed device helped
to take real-time signals from volunteers. A combination of open-source and real-time
databases are used to determine the classification performance of compressed and de-
compressed signals. For compression DCT, 16 bit quantization, RLE, decompression, and
IDCT were applied, resulting in a compression ratio of 2.56. The algorithm compares the
classification performance for both. It was evident from the results that the designed CNN
structure classifies the decompressed signal dataset with 99% and the compressed set with
96.6% accuracy. Though the computation in the later dataset is lower, the prior performance
is higher. Telecardiology requires reducing the redundant data present in the dataset to
improve the efficiency of real-time devices. It also decreases the required power, bandwidth,
storage, etc. Hence, we have obtained a TELDCNN algorithm for automatically classifying
decompressed data. In the future, this work will be extended by introducing cloud com-
puting for telecardiology. In future works, other mobile methodologies which aggregate
monitoring and mapping of the environment will be performed using Wall-Following,
Simultaneous Location and Mapping (SLAM) and Sensor Fusion techniques and can be
applied to the problem in question [55].
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