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Abstract

Background: Recent innovations in single-cell Assay for Transposase Accessible Chromatin using sequencing

(scATAC-seq) enable profiling of the epigenetic landscape of thousands of individual cells. scATAC-seq data analysis

presents unique methodological challenges. scATAC-seq experiments sample DNA, which, due to low copy

numbers (diploid in humans), lead to inherent data sparsity (1–10% of peaks detected per cell) compared to

transcriptomic (scRNA-seq) data (10–45% of expressed genes detected per cell). Such challenges in data generation

emphasize the need for informative features to assess cell heterogeneity at the chromatin level.

Results: We present a benchmarking framework that is applied to 10 computational methods for scATAC-seq on

13 synthetic and real datasets from different assays, profiling cell types from diverse tissues and organisms. Methods

for processing and featurizing scATAC-seq data were compared by their ability to discriminate cell types when

combined with common unsupervised clustering approaches. We rank evaluated methods and discuss

computational challenges associated with scATAC-seq analysis including inherently sparse data, determination of

features, peak calling, the effects of sequencing coverage and noise, and clustering performance. Running times

and memory requirements are also discussed.

Conclusions: This reference summary of scATAC-seq methods offers recommendations for best practices with

consideration for both the non-expert user and the methods developer. Despite variation across methods and

datasets, SnapATAC, Cusanovich2018, and cisTopic outperform other methods in separating cell populations of

different coverages and noise levels in both synthetic and real datasets. Notably, SnapATAC is the only method able

to analyze a large dataset (> 80,000 cells).

Keywords: scATAC-seq, Feature matrix, Benchmarking, Regulatory genomics, Clustering, Visualization, Featurization,

Dimensionality reduction

Background
Individual cell types within heterogenous tissues coord-

inate to perform complex biological functions, many of

which are not fully understood. Recent technological ad-

vances in single-cell methodologies have resulted in an

increased capacity to study cell-to-cell heterogeneity and

the underlying molecular regulatory programs that drive

such variation.

To date, most single-cell profiling efforts have been

performed via quantification of RNA by sequencing

(scRNA-seq). While this provides snapshots of inter-

and intra-cellular variability in gene expression, investi-

gation of the epigenomic landscape in single cells holds

great promise for uncovering an important component

of the regulatory logic of gene expression programs. En-

abled by advances in array-based technologies, droplet

microfluidics, and combinatorial indexing through split-

pooling [1] (Fig. 1a), single-cell Assay for Transposase

Accessible Chromatin using sequencing (scATAC-seq)

has recently overcome previous limitations of technology

and scale to generate chromatin accessibility data for

thousands of single cells in a relatively easy and cost-

effective manner.
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Fig. 1 Schematic overview of single-cell ATAC-seq assays and analysis steps. a Single-cell ATAC libraries are created from single cells that have

been exposed to the Tn5 transposase using one of the following three protocols: (1) Single cells are individually barcoded by a split-and-pool

approach where unique barcodes added at each step can be used to identify reads originating from each cell, (2) microfluidic droplet-based

technologies provided by 10X Genomics and BioRad are used to extract and label DNA from each cell, or (3) each single cell is deposited into a

multi-well plate or array from ICELL8 or Fluidigm C1 for library preparation. b After sequencing, the raw reads obtained in .fastq format for each

single cell are mapped to a reference genome, producing aligned reads in .bam format. Finally, peak calling and read counting return the

genomic position and the read count files in. bed and .txt format, respectively. Data in these file formats is then used for downstream analysis. c

ATAC-seq peaks in bulk samples can generally be recapitulated in aggregated single-cell samples, but not every single cell has a fragment at

every peak. A feature matrix can be constructed from single cells (e.g., by counting the number of reads at each peak for every cell). d Following

the construction of the feature matrix, common downstream analyses including visualization, clustering, trajectory inference, determination of

differential accessibility, and the prediction of cis-regulatory networks can be performed using the methods benchmarked in this manuscript
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However, the analysis of scATAC-seq data presents

methodological challenges distinct from those of single-

cell transcriptomic (scRNA-seq) data. The primary diffi-

culty arises from a difference in the number of RNA vs

DNA molecules available for profiling in single cells.

While for an expressed gene several RNA molecules are

present in a single cell, scATAC-seq assays profile DNA,

a molecule which is present in only few copies per cell

(two in a diploid organism). The low copy number re-

sults in an inherent per-cell data sparsity, where only 1–

10% of expected accessible peaks are detected in single

cells from scATAC-seq data (Additional file 1: Figure

S1), compared to 10–45% of expressed genes detected in

single cells from scRNA-seq data [2, 3]. This emphasizes

the need to recover informative features from sparse

data to assess variability between cells in scATAC-seq

analyses. Further, determination of which features best

define cell state is currently unclear.

The difference in readout (gene expression vs chroma-

tin accessibility) has also motivated a variety of ap-

proaches to selecting informative features in scATAC-

seq methods. While most processing pipelines share

common upstream processing steps (i.e., alignment, peak

calling, and counting; Fig. 1b), existing computational

approaches differ in the way they obtain a feature matrix

for downstream analyses. For example, some methods

select features based on the sequence content of access-

ible regions (e.g., k-mer frequencies [4, 5] or transcrip-

tion factor (TF) motifs [5]), whereas other methods

select features based on the genomic coordinates of the

accessible regions (e.g., extended promoter regions to

determine chromatin activity surrounding genes [4, 6]).

Finally, the potential feature set in scATAC-seq, which

includes genome-wide regions of accessible chromatin

(Fig. 1c), is typically 10–20× the size of the feature set in

scRNA-seq experiments (which is defined and limited by

the number of genes expressed). This larger feature set

could be valuable in distinguishing a wider variety of cell

populations and inferring the dynamics underlying cell

organization into complex tissues [7]. However, the nov-

elty and assay-specific challenges associated with these

large-scale scATAC-seq datasets and the lack of analysis

guidelines have resulted in diverging computational

strategies to aggregate data across such an immense fea-

ture space with no clear indication as to which strategy

or strategies are most advantageous.

Here, we provide the first benchmark assessment of

computational methods for the analysis of scATAC-seq

data. We discuss the impact of feature matrix construc-

tion strategies (e.g., sequence content-based vs genomic

coordinates) on common downstream analysis, with a

focus on clustering and visualization. This comprehen-

sive survey of current available methods provides user-

specific recommendations for best practices that aim to

maximize inference capability for current and future

scATAC-seq workflows. Importantly, we provide more

than 100 well-documented Jupyter Notebooks (https://

github.com/pinellolab/scATAC-benchmarking/) to easily

reproduce our analyses. We anticipate that this will be a

valuable resource for future scATAC-seq benchmark

studies.

Results
Benchmark framework

For this benchmarking study, we created an unbiased

framework to qualitatively and quantitatively survey the

ability of available scATAC-seq methods to featurize

chromatin accessibility data. Using this framework we

evaluated several datasets of divergent size and profiling

technologies. Using widely accepted quantitative metrics,

we explored how differences in feature matrix construc-

tion influence outcomes in exploratory visualization and

clustering, two common downstream analyses. The gen-

eral overview of our framework is presented in Fig. 2.

For this study, we collected public data from three

published studies (aligned files in BAM format) and gen-

erated ten simulated datasets with various coverages and

noise levels (see the “Methods” section). To calculate

feature matrices for downstream analysis, for each

method, we followed the guidelines provided in the

documentation in the original study or as suggested by

the respective authors. After feature matrix construction,

we used three commonly used clustering approaches (K-

means, Louvain, and hierarchical clustering) [8] and

UMAP [9] projection to find putative subpopulations

and visualize cell-to-cell similarities for each method.

Next, the quality of the clustering solutions was evalu-

ated by adjusted Rand index (ARI), adjusted mutual in-

formation (AMI), and homogeneity (H) when FACS-

sorting labels or tissues were available (gold standard) or

by a proposed Gini-index-based metric called Residual

Average Gini Index (RAGI) when only known marker

genes were available (silver standard). Finally, based on

these metrics, the methods were ranked by the quality of

their clustering solutions across datasets.

Methods overview and featurization of chromatin

accessibility data

Several computational methods have been developed to

address the inherent sparsity and high dimensionality of

single-cell ATAC-seq data, including BROCKMAN [5],

chromVAR [4], Cicero [10], cisTopic [11], Cusano-

vich2018 [1, 12, 13], Gene Scoring [14], scABC [15], Sca-

sat [16], SCRAT [6], and SnapATAC [17]. Based on the

proposed workflow of each method, we computed differ-

ent feature matrices defined as a features-by-cells matrix

(e.g., read counts for each cell (columns) in a given open

chromatin peak feature (rows)) that could then be
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readily used for downstream analyses such as clustering.

Starting from single-cell BAM files, the feature matrix

construction can be roughly summarized into four dif-

ferent common modules: define regions, count features,

transformation, and dimensionality reduction as illus-

trated in Fig. 2. Not every method uses all steps; there-

fore, we provide below, a short summary of the

strategies adopted by each method and a per module dis-

cussion to highlight key similarities and differences (for

a more detailed description of each strategy, see the

“Methods” section).

Briefly, BROCKMAN [5] represents genomic se-

quences by gapped k-mers (short DNA sequences of

length k) within transposon integration sites and infers

the variation in k-mer occupancy using principal compo-

nent analysis (PCA). chromVAR [4] estimates the dis-

persion of chromatin accessibility within peaks sharing

the same feature, e.g., motifs or k-mers. Cicero [10]

calculates a gene activity score based on accessibility at a

promoter region and the regulatory potential of peaks

nearby. cisTopic [11] applies latent Dirichlet allocation

(LDA) (a Bayesian topic modeling approach commonly

used in natural language processing) to identify cell

states from topic-cell distribution and explore cis-regula-

tory regions from region-topic distribution. Previous ap-

proaches that utilize latent semantic indexing (LSI)

(termed here as Cusanovich2018 [1, 12, 13]) first parti-

tion the genome into windows, normalize reads within

windows using the term frequency-inverse document

frequency transformation (TF-IDF), reduce dimensional-

ity using singular value decomposition (SVD), and per-

form a first-round of clustering (referred to as “in silico

cell sorting”) to generate clades and call peaks within

them. Finally, the clusters are refined with a second-

round of clustering after TF-IDF and SVD based on read

counts in peaks. The Gene Scoring method [14] assigns

Fig. 2 Benchmarking workflow. Starting from aligned read files in .bam format, feature matrices were constructed using each method. The

feature matrix construction techniques used by each method were grouped into four broad categories: define regions, count features,

transformation, and dimensionality reduction. A colored dot under a technique indicates that the method (signified by the respective color in the

legend on the right) uses that technique. For each method, feature matrix files (defined as columns as cells and rows as features) are calculated

and used to perform hierarchical, Louvain, and k-means clustering analysis. For datasets with a ground truth such as FACS-sorting labels or

known tissues, clustering evaluation was performed according to the adjusted Rand index (ARI), adjusted mutual information (AMI), and

homogeneity (H) scores. For datasets without ground truth, the clustering solutions were evaluated according to a Residual Average Gini Index

(RAGI), a metric that compares cluster separation based on known marker genes against housekeeping genes. Lastly, a final score is assigned to

each method
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each gene an accessibility score by summarizing peaks

near its transcription start site (TSS) and weighting them

by an exponential decay function based on their dis-

tances to the TSS. scABC [15] first calculates a global

weight for each cell by taking into account the number

of distinct reads in the regions flanking peaks (to esti-

mate the expected background). Based on these weights,

it then uses weighted k-medoids to cluster cells based

on the reads in peaks. Scasat [16] binarizes peak accessi-

bility and uses multidimensional scaling (MDS) based on

the Jaccard distance to reduce dimensionality before

clustering. SCRAT [6] summarizes read counts on differ-

ent regulatory features (e.g., transcription factor binding

motifs, gene TSS regions). SnapATAC [17] segments the

genome into uniformly sized bins and adjusts for differ-

ences in library size between cells using a regression-

based normalization method; finally, PCA is performed

to select the most significant components for clustering

analysis.

Define regions

An essential aspect of feature matrix construction is the

selection of a set of regions to describe the data (e.g., pu-

tative regulatory elements such as peaks and promoters).

Most methods described above, including chromVAR,

Cicero, cisTopic, Gene Scoring, scABC, and Scasat, de-

fine regions based on peak calling from either a refer-

ence bulk ATAC-seq profile or an aggregated single-cell

ATAC-seq profile. Cusanovich2018, as briefly mentioned

above, instead of aggregating single cell to call peaks,

first creates pseudo-bulk clades by performing hierarch-

ical clustering on the TF-IDF and SVD transformed

matrix using the top frequently accessible windows.

Then, peaks are called by aggregating cells within each

pseudo-bulk clade. In addition to relying on peaks, some

methods have proposed different strategies. BROCK-

MAN uses the union of regions around transposon inte-

gration sites. Cusanovich2018 (before in silico sorting)

and SnapATAC segment the genomes into fixed-size

bins (windows) and count features within each bin.

Count features

Once feature regions are defined, raw features within

these regions are counted. Note that some methods (e.g.,

chromVAR) may support the counting of multiple fea-

tures. For cisTopic, Cusanovich2018, scABC, and Scasat,

reads overlapping peaks are counted. For Cusano-

vich2018 (before the in silico sorting step) and SnapA-

TAC, reads overlapping bins are counted. k-mers are

counted under peaks for chromVAR while gapped k-

mers are counted for BROCKMAN around transposase

cut sites. Similarly, transcription factor motifs (e.g., from

the JASPAR database [18]) can be used as features by

counting reads overlapping their binding sites in peaks

(chromVAR) or genome-wide (SCRAT). If pre-defined

genomic annotations such as coding genes are given,

Gene Scoring, Cicero, and SCRAT use gene TSSs as an-

chor points to calculate gene enrichment scores based

on reads nearby or just within peaks nearby.

Transformation

After building the initial raw feature matrix using the

counting step, different transformation methods can be

performed. Binarization of read counts is used by five

out of the ten evaluated methods: Cicero, cisTopic,

Cusanovich2018, Scasat, and SnapATAC (Fig. 2). This

step is based on the assumption that each site is present

at most twice (for diploid genomes) and that the count

matrix is inherently sparse. Binarization is advantageous

in alleviating challenges arising from sequencing depth

or PCR amplification artifacts. SnapATAC and Scasat

convert the binary count matrix into a cell-pairwise Jac-

card index similarity matrix. Cusanovich2018 normalizes

the binary count matrix using the TF-IDF transform-

ation. Cicero weights feature sites by their co-

accessibility, while Gene Scoring weights sites by a

decaying function based on its distance to a gene TSS.

Both chromVAR and SnapATAC perform a read cover-

age bias correction to account for the influence of sam-

ple depth. chromVAR creates “background” peaks

consisting of an equal number of peaks matched for

both average accessibility and GC content to calculate

bias-corrected deviation while SnapATAC uses a

regression-based method to mitigate the coverage differ-

ence between cells. scABC also implements a similar

step by calculating a weight for each cell, but these

weights are not used to transform the matrix; instead

they are used later in the clustering procedure. Both

BROCKMAN and chromVAR compute z-scores to

measure the gain or loss of chromatin accessibility

across cells. SCRAT adjusts for both library size and re-

gion length.

Dimensionality reduction

In the final step before downstream analysis, several

methods apply different dimensionality reduction tech-

niques to project the cells into a space of fewer dimen-

sions. This step can refine the feature space mitigating

redundant features and potential artifacts and potentially

reducing the computation time of downstream analysis

(Fig. 2). PCA is the most commonly used method (used

by BROCKMAN, SnapATAC, and Cusanovich2018). cis-

Topic uses latent Dirichlet allocation (LDA) to generate

two distributions including topic-cell distribution and

region-topic distribution. Choosing the top topics based

on the topic-cell distribution reduces the dimensionality.

Scasat uses multidimensional scaling (MDS). When

reviewing the different methods to include in our
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benchmark, we noticed that not all methods perform a

dimensionality reduction step, which could skew the

relative performance across methods. Therefore, for

chromVAR, Cicero (gene activity score), Gene Scoring,

scABC, and SCRAT, we considered, in addition to the

original feature matrix, also a new feature matrix after

PCA transformation, since this is a simple and com-

monly used technique for dimensionality reduction.

To better evaluate the effects of different modules in-

cluding define regions, count features, transformation,

and dimensionality reduction, we also considered a sim-

ple control method, referred to as Control-Naïve, by

combining the most common and simple steps for build-

ing a feature matrix, i.e., counting reads within peaks to

obtain a peaks-by-cells raw count matrix and then per-

forming PCA on it (the number of top principal compo-

nents was determined based on the elbow plot for all the

methods). Since the feature matrix of scABC is also a

peaks-by-cells raw count matrix, this matrix after PCA

will correspond to the one obtained by the Control-

Naïve method (to avoid redundancies, in our assessment,

we refer to this matrix as Control-Naïve).

We also noticed that some methods might slightly di-

verge from the proposed four modules common frame-

work. For example, Cicero calculates gene activity scores

by first performing two transformations (binarize and

weight features) and then performing the counting step

around the annotated TSS. We believe the proposed

modularization of the feature matrix construction can

still serve as a useful framework to represent the core

components of the different methods and provides an

intuitive and informative summary of the diverse

scATAC-seq methodologies.

Once dimensionality reduction is completed, the trans-

formed feature matrix can be used for unbiased clustering,

visualization, or other downstream analyses. Here, we have

used the final feature matrices generated by each scATAC-

seq analysis method and evaluated their performance in

uncovering different populations by unsupervised clustering.

Clustering approaches and metrics used for performance

evaluation

This study employed three diverse types of commonly used

unsupervised clustering methods for single-cell analysis [8]:

K-means clustering, hierarchical clustering, and the Louvain

community detection algorithm (see the “Methods” section).

Clustering results were evaluated by three commonly

used metrics: adjusted Rand index (ARI), adjusted mu-

tual information (AMI), and homogeneity, when a gold

standard solution was available (known labels for the

simulation data and FACS-sorted cell populations or

known tissues for the real datasets). We propose a Gini-

index-based metric called Residual Average Gini Index

(RAGI), which was used to evaluate the clustering

results when no ground truth was available and only a

few marker genes were known by which populations

could be discriminated (see the “Methods” section). For

each metric, we defined the clustering score as the high-

est score among the three clustering methods, i.e., the

score which corresponded to the clustering solution that

maximized the metric.

This framework allowed for benchmarking the ability

of each strategy to featurize chromatin accessibility data

and its impact on important downstream analyses such

as clustering and visualization. The following sections

present the results of this evaluation for all the above-

described synthetic and real scATAC-seq datasets.

Clustering performance on simulated datasets

We simulated 10 scATAC-seq datasets using available

bulk ATAC-seq datasets with clear annotations from the

bone marrow and erythropoiesis [7, 19, 20] using varying

noise levels and read coverages. Briefly, to generate the

peaks-by-cells matrices, we defined a noise parameter (be-

tween 0 and 1) as the proportion of reads occurring in a

random peak from one of the sorted populations. The

remaining proportion of reads was distributed as a func-

tion of the bulk sample (see the “Methods” section). A fea-

ture matrix with a noise level of 0 preserved perfectly the

underlying cell type specificity of the reads within peaks.

Conversely, a feature matrix with a noise level of 1 con-

tained no information to discriminate cell types based on

the reads within peaks. In our study, we considered three

noise levels: no noise (0), moderate noise (0.2), and high

noise (0.4). To better and more fairly evaluate the contri-

bution of the core steps of each method (i.e., count fea-

tures, transformation, and dimensionality reduction)

regardless of the pre-processing steps usually excluded

from these methods (reads filtering, alignment, peak call-

ing, etc.), we compared the performance of each method

using a set of pre-defined peak regions from bulk ATAC-

seq datasets. We selected the top 80,000 peaks based on

the number of cells in which peaks were observed (each

peak that was present in at least one cell) for all methods

and all synthetic datasets.

Using the bulk ATAC-seq bone marrow dataset, we

simulated five additional datasets to explore the effect of

coverage on clustering performance (5000 fragments,

2500 fragments, 1000 fragments, 500 fragments, 250

fragments respectively per cell).

Each method was used to analyze all synthetic datasets

as suggested in the method documentation (see Add-

itional file 1: Note S1 and Additional file 1: Figure S2).

Simulated bone marrow datasets

We generated chromatin accessibility profiles (2500 frag-

ments per cell) based on six different FACS-sorted bulk

cell populations: hematopoietic stem cells (HSCs),
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common myeloid progenitor cells (CMPs), erythroid

cells (Ery), and other three lymphoid cell types: natural

killer cells (NK), CD4, and CD8 T cells (see Fig. 3a). We

used ARI, AMI, and homogeneity metrics to compare

the clustering solutions with the known cell type labels

(Fig. 3b, Additional file 1: Figure S3, Additional file 1:

Table S1). The top three methods based on these simu-

lation settings were cisTopic, Cusanovich2018, and Sna-

pATAC. They performed equally well with no noise and

moderate noise (with clustering scores close to 1.0)

(Additional file 1: Figure S3, Additional file 1: Table S2).

At a noise level of 0.4, the methods showed more separ-

ation in performance accordingly to the three metrics

(Fig. 3b, Additional file 1: Table S3). SnapATAC,

Cusanovich2018, and cisTopic clearly outperformed the

Control-Naïve method with consistently higher cluster-

ing scores across all metrics. Scasat performed slightly

better than the Control-Naïve method, and the

remaining methods underperformed relative to the

Control-Naïve method. For scABC (i.e., peaks-by-cells

raw count matrix), hierarchical clustering performs

much better than the other two clustering methods.

chromVAR performance using k-mers as features was

superior to the approach using motifs. Another k-mer-

based method, BROCKMAN, demonstrated similar per-

formance to the k-mer-based chromVAR method.

Motif-based SCRAT performed better than motif-based

chromVAR. Both Cicero gene activity scores and Gene

Fig. 3 Benchmarking results in simulated bone marrow datasets at a noise level of 0.4 and a coverage of 2500 fragments. a Cell types used to

create the simulated dataset. b Dot plot of scores for each metric to quantitatively measure the clustering performance of each method, sorted

by maximum ARI score. c The two top-scoring pairings of scATAC-seq analysis method and clustering technique. Cell cluster assignments from

each method are shown using the colors in the legend on the left. d UMAP visualization of the feature matrix produced by each method for the

simulated dataset. Individual cells are colored indicating the cell type labels shown in a

Chen et al. Genome Biology          (2019) 20:241 Page 7 of 25



Scoring (which summarize the chromatin accessibility

around coding annotations without a dimensionality re-

duction step) generally performed poorly. PCA boosted

the performance of scABC, Cicero, and Gene Scoring.

This step improved clustering performance regardless of

the clustering method (also we noted again that scABC

after PCA is equivalent to the Control-Naïve method),

especially for the Louvain approach. PCA also slightly

boosted the performance of the k-mer-based chromVAR

but did not markedly improve the results of the motif-

based chromVAR or SCRAT analyses.

We next investigated qualitatively the obtained cluster-

ing solutions, using the respective feature matrices to

project the cells onto a 2-D space using UMAP and col-

ored them based on the obtained clustering solutions

(Additional file 1: Figure S4) or based on the true popu-

lation labels used to generate the data (Fig. 3d). The top

two clustering solutions based on the ARI (SnapATAC

with k-means and SnapATAC with Louvain) are shown

for ease of comparison (Fig. 3c).

Cusanovich2018 and SnapATAC are the only two

methods that clearly separated all six populations. cisTo-

pic slightly mixed CD4 and CD8 T cells. Scasat and the

Control-Naïve method failed to separate CD4 and CD8

T cell populations. BROCKMAN slightly mixed NK with

CD4 and CD8 T cells and could not further separate

CD4 and CD8 T cells. It also failed to clearly separate

HSC and CMP. Both k-mer-based and motif-based

chromVAR as well as SCRAT could only separate the

Ery population while failing to separate HSC and CMP

as well as CD4, CD8 T cells, and NK. The chromVAR k-

mer-based method mixed HSC and CMP to a lesser ex-

tent compared to the motif-based method. There was no

clear separation of cells using scABC (the peaks-by-cells

raw count matrix), Cicero, or Gene Scoring. We ob-

served that PCA clearly improved the separation of cell

populations for Cicero and Gene Scoring. It also slightly

improved the separation of CD4, CD8 T cells, and NK

populations by k-mer-based chromVAR. No clear im-

provement was observed for the motif-based chromVAR

or SCRAT methods. We further observed that a lack of

visual separation of cell types in the UMAP plots

(scABC, Cicero, and Gene Scoring), corresponded with

substantial variation between the performances of the

three clustering methods, showing better performance in

the k-means clustering (Fig. 3b, d).

All methods except for Cusanovich2018 and SnapA-

TAC demonstrated declining performance with in-

creased noise level (Additional file 1: Figures S3, S5a).

Cusanovich2018 and SnapATAC were more robust to

noise, showing no noticeable changes at increasing noise

levels, while cisTopic was slightly more sensitive to

noise; its performance dropped markedly when the noise

level was increased to 0.4.

Next, the effect of the coverage on clustering perform-

ance was investigated. We progressively decreased the

number of fragments per cell from a high coverage of

5000 fragments, to a medium coverage of 2500 frag-

ments and 1000 fragments, then to a low coverage of

500 fragments, and finally to 250 fragments. The per-

formance of all methods declined as coverage was de-

creased (Additional file 1: Figure S5b, Additional file 1:

Figure S6, Additional file 1: Tables S4-S8). Cusano-

vich2018, SnapATAC, Scasat, and Control-Naïve are

relatively robust to low coverage and outperform other

methods. cisTopic worked well with high coverage but,

in contrast to the above-listed methods, was more sensi-

tive to lower coverages (Additional file 1: Figure S6e).

Simulated erythropoiesis datasets

Following the simulation of discrete sorted cell popula-

tions, we simulated three scATAC-seq datasets aimed at

mimicking the continuous developmental erythropoiesis

process and encompassing the following 12 populations:

hematopoietic stem cells (HSCs), common myeloid pro-

genitors (CMPs), megakaryocyte-erythroid progenitors

(MEPs), multipotent progenitors (MPPs), myeloid pro-

genitors (MyP), colony-forming unit-erythroid (CFU-E),

proerythroblasts (ProE1), proerythroblasts (ProE2), baso-

philic erythroblasts (BasoE), polychromatic erytrhoblasts

(PolyE), orthochromatic erythroblasts (OrthoE), and

OrthoE and reticulocytes (Orth/Ret). These datasets

were generated as before with three noise levels (0, 0.2,

and 0.4) and with 2500 fragments per cell.

To first quantitatively evaluate the clustering solutions,

we used ARI, AMI, and the homogeneity metrics (Add-

itional file 1: Figure S7 and Additional file 1: Table S9).

Without noise, SnapATAC, cisTopic BROCKMAN,

Cusanovich2018, and Scasat consistently outperform the

Control-Naïve across the three metrics (Additional file 1:

Figure S7a). chromVAR, as before, performs better using

k-mers as features than when using motifs. SCRAT and

scABC work as well as k-mer-based chromVAR. Again,

methods such as Cicero and Gene Scoring that only

summarize chromatin accessibility around TSS perform

poorly. For scABC, Cicero, and Gene Scoring, we also

notice that there are significant discrepancies between

the three clustering methods, but their performances be-

come similar after PCA (scABC after PCA is equivalent

to the Control-Naïve method). Again, we observe that

PCA can significantly improve the clustering perform-

ance of Louvain for scABC, Cicero, and Gene Scoring

but not for chromVAR and SCRAT.

As before, to qualitatively assess population separation,

we inspected UMAP projections applied to the noise-free

simulated dataset (Additional file 1: Figure S7a). In ac-

cordance with the quantitative comparison, cisTopic,

Cusanovich2018, SnapATAC, and BROCKMAN
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demonstrate better performance in separating cell types

compared to the Control-Naïve method and are able to

further separate BasoE and PolyE. Moreover, SnapATAC

can clearly distinguish CFU-E, ProE1, and ProE2 while cis-

Topic, Cusanovich2018, and BROCKMAN are only able

to separate ProE2 out of these three populations. Scasat

performs similarly to the Control-Naïve method. chrom-

VAR with k-mers as features and SCRAT are able to iso-

late six major groups including HSCs-MPPs, CMP, MEP,

MyP, CFU-E-ProE1-ProE2, and BasoE-PolyE-OrthoE-

Orth/Ret. chromVAR with k-mers performs well in pre-

serving the order of CFU-E-ProE1-ProE2 and BasoE-

PolyE-OrthoE-Orth/Ret. SCRAT can further separate

BasoE-PolyE from OrthoE-Orth/Ret while mixing up

CFU-E-ProE1-ProE2. As before, we noticed that chrom-

VAR using k-mers as features obtained a better separation

of cell types than when using motifs. scABC is able to pre-

serve well the order of major groups in a continuous way

but fails to separate CFU-E-ProE1-ProE2 and OrthoE-

Orth/Ret. Cicero gene activity score and Gene Scoring

mixed different cell types, but after a simple PCA step,

they clearly separate cells into three major groups. scABC

did not perform well and produced small noisy clusters

with different cell types mixed together.

As expected, we observed that increasing the level of

noise resulted in clustering performance decrease and a

decline of visual separation of cell types for all the

methods (Additional file 1: Figure S5c, Additional file 1:

Figure S7, Additional file 1: Table S10-S11). SnapATAC,

cisTopic, and Cusanovich2018 performed reasonably

well when increasing the noise level, with SnapATAC

the most robust among the three.

Clustering performance on real datasets

Following the benchmark of the synthetic datasets, we

assessed the performance of the methods on real data-

sets. These datasets were generated using different

technologies: the Fluidigm C1 array [21], the 10X Gen-

omics droplet-based scATAC platform, and a recently

optimized split-pool protocol [1]. Each real dataset used

was fundamentally different in its cellular makeup as

well as size and subpopulation organization. Notably, as

“true positive” labels are not always available, in

addition to the metrics used on the simulated datasets,

here we introduced the RAGI, a simple metric based on

the Gini index that can be adopted when marker genes

for the expected populations are known (see the

“Methods” section). In our assessment of Cusano-

vich2018, to make a fair comparison, we use first the

same set of peaks used for other methods instead of the

peaks called from its pseudo-bulk-based procedure.

However, since this strategy may be important for the

final clustering performance, the pseudo-bulk-based

peak calling strategy is tested and discussed in a subse-

quent section.

Buenrostro2018 dataset

The first and smallest dataset we used in our bench-

marking contains single-cell ATAC-seq data from the

human hematopoietic system (hereafter Buenrostro2018,

[21]). This dataset consists of 2034 hematopoietic cells

that were profiled and FACS-sorted from 10 cell popula-

tions including hematopoietic stem cells (HSCs), multi-

potent progenitors (MPPs), lymphoid-primed

multipotent progenitors (LMPPs), common myeloid pro-

genitors (CMPs), and granulocyte-macrophage progeni-

tors (GMPs), GMP-like cells, megakaryocyte-erythroid

progenitors (MEPs), common lymphoid progenitors

(CLPs), monocytes (mono) and plasmacytoid dendritic

cells (pDCs). Figure 4a illustrates the roadmap of

hematopoietic differentiation. For this dataset, the

FACS-sorting labels are used as the gold standard. The

analysis details for each method are documented in

Additional file 1: Note S2.

We started by evaluating the clustering solutions based

on the feature matrices generated by the different

methods. We used the same metrics used for the syn-

thetic datasets: ARI, AMI, and homogeneity (Fig. 4b,

Additional file 1: Table S12). cisTopic, Cusanovich2018,

chromVAR, SnapATAC, and Scasat outperform the

other methods across all three metrics. We also ob-

served that chromVAR with k-mers or TF motifs and

with or without PCA performs consistently well. As be-

fore, k-mer-based features work better than motif-based

features. This can be also observed when comparing

BROCKMAN, another k-mer-based method, with

SCRAT, which is a motif-based method. TSS-based

methods including Cicero and Gene Scoring did not per-

form well. Cicero requires a pre-processing step to as-

sess cell similarity; poor performance might be due to

the internally incorrectly inferred coordinates (our as-

sessment used the t-SNE procedure as suggested in their

documentation). Implementing PCA consistently im-

proves the performance of scABC (as mentioned before,

scABC after PCA is equivalent to the Control-Naïve

method) and Cicero but does not impact the perform-

ance of chromVAR, SCRAT, and Gene Scoring. We also

observed that for this dataset, the Louvain algorithm

works consistently well across different metrics and

methods and performs better than hierarchical cluster-

ing and k-means in almost all the cases.

We also qualitatively assessed the separation of differ-

ent cell types by visualizing cells in UMAP projections

based on the FACS-sorted labels (Fig. 4d) and clustering

solutions (Additional file 1: Figure S8). Figure 4c shows

the best two combinations based on ARI: cisTopic with

Louvain and Cusanovich2018 with Louvain (the
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complete ranking is presented in Additional file 1: Table

S12).

As Fig. 4d shows, in accordance with the clustering ana-

lyses, cisTopic, Cusanovich2018, Scasat, SnapATAC, and

chromVAR can generally separate cell types and reasonably

capture the expected hematopoietic hierarchy. cisTopic and

SnapATAC show a clear and compact separation among

groups, with SnapATAC recovering finer structure within

each cell type cluster. chromVAR with k-mers or motifs

corresponds to a more continuous progression of the differ-

ent cell types. Control-Naïve and BROCKMAN perform

comparably in distinguishing cell types and preserving the

continuous hematopoietic differentiation. Cicero gene ac-

tivity scores, SCRAT, and scABC show ambiguous patterns

of distinct cell populations while Gene Scoring fails to

separate different cell types. For Cicero gene activity score,

after performing PCA, the separation of different cells is

noticeably improved. For SCRAT, performing PCA does

not show clear improvement.

10 X Peripheral blood mononuclear cells (10X PBMCs)

dataset

Next, we investigated a recent dataset produced by 10X

Genomics profiling peripheral blood mononuclear cells

(PBMCs) from a single healthy donor. In this dataset,

5335 single nuclei were profiled (~ 42 k read pairs per

cell); no cell annotations are provided. Based on recent

studies [11, 22], we expected ~ 8 populations: CD34+,

natural killer and dendritic cells, monocytes, lymphocyte

B and lymphocyte T cells, together with terminally

Fig. 4 Benchmarking results using the Buenrostro2018 scATAC-seq dataset. a Developmental roadmap of cell types analyzed. b Dot plot of scores

for each metric to quantitatively measure the clustering performance of each method, sorted by maximum ARI score. c The two top-scoring

pairings of scATAC-seq analysis method and clustering technique. UMAP visualization of the feature matrix produced by each method for the

Buenrostro2018 dataset. Individual cells are colored indicating the cell type labels shown in a
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differentiated CD4 and CD8 cells. Therefore, we used 8

as the number of expected populations for the clustering

procedures. The analysis details for each method are

documented in Additional file 1: Note S3.

Several marker genes have been proposed to label the

different populations or to annotate clustering solutions

for PMBCs [11, 22]. To measure cluster relevance based

on these marker genes, we can annotate the clusters (or

alternatively any group of cells) according to the accessi-

bility values at those marker genes. In addition, accessi-

bility at marker genes should be more variable between

clusters than accessibility at housekeeping genes (since

they should be, by definition, more equally expressed

across different populations). Based on these ideas, we

proposed and calculated the Residual Average Gini

Index (RAGI) score (see the “Methods” section) con-

trasting marker and housekeeping genes (Fig. 5a, Add-

itional file 1: Table S13). For reasonable clustering

solutions, we expect that the accessibility of marker

genes defines clear populations corresponding to one or

few clusters, whereas the accessibility of the housekeep-

ing genes is broadly distributed across all the clusters.

As expected, methods with the highest performance,

such as SnapATAC and chromVAR, showed a higher

average accessibility for just one cluster for the same

marker gene, while lower performing methods such as

SCRAT or Gene Scoring showed higher average accessi-

bility in multiple clusters for the same marker gene, fur-

ther motivating the use of the RAGI metric

(Additional file 1: Figure S9). Figure 5b shows for the

top two performing methods based on RAGI (SnapA-

TAC and chromVAR with k-mers) the gene accessibility

patterns for 3 genes (S100A12—monocyte-specific,

MS4A1—B cell-specific, and GAPDH—housekeeping.)

The same three genes are also shown in UMAP plots of

the other methods (Additional file 1: Figure S10). Again,

we observed that Louvain algorithm performed better

than k-means and hierarchical clustering for almost all

scATAC-seq methods. Importantly, negative RAGI score

for a method (see for example the solutions obtained by

the Gene Scoring in Fig. 5a, Additional file 1: Figure

S10) may suggest that its clustering solutions are defined

by housekeeping genes rather than informative marker

genes.

We also qualitatively evaluated the clustering solutions

of the different methods using UMAP projections

(Fig. 5c, Additional file 1: Figure S11). We observed two

major groups for all methods except for scABC. Among

these methods, the UMAP projections based on feature

matrices obtained by Control-Naïve, cisTopic, Cusano-

vich2018, Scasat SnapATAC, BROCKMAN, and chrom-

VAR showed additional smaller groups and finer

structures. For Cicero gene activity scores, performing

PCA helps to improve the separation of more putative

cell types. Instead, for SCRAT and Gene Scoring, the

PCA step did not improve the separation.

Given that the ranking of methods in datasets with

ground truth is similar to the ranking based on the

RAGI metric, we believe this simple approach is a rea-

sonable surrogate metric that can be useful for evaluat-

ing unannotated datasets, a common scenario in single-

cell omics studies.

sci-ATAC-seq mouse dataset

The last dataset analyzed in our benchmark consists of

sci-ATAC-seq data from 13 adult mouse tissues (bone

marrow, cerebellum, heart, kidney, large intestine, liver,

lung, pre-frontal cortex, small intestine, spleen, testes,

thymus, and whole brain), of which 4 were analyzed in

duplicate for a total of 17 samples and 81,173 single cells

[1]. Each tissue can be interpreted as a coarse ground

truth, used later to evaluate clustering solutions (Fig. 6a).

The analysis details for each method are documented in

Additional file 1: Note S4.

Despite using a machine with 1 TB of RAM memory,

almost all the methods failed to even load this dataset,

owing to its size. The only method capable of processing

this dataset in a reasonable time was SnapATAC (~ 700

min). The other methods failed to run due to memory

requirements. To understand the causes of this failure,

we did an in-depth analysis of their scalability looking at

their source code (Additional file 1: Note S5). Briefly, we

found that the majority of the methods try to load the

entire dataset in the central memory while SnapATAC

uses a custom file format (.snap) based on HDF5

(https://support.hdfgroup.org/HDF5/whatishdf5.html),

allowing out of core computation by efficiently and pro-

gressively loading in the central memory only the data

chunks required at any given moment of the analysis.

On this dataset, SnapATAC was able to correctly clus-

ter cells of the following tissues: kidney, lung, heart,

cerebellum, whole brain, and thymus. However, for the

other tissues, including the bone marrow and small in-

testine, cells are distributed in groups of mixed cell types

(Additional file 1: Figure S12), as reflected by the score

of the three metrics used for the other datasets’ evalu-

ation (Additional file 1: Table S14), i.e., ARI = (HC =

0.24, k-means = 0.34, Louvain = 0.39), AMI = (HC = 0.55,

k-means = 0.55, Louvain = 0.62), and homogeneity = (

HC = 0.52, k-means = 0.54, Louvain = 0.60).

To gain insight on the performance of the other

methods on this dataset, we randomly selected 15% of

cells from each sample to construct a smaller sci-ATAC-

seq dataset consisting of 12,178 cells.

As Fig. 6b shows Cusanovich2018, k-mer-based

chromVAR, cisTopic, SnapATAC, Scasat, and Control-

Naïve perform comparably well and have noticeably bet-

ter clustering scores than the other methods
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(Additional file 1: Table S15). Consistent with what we

observed previously, peak- or bin-level methods gener-

ally work better. In this dataset, k-mer-based chromVAR

and its combination with PCA transformation performs

equally well as peak- or bin-level methods and better

than the motif-based methods. Simply counting reads

within peaks (scABC) and gene-level-featurization-based

methods (Gene Scoring and Cicero) perform poorly

overall. Adding a PCA step improves noticeably scABC

(scABC after PCA is the same as Control-Naïve) and

Gene Scoring. It also slightly improves Cicero but it does

not affect chromVAR and SCRAT.

As before, all the clustering solutions of the different

methods were visualized in UMAP plots (Additional file 1:

Figure S13). The top two combinations, i.e., Cusano-

vich2018 and chromVAR k-mers with PCA, are visual-

ized in Fig. 6c. To visually compare the separation of the

different tissues across methods, we also inspected

UMAP plots where cells are colored based on the tissue

of origin. Similar to what we observed using the cluster-

ing analysis, cisTopic, Cusanovich2018, and SnapATAC

are able to separate cells into the major tissues and also

to capture finer discrete groups. The Control-Naïve

method and Scasat are also able to distinguish the major

Fig. 5 Benchmarking results using scATAC-seq data for 5k peripheral blood mononuclear cells (PBMCs) from 10X Genomics. a Dot plot of RAGI

scores for each method, sorted by the maximum RAGI score. A positive RAGI value indicates that a method is able to produce a clustering of

PBMCs in which chromatin accessibility of each marker gene is high in only a few clusters relative to the number of clusters with high

accessibility of housekeeping genes. b UMAP visualization of the feature matrix produced by the top two methods (top row: SnapATAC, bottom

row: chromVAR using k-mers). Chromatin accessibility of S100A12 (left, monocyte marker gene), MS4A1 (center, B cell marker gene), and GPDH

(right, housekeeping gene) are projected onto the visualization. c UMAP visualization of the feature matrix produced by each method for the 5k

PBMCs dataset from 10X Genomics. Individual cells are colored indicating cluster assignments using Louvain clustering
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tissues but show some mixing within each discrete cell

population. k-mer-based chromVAR can separate out

liver, kidney, and heart tissues and present the other tis-

sues within a continuous bulk population while preserv-

ing the structure of the distinct tissues. We observed

that after running PCA, k-mer-based chromVAR can re-

cover an additional group of cells within the lung tissue

and also detect finer structure within the cells from the

brain. Compared with k-mer-based features, motif-based

chromVAR and its combination with PCA transform-

ation distinguished fewer tissue groups while mixing

more cells from different tissues. BROCKMAN recov-

ered a continuous structure with the different tissues

but does not distinguish them clearly. Similarly, Gene

Scoring put cells from different tissues into a big bulk

population with limited separation. PCA improved its

ability to separate out a few tissues, including the liver,

heart, and kidney. SCRAT and Cicero gene activity

scores mixed most of the cells from different tissues and

performed poorly on this dataset with or without PCA.

Clustering performance summary

To assess and compare the overall performance of

scATAC-seq analysis methods, we ranked the methods

based on each metric (ARI, AMI, homogeneity, RAGI)

by taking the best clustering solution for the three real

datasets (Buenrostro2018 dataset, 10X PBMCs dataset,

and the downsampled sci-ATAC-seq mouse dataset) and

Fig. 6 Benchmarking results using the downsampled sci-ATAC-seq mouse dataset from 13 adult mouse tissues. a schematic of 13 adult mouse

tissues. Replicated tissues are indicated by “x2”. b Dot plot of scores for each metric to quantitatively measure the clustering performance of each

method, sorted by maximum ARI score. c The two top-scoring pairings of scATAC-seq analysis method and clustering technique. Cell cluster

assignments from each method are shown using the colors in the legend on the left. d UMAP visualization of the feature matrix produced by

each method for the downsampled sci-ATAC-seq mouse dataset. Individual cell colors indicate the cell type
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two synthetic datasets (simulated bone marrow dataset

and simulated erythropoiesis dataset with the moderate

noise level of 0.2 and a medium coverage of 2500 frag-

ments per cell). Then, for each dataset except for the

10X PBMC dataset, we calculated the average rank

across ARI, AMI, and homogeneity. For the 10X PBMC

dataset, RAGI is calculated instead (Additional file 1:

Figure S14a). Lastly, we calculated the average rank

across different datasets. According to the average rank-

ing, SnapATAC, cisTopic, and Cusanovich2018 are the

top three methods to create feature matrices that can be

used to cluster single cells into biologically relevant sub-

populations (Fig. 7a). SnapATAC consistently performed

well across all datasets. Both cisTopic and Cusano-

vich2018 demonstrated satisfactory performance across

all datasets except for the 10X PBMCs dataset.

Generally, methods that implement a dimensionality

reduction step work better (SnapATAC, cisTopic, Cusa-

novich2018, Scasat, Control-Naïve, and BROCKMAN)

than those without it (SCRAT, scABC, Cicero, and Gene

Scoring). We also observed that chromVAR performs

better in real datasets than in simulated datasets and

that the k-mer-based version of chromVAR consistently

outperforms motif-based chromVAR. For the methods

that do not implement dimensionality reduction, the

PCA step does not always improve the performance ex-

cept for scABC and Cicero, in which the PCA trans-

formation consistently boosts the results. Interestingly,

we observed that regardless of the method, the PCA

consistently improves the clustering solutions obtained

by the Louvain algorithm.

Keeping the first PC vs removing the first PC

We noticed that in some cases, the first principal com-

ponent (PC) may only capture variation in sequencing

depth instead of biologically meaningful variability. To

make a thorough assessment of how the first PC affects

the clustering results, we compared the effect of keeping

vs removing the first PC on the three real datasets (for this

comparison, we consider both the methods that imple-

mented PCA and the combination of PCA and the

methods that did not implement a dimensionality reduc-

tion step) (Additional file 1: Figure S15). Across all three

datasets, we observe that for Control-Naïve, BROCK-

MAN, SCRAT-PCA, and Gene Scoring-PCA, removing

the first PC consistently helped in better separating the

different populations in UMAP projections and improved

clustering performance. In contrast, the performance of

chromVAR-PCA with motifs as features consistently

dropped after removing the first PC. Cusanovich2018 and

SnapATAC performed similarly before and after removing

the first PC across all datasets. For Cicero-PCA, removing

the first PC did not clearly affect its performance in

Buenrostro2018 and 10X PBMCs datasets but improved

its performance in the downsampled sci-ATAC mouse

dataset.

Generally, the methods that implement binarization

(e.g., Cusanovich2018, SnapATAC) or that implement

cell coverage bias correction (e.g., chromVAR, SnapA-

TAC) tend to be less affected by the sample sequencing

depths. Therefore, for these methods, we believe that the

first PC does not capture the library size and removing

it does not help to improve the clustering results. On

the contrary, for methods that do not implement any

specific step to correct for potential artifacts associated

with sequencing depth, the first PC is more likely to cap-

ture biologically irrelevant factors and therefore may re-

duce biology-driven differences. However, this operation

must be applied with caution, since removing the first

component could also in some cases remove some bio-

logical variation (e.g., motif-based chromVAR).

Clustering performance when running methods as end-to-

end pipelines

When designing this study, we reasoned that a bench-

mark procedure could be approached from two very dif-

ferent perspectives. The first is the end user perspective,

i.e., a user that runs a method as a black box following

the provided documentation with the goal to obtain a

reasonable clustering solution without worrying too

much about the internal design choices and procedures.

In these settings, it is not trivial to systematically com-

pare the methods and understand which part related to

the featurization may influence the final clustering per-

formance, especially if also the clustering algorithms

used are different. The second perspective that was used

instead in the rest of this benchmarking effort is the de-

veloper perspective, i.e., we tried to understand what are

the key steps of each method that can boost clustering

performance of common clustering approaches. Regard-

less, we reasoned that it is important to provide some in-

sights on the user perspective, since some readers will

use the tested methods as end-to-end pipelines. There-

fore, we also compared the clustering solutions pro-

duced by running the complete analysis pipelines as

outlined in tutorials for the methods that explicitly im-

plement a clustering step (see Additional file 1: Note

S6). We evaluated the clustering results using ARI, AMI,

and homogeneity for the Buenrostro2018 and sci-ATAC-

seq mouse datasets and RAGI for the 10X PBMCs data-

set (Additional file 1: Tables S16-S18). We observe the

top three methods, i.e., Cusanovich2018, cisTopic, and

SnapATAC, still outperform the other methods but with

a slightly different ranking (Cusanovich2018 is ranked

first followed by cisTopic and SnapATAC, Fig. 7b, Add-

itional file 1: Figure S14b). Also, both scABC and Cicero

performed better than Scasat in this analysis.
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Fig. 7 Aggregate benchmark results. a For each method, the rank based on the best-performing clustering method is measured for each metric

(e.g., ARI, AMI, H, or RAGI). The average metric ranks for each dataset were used to calculate a performance score for each method. Each method

was then assigned a cumulative average score based on its performance across all datasets. The asterisk indicates a downsampled dataset of the

indicated original dataset. b For methods that specify an end-to-end clustering pipeline, average rank and cumulative average scores for each

method were calculated as in a. c Plot of running time against performance for each method. Cumulative average scores, which were calculated

in part a are shown on the x-axis, and the average running time across the three real datasets (Buenrostro2018, 10X PBMCs, and downsampled

sci-ATAC-seq mouse) is shown on the y-axis
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Interestingly, we observed that SnapATAC, cisTopic,

Cusanovich2018, and Scasat have even better clustering

solutions in our benchmarking framework compared to

using their own clustering approach. On the other hand,

scABC and Cicero had better clustering results when

running their own clustering procedure. scABC uses an

unsupervised clustering method tailored to single-cell

epigenomic data (including scATAC-seq). Although it

uses the naïve peaks-by-cells raw count as its feature

matrix, it calculates cells’ weights by considering their

sequencing coverage and giving more weight to cells

with higher number of reads. Also, it performs two steps

of clustering by using weighted k-medoid algorithm

based on Spearman rank correlation to find landmarks

first and then assigns cells to the landmarks. These spe-

cific steps help improve its clustering performance. For

the Cicero clustering workflow, we used the gene activity

scores and, as proposed in their tutorial, functions from

Monocle2, to (i) normalize the scores and (ii) reduce the

dimensionality with t-SNE by using the top PCs before

clustering cells. These extra steps helped in improving

its clustering solutions. This suggests that appropriate

normalization steps need to be properly performed to

improve clustering analysis, in addition to simple trans-

formations like binarizing counts and/or performing a

PCA.

Taken together, based on these analyses, we recom-

mend using SnapATAC, cisTopic, or Cusanovich2018 to

cluster cells in meaningful subpopulations. This step can

be followed by methods such as Cicero, Gene Scores, or

with TF motifs (e.g., chromVar) to annotate clusters and

to determine cell types in an integrative approach.

Important considerations in defining informative regions

for scATAC-seq analyses

Feature sets of informative peaks for scATAC analyses

may be computed from bulk samples available through

large-scale consortia such as ENCODE [23] and ROAD-

MAP [24] or more precise tissue-specific cell types as in

the murine ImmGen Project [25]. However, scATAC-

seq analyses often require de novo inference of dataset-

specific accessibility peaks in order to resolve cell types

and regulatory activity.

To date, there are three major methods for generating

peak sets for scATAC experiments. The first strategy

(pseudo-bulk from all single cells, PB-All) for inferring

peaks is to call peaks on a pseudo-bulk sample com-

posed of all the reads from all cells in the library. The

second (pseudo-bulk from FACS, PB-FACS) is to call

peaks in a priori-defined cell types isolated by FACS

sorting. A consensus peak set can be defined by combin-

ing summits of individual peaks using an iterative algo-

rithm [7, 21, 26]. Finally, a third strategy (pseudo-bulk

from clades, PB-Clades) uses a pre-clustering of cells to

define initial populations [1, 12]. Subsequent peak calling

is performed in each initial cluster. Aggregate peak sets

can then be defined from synthesizing the summits of

each cluster-specific peak set as described above.

Bulk ATAC-seq peaks vs aggregated scATAC-seq peaks

To evaluate the effect of using peaks obtained from bulk

ATAC-seq data vs peaks obtained from aggregated

single-cell profiles, we reanalyzed the Buenrostro2018

dataset in which both are available (Additional file 1:

Figures S16-S17). Here, we considered only the methods

that use peaks as input (i.e., SnapATAC, SCRAT, and

BROCKMAN are excluded). For the aggregated

scATAC-seq peaks, we merged cells of the same cell

type based on the FACS sorting labels and performed

peak calling within each cell type. Then, peaks defined

within each cell type were merged. For most methods,

we did not observe clear differences in performance be-

tween the two input peak strategies. For cisTopic, Cusa-

novich2018, and Cicero, aggregated scATAC-seq peaks

overall perform better across all three metrics (Add-

itional file 1: Figure S18a, Additional file 1: Table S19).

We also tested the strategy of defining pseudo-bulk

samples from clades when no sorting labels are pro-

vided. Cusanovich2018 is the only method that provides

a workflow to identify initial clades and call peaks within

each clade. It counts reads within the fixed-size windows

and pre-clusters cells using hierarchical clustering to de-

fine initial clades from which peaks are called. We ap-

plied this strategy to all three real datasets

(Additional file 1: Figure S19). We observed that in all

three datasets, Cusanovich2018 performs well in identi-

fying the isolated major groups and the identified clades

match well the labels provided, including FACS-sorted

labels, cell-ranger clustering solutions, and known tissue

labels. Overall, the Cusanovich2018 “pseudo bulk” strat-

egy for defining de novo peaks is able to capture the het-

erogeneity within single-cell populations and can serve

as a promising unsupervised way to define pseudo-bulk

subpopulations and to perform peak calling.

The effect of excluding regions using the ENCODE blacklist

annotation

Blacklisted regions are those features annotated by EN-

CODE as belonging to a subset of genomic regions,

which harbor the potential to produce artifacts in down-

stream analyses. In order to assess the potential contri-

bution that blacklist regions could have on the overall

variation and population separability, we calculated (1)

the proportions of reads mapped to blacklisted regions

and (2) the proportions of bins with at least one read

overlapping a blacklisted region vs the proportion of

bins containing reads that do not overlap blacklist
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regions. Such a ratio corresponds closely to the feature

set used by several of the evaluated methods.

We observed that for 10X Genomics and sci-ATAC-

seq the percentage of reads mappable to blacklisted re-

gions is only ~ 1%, while for the Fluidigm C1 based assay

used in Buenrostro2018 is much higher, ~ 50%. How-

ever, when considering bins, only ~ 0.01–0.02% of bins

with at least one read correspond to blacklist regions for

all three technologies (Additional file 1: Figure S20).

This fraction of bins containing one or more reads in a

blacklisted region is likely negligible, and we hypothesize

that the variation in the signal from reads in blacklisted

regions is similarly negligible.

It is worth noting that cisTopic, Scasat, SCRAT, and

SnapATAC employ a blacklist filtering step to remove

features annotated by ENCODE as belonging to a subset

of genomic regions, which harbor the potential to pro-

duce artifacts in downstream analysis steps [27]. Our

benchmarking pipeline makes use of the ENCODE

ATAC-seq pre-processing pipeline to call peaks, there-

fore the peaks overlapping with regions on the blacklist

annotation list are already removed before implementing

scATAC-seq methods.

SCRAT and SnapATAC do not use peaks as features;

therefore, they are the only methods potentially affected

by blacklist-mapped artifacts. We tested whether we

would observe any change in downstream clustering per-

formance upon opting to perform a blacklist removal

step. Through a qualitative and quantitative comparison

of clustering performance across the datasets generated

by the three different technologies (10X Genomics, sci-

ATAC, and Fluidigm C 1), we determined that methods,

which remove features according to blacklist annotations

show no considerable advantage over those that permit-

ted such features (Additional file 1: Figure S21).

Rare cell type-specific peak detection

As all cell identities may not be pre-defined in complex

tissue types, we sought to examine PB-All and PB-

Clades strategies to infer a chromatin accessibility fea-

ture set from the scATAC-seq libraries directly. To

achieve this, we established a simulation setting where

we mixed bulk ATAC-seq data from three sorted popu-

lations (B cells, CD4+ T cells, and monocytes from the

10X PBMCs dataset) that would be mixed in complex

tissue (i.e., peripheral blood mononuclear cells) (Add-

itional file 1: Figure S18b). After peak calling on both

the synthetic bulk and isolated reads from each cell type,

we inferred the proportion of cell type-specific peaks

from the minor cell population that were captured by

the peak calling in the synthetic bulk mixture (see the

“Methods” section).

Overall, the results indicate that cell type-specific

peaks may be vastly underestimated from performing

peak calling on the mixture of single cells (PB-All) (Add-

itional file 1: Figure S18b). Specifically, only ~ 18% of cell

type-specific peaks from very rare (1% prevalence) or ~

40% from rare (5% prevalence) cell populations were de-

tected when peaks were called when treating the

heterogenous source as a synthetic bulk experiment.

Consequently, as these peaks would be vastly underrep-

resented in a consensus peak set, virtually all computa-

tional algorithms will fail to identify rare populations.

Moreover, as many common quality-control measures

for scATAC involve filtering based on the proportion of

reads in peaks, these cell populations may be underrep-

resented in quality-controlled datasets.

As observed in other studies [1, 28], these results sug-

gest calling peaks on PB-All may result in suboptimal

performance. Alternatively, when isolated populations

have been profiled (for example by FACS), peak sets can

be defined by calling peaks using data from cells in each

pre-defined population separately as discussed in the

previous section since this enables the resolution of rare

subpopulations (for example HSC in the hematopoietic

system).

Frequency-based peak selection vs intensity-based peak

selection

Cusanovich2018 selects peaks that are present in at least

a specified percentage of cells before performing TF-IDF

transformation, while scABC selects peaks with the most

reads to cluster cells. To evaluate the effect of selecting

peaks based on their representation in the cell popula-

tion or based on their intensity (defined as the sum of

reads in that peak in all samples), we focus on the two

methods that implement the step of peak selection,

Cusanovich2018 and Control-Naïve (equivalent to

scABC+PCA).

To assess the two peak selection strategies, we ran

both Cusanovich2018 and Control-Naïve on both simu-

lated bone marrow dataset at noise level of 0.2 with a

coverage of 2500 fragments and the Buenrostro2018

dataset by varying the cutoffs for peak inclusion (Add-

itional file 1: Figures S22-S23). We calculated the inten-

sity of peaks by counting the number of reads across all

cells and calculated the frequency of peaks by counting

the number of cells in which a peak is observed. For this

analysis, we selected the top peaks based on intensity

and frequency with the following cutoffs: top 100%, 80%,

60%, 40%, 20%, 10%, 8%, 6%, 4%, 2%, and 1%.

For both Cusanovich2018 and Control-Naïve, the two

peak selection strategies have similar clustering result

scores when varying the cutoff (Additional file 1: Figures

S22a-b, S23a-b). We observed reasonable and stable

clustering performance using more than 20% of the

ranked peaks. As the number of peaks is reduced, the

scores start to decline noticeably and decrease almost
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monotonically. Below 1%, both methods perform poorly.

In addition, we observed that the Louvain method pro-

duces more stable results than hierarchical clustering

and k-means across the considered settings.

Running time of different methods

In our analysis, we also collected the running time of

each method on both simulated and real datasets (see

Additional file 1: Note S6). For the simulated datasets,

we only reported the execution time necessary to build a

feature matrix starting from a peaks-by-cells count

matrix. For real datasets, we considered the execution

time to build a feature matrix from bam files. The run-

ning times are shown in Additional file 1: Figure S24

(Additional file 1: Table S20). All the tests were run on a

machine with an Intel Xeon E5-2600 v4 X CPU with 44

cores and 1 TB of RAM with the CentOS 7 operating

system. When analyzing real datasets with methods that

rely on peaks but do not provide an explicit function to

construct a peaks-by-cells matrix (Cusanovich2018, Cic-

ero, Gene Scoring, and Scasat), we ran the same script

on a Linux cluster to obtain the peaks-by-cells matrix

such that the execution time of this step is equivalent

across these methods. It is worthwhile to mention that

not all the methods of this benchmark support parallel

computing. For the methods that support parallel com-

puting, including SnapATAC, chromVAR, and cisTopic,

the execution time was reported using 10 cores. For the

rest of the methods, we run them using a single core.

We selected this number reasoning that a typical lab

may not have access to a machine with 44 cores and in-

stead may use a mid-size computing node with 8–12

cores. Notably, SnapATAC was the only method capable

of processing the full sci-ATAC-seq mouse dataset (~

80,000 single cells).

As shown in Additional file 1: Figure S24, BROCK-

MAN and SCRAT have the largest execution times in all

the real datasets while the methods that use a custom

script to obtain a peaks-by-cells matrix tend to have

shorter execution times (e.g., Scasat, Cusanovich2018,

Gene Scoring).

We also assessed the scalability of methods with re-

spect to the increasing coverage (250, 500, 1000, 2500,

and 5000 fragments per peaks). We observe that with

the increase of read coverage, for cisTopic, there is an

exponential increase of the running time whereas for

other methods, the running time stays stable or in-

creases linearly (Additional file 1: Figure S24, Add-

itional file 1: Table S21).

Finally, we compared execution time vs clustering per-

formance (Fig. 7c). Interestingly, the most accurate

methods (SnapATAC, cisTopic, and Cusanovich2018)

have a reasonable running time while outperforming the

other methods for clustering quality across all the

datasets. Considering the computational time as an im-

portant factor that must be carefully evaluated before

the implementation of any bioinformatics pipeline, we

believe that Cusanovich2018 is the best in balancing

clustering performance with execution time.

Discussion
scATAC technologies enable the epigenetic profiling of

thousands of single cells, and many computational

methods have been developed to analyze and interpret

this data. However, the sparsity of scATAC-seq datasets

provides unique challenges that must be addressed in

order to perform essential analyses such as cluster iden-

tification, visualization, and trajectory inference [29, 30].

Moreover, the rapid technological innovations that facili-

tate profiling accessible chromatin landscapes of 104 or

105 cells provide additional computational challenges to

efficiently store and analyze data.

In this study, we compared ten computational

methods developed to construct informative feature

matrices for the downstream analysis of scATAC-seq

data. We developed a uniform processing framework

that ranks methods based on their ability to discriminate

cell types when combined with three common unsuper-

vised clustering approaches, followed by evaluation of

three well-accepted clustering metrics. We evaluated

these methods on 13 datasets, three of those obtained

using different technologies (Fluidigm C1, 10X, and sci-

ATAC) and five consisting of simulated data with vary-

ing noise levels. These datasets comprise cells from dif-

ferent tissues in both mouse and human.

In addition to identifying various methodologies that

perform optimally on real and simulated data, our

benchmarking examination of scATAC-seq methodolo-

gies reveals general principles that will inform the devel-

opment of future algorithms. First, peak-level or bin-

level feature counting generally performs better in dis-

tinguishing different cell types followed in turn by k-

mer-level, TF motif-level, and gene-centric-level

summarization. We interpret this finding as an indica-

tion of the complexity of gene regulatory circuits where

precise enhancer elements may have distinct functions

that cannot be sufficiently approximated by sequence

context or proximity to gene bodies alone. Second, we

note that the methods that implement a dimensionality

reduction step generally perform better in the separation

of cell types, since this step may help to remove the re-

dundancy between a large number of raw features and

to mitigate the effect of noise. Third, for the methods

that do not implement a dimensionality reduction step,

simply adding a PCA step could significantly improve

the clustering results. In fact, PCA generally boosts Lou-

vain clustering results. For methods that do not account

for the differing sequencing coverage of cells, the first
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PC could be used to capture and correct for sample

depth differences. In this case, removing the first PC

may improve the performance of these methods. Fourth,

we observe that the Louvain method overall performs

more consistently and accurately than k-means and hier-

archical clustering. In contrast, k-means and hierarchical

clustering are more sensitive to outliers and may result

in suboptimal clustering solutions since some of clusters

may correspond to single or few outlier cells. Fifth, the

robustness of different methods to noise and coverage

varies among different datasets. Among the top three

methods, cisTopic is the most penalized by low cover-

age. Sixth, it was also observed that inappropriate trans-

formations, such as log2 transformation and

normalization based on region size as implemented in

SCRAT, may impact negatively clustering performance.

We observe that many methods fail to scale to larger

datasets, which are now available due to improvements

in split-pool technology and droplet microfluidics. As

technologies improve and individual labs and inter-

national consortia lead efforts to generate ever larger

single-cell datasets, scalability will be an unavoidable

goal of method developments on a par with accuracy. As

many of our evaluated methods were designed in the

context of data generated from the Fluidigm C1 platform

(which produces ~ 102 cells), such approaches were

often incapable of analyzing large datasets. In particular,

the sci-ATAC-seq mouse dataset served as a useful re-

source to test the scalability of the methods that were

benchmarked (~ 80,000 cells). Notably, our evaluation

demonstrates that only SnapATAC was able to scale to

process and analyze this large dataset. Future methods

must be capable of processing datasets of this size espe-

cially adopting efficient data structures that allow out of

core computing. Our findings reinforce the need for

methods that not only are accurate but highly scalable

for scATAC-seq data processing.

Defining regions is an important step in constructing

feature matrices. Selecting informative regions generally

improves downstream analyses such as clustering to cap-

ture heterogeneity within cell populations. Peak calling

is a popular and straightforward way to define regions of

interest. We observe that clustering performance is not

generally impacted by using peaks defined from bulk

ATAC-seq data vs using peaks obtained from aggregat-

ing single-cell data based on FACS-sorting labels. How-

ever, performing peak calling by simply pooling reads

from single cells may obfuscate peaks specific to rare cell

populations leading to failures in uncovering them. In

addition, the Cusanovich2018 approach to identify

pseudo-bulk clades is a promising unsupervised way to

perform in silico sorting without relying on FACS-

sorting labels. This strategy potentially serves as a suit-

able way to preserve peaks specific to rare cell types.

Also choosing an appropriate number of peaks is im-

portant for improving the downstream analysis (for ex-

ample based on intensity/frequency-based given that

they perform similarly).

We are aware of the current limitations in our bench-

marking effort. We have compared single-cell ATAC-

seq methods based on their ability to separate discrete

cell populations; however, this might not be ideal when

dealing with a continuous cell lineage landscape. We ob-

serve that chromVAR generally works better in preserv-

ing a continuous space while SnapATAC tends to break

a putative landscape into discrete populations. The

choice of method is ultimately case-specific and may be

driven by the downstream application. For example, the

feature matrix obtained by chromVAR may be more

suitable for trajectory inference [29] while the one ob-

tained from SnapATAC may be more appropriate to

better identify discrete and well-separated cell popula-

tions by clustering. We acknowledge also that not all

tested methods were specifically designed to produce

clustering results. For example, chromVAR, Cicero, and

Gene Scoring were designed to determine important

marker genes and their regulatory logic or to infer

enriched TF binding sites within accessible chromatin

regions. However, because clustering is a critical part of

single-cell analysis and researchers frequently use output

from all methods to produce clustering results [1], we

felt that evaluating the clustering abilities using feature

matrices produced by each method was a useful meas-

ure. An additional limitation of our study is that it is im-

possible to create a simulation framework that models

an experimental outcome with perfect accuracy. Several

assumptions were made to enable our simulation of the

data; these assumptions are described in the “Methods”

section, where we detail explicitly how the simulated

data was generated.

Interestingly, we learnt that some combinations of fea-

ture matrices with the simple clustering approaches in-

cluded in our benchmarking framework perform even

better than the original combination proposed by the re-

spective authors. This highlights the value of this dual-

characterization (user vs designer perspective) and pro-

vides a summary of both perspectives to the readers.

We believe it is important to stress the distinction be-

tween biological realities and computational perform-

ance, especially in the context of unsupervised

clustering. A big and critical assumption (or hope) of

our field is that an unsupervised clustering procedure

will provide clustering solutions that recapitulate differ-

ent populations corresponding to different cell types/

states. Given that for several real datasets the ground

truth is not known, a current compromise during the ex-

ploratory clustering analysis is to use known marker

genes, sorted populations, or known tissues to validate
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the clustering solutions based on classic metrics. If we

embrace this assumption, keeping in mind that add-

itional validation is required to truly delineate the sub-

population structure of a population of cells, the two

views, biological and computational, can be reconciled.

Our benchmark procedure is aimed to provide some

guidelines based on explorative analyses that are cur-

rently adopted in several published papers.

Looking forward, due to the wealth of data being pro-

duced by new scATAC technologies, we hypothesize

that more powerful machine learning frameworks may

be able to uncover complex cis and trans relationships

that define cell-cell relatedness. Specifically, we antici-

pate autoencoder-like models that integrate genomic se-

quence context, gene body positions, and precise

accessible chromatin information will yield information-

rich features and that more advanced manifold learning

methods will help to remove redundancy and better pre-

serve heterogeneity within single-cell populations. Such

achievements may enable us to overcome the inherent

sparsity and high dimensionality that characterizes

scATAC-seq data.

Conclusions
Our benchmarking results highlight SnapATAC, cisTo-

pic, and Cusanovich2018 as the top performing

scATAC-seq data analysis methods to perform cluster-

ing across all datasets and different metrics. Methods

that preserve information at the peak level (cisTopic,

Cusanovich2018, Scasat) or bin level (SnapATAC) gen-

erally outperform those that summarize accessible chro-

matin regions at the motif/k-mer level (chromVAR,

BROCKMAN, SCRAT) or over the gene body (Cicero,

Gene Scoring). In addition, methods that implement a

dimensionality reduction step (BROCKMAN, cisTopic,

Cusanovich2018, Scasat, SnapATAC) generally show ad-

vantages over the other methods without this important

step. SnapATAC is the most scalable method; it was the

only method capable of processing more than 80,000

cells. Cusanovich2018 is the method that best balances

analysis performance and running time.

Based on the presented analyses, we showed that a few

methods outperformed others in terms of clustering per-

formances and running time. However, we believe that a

method based on the combination of modules used in

the best methods may outperform them. In support of

this idea, we found that simply altering the

normalization step or clustering approach significantly

improved the downstream clustering performance of

some methods. With this in mind, we believe it may be

possible to build a “maybe best” scATAC-seq computa-

tional method by adopting the most impactful modules

from the best-performing methods evaluated. Such mod-

ules include (1) defining features as peaks/fixed-size

bins, (2) count peaks/bins + binarization/TF-IDF/cover-

age bias correction, (3) dimensionality reduction, and (4)

community detection-based clustering. However, in ex-

ploring the best combination of modules to build such a

method, it is important to consider the balance between

clustering performance, running time, and memory re-

quirements. Such practical considerations are key to en-

abling the analysis of large datasets.

Taken together, our manuscript provides a framework

for evaluating and benchmarking new and existing

methodologies as well as provides important guidelines

for the analysis of scATAC-seq data. Importantly, we

provide more than 100 well-organized and documented

Jupyter notebooks to illustrate and reproduce all the

analyses performed in this benchmarking work. We be-

lieve our systematic analysis could guide the develop-

ment of computational approaches aimed at solving the

remaining challenges associated with analyzing

scATAC-seq datasets.

Methods
Our assessment of methods was based on public

scATAC-seq datasets made available in public repositor-

ies by the respective authors (see the “Availability of data

and materials” section). As such, we refer to the original

publications for further details on the experimental de-

sign and data pre-processing/alignment. For peak calling,

we used the ENCODE pipeline (https://www.encodepro-

ject.org/atac-seq/) except for the 10X PBMCs data for

which peaks were already available through the Cell

Ranger pipeline optimized for this technology. When-

ever changes were required for running a given method,

those are noted in the respective sections.

Datasets

Human hematopoiesis I (Buenrostro et al. [21])

This dataset comprised of 10 FACS-sorted cell popula-

tions from CD34+ human bone marrow, namely,

hematopoietic stem cells (HSCs), multipotent progeni-

tors (MPPs), lymphoid-primed multipotent progenitors

(LMPPs), common myeloid progenitors (CMPs),

granulocyte-macrophage progenitors (GMPs),

megakaryocyte-erythrocyte progenitors (MEPs), com-

mon lymphoid progenitors (CLPs), plasmacytoid den-

dritic cells (pDCs), monocytes, and an uncharacterized

CD34+ CD38− CD45RA+ CD123− cell population. A

total of 2034 cells from six human donors were used for

analysis. A peak file (including 491,437 peaks) obtained

from bulk ATAC-seq dataset was provided.

sci-ATAC-seq mouse tissues (Cusanovich et al. [1])

This dataset comprises cells from 13 tissues of adult

mouse, namely, the bone marrow, cerebellum, heart, kid-

ney, large intestine, liver, lung, prefrontal cortex, small
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intestine, spleen, testes, thymus, and whole brain, with

over 2000 cells per tissue. A total of 81,173 cells from 5

mice were used for analysis. A subset was obtained by

randomly downsampling 15% cells from each tissue and

was comprised of 12,178 cells.

Human hematopoiesis II (10X PBMCs)

This dataset is composed of peripheral blood mono-

nuclear cells (PBMCs) from one healthy donor. A total

of 5335 cells were used for analysis.

Simulated scATAC-seq datasets

In order to evaluate and benchmark various approaches,

we generated synthetic (labeled) data from downsam-

pling 18 FACS-sorted bulk populations that were previ-

ously described [19]. For ease of interpretation, we

considered only 6 isolated populations (HSC, CMP, NK,

CD4, CD8, erythroblast). For the erythropoiesis simula-

tion, eight additional populations (P1–P8) originally de-

scribed in [20] were also considered.

Our simulation framework starts with a peak x cell

type counts matrix (from bulk ATAC-seq) and generates

a single-cell counts matrix (C) for an arbitrary number

of synthetic single cells. Explicitly, for a simulated single

cell j and corresponding peak i from bulk cell type t, we

seek to generate ci, j where ci, j ∈ {0, 1, 2}, noting that

these values correspond to possible observations in a

diploid genome. Next, we define the rate ( rti ) at which

the peak i is prevalent in the bulk ATAC-seq data for

cell type t. This rate is determined by the ratio of reads

observed in peak i over the sum of all reads. Assuming a

total of k peaks for the matrix C and for user-defined pa-

rameters q (noise parameter; q ∈ [0, 1]) and n (number of

simulated fragments), we define ci, j as follows:

ci; j � rbinom 2; pti
� �

where

pti ¼ rti
� � 1

2
n

� �

1−qð Þ þ 1=kð Þ
1

2
n

� �

qð Þ

Intuitively, the parameter pti defines the probability that a

count will be observed in peak i for a single cell. Addition-

ally, pti can be decomposed into the sum two terms. As

q→ 0, the first term dominates, and the probability of ob-

serving a count in peak i is simply the scaled probability of

the ratio of reads for that peak from the bulk ATAC-seq

data (rti). Thus, when q = 0, the simulated data has no noise.

Conversely, as q→ 1, the second term dominates, and pti
reduces to a flat probability that is no longer parameterized

by the peak i or cell type t and thus represents a random

distribution of n fragments into k peaks.

The noise level we simulated attempts to mimic the non-

specific cutting from Tn5. To give a sense of the range of

this parameter on real data, we considered simply the num-

ber of reads falling outside peaks over the total number of

reads (excluding blacklisted regions). This calculation as-

sumes that reads in regions defined as peaks by a bulk or

pseudo-bulk measurement will be dominated by specific

cutting and that regions outside peaks will be dominated by

non-specific cutting. Using this approach, we estimated the

following noise levels: 0.38 for the Buenrostro2018 dataset,

0.22 for the 10X PBMC dataset, and 0.62 for the sci-

ATAC-seq mouse dataset. We would like to point out that

these rates may be slightly underestimated; a more careful

estimation would require one to consider the fact that, at

any given region of the genome, reads could be observed

from specific and non-specific cutting.

For bone marrow-based simulations, we simulated 200

cells per labeled cell type while for erythropoiesis-based

simulation we simulated 100 cells per labeled cell type.

Eventually, we have 1200 cells for each simulated dataset.

In the base simulations, we parametrized n = 2500 frag-

ments in peaks in expectation for all cells. For additional

simulations that compared different data coverages, we set

n to various values (5000, 2500, 1000, 500, and 250 re-

spectively) to benchmark this effect. To evaluate the effect

of noise in our simulation, we set q to three values (0, 0.2,

0.4) to benchmark the robustness to noise. At values of

q > 0.4, no method could reliably separate all the subpopu-

lations. Finally, since our simulation started at the reads in

the peak level, for some methods, the core algorithm asso-

ciated with the method was extracted in order to bench-

mark it in this setting. Additionally, full code to reproduce

these simulated dataset matrices has been made available

with our online code resources.

Peak calling

For real datasets, peaks were called using the ENCODE

ATAC-seq processing pipeline (https://www.encodepro-

ject.org/atac-seq). Briefly, single cells were aggregated

into cell populations according to cell type, obtained ei-

ther by FACS sorting or by tissue of origin. Peaks were

called for each cell population and merged into a single

file with bedtools [31].

Building the feature matrix

BROCKMAN

This method starts by defining regions of interest, which

will be scanned for k-mer content, as 50 bp windows

around each transposon integration site and merging

overlapping regions. Then, a frequency matrix of k-

mers-by-cells is built by counting all possible gapped k-

mers (for k from 1 to 8) within the previously defined

windows. This frequency matrix is scaled so that each k-

mer has mean 0 and standard deviation 1. Principal
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component analysis (PCA) is applied to the scaled k-

mers-by-cells frequency matrix, and significant principal

components (PCs) as estimated with the jackstraw

method are selected to build a final feature matrix for

downstream analyses.

chromVAR

This method starts by counting reads under chromatin-

accessible peaks in order to build a count matrix of

peaks-by-cells (X). Then, a set of chromatin features

such as transcription factor (TF) motifs or k-mers are

considered. Reads mapping to each peak that contains a

given TF motif (or k-mer) are counted in order to build

a count matrix of motifs-by-cells or k-mers-by-cells (M).

Moreover, a raw accessibility deviation matrix of motifs

(or k-mers)-by-cells (Y) is generated by calculating the

difference between M and the expected number of frag-

ments based on X. Then, background peak sets are cre-

ated for each motif (or k-mer) to remove technical

confounders. Background motifs (or k-mers)-by-cells

raw accessibility deviations are then used to calculate a

bias-corrected deviation matrix and to compute a devi-

ation z-score used for downstream analyses.

cisTopic

This method starts by building a peaks-by-cells binary

matrix by checking if a peak region is accessible, i.e., at

least one read falls within the peak region. Then, latent

Dirichlet allocation (LDA) is performed on this binary

matrix, and two probability distributions are generated, a

topics-by-cells probability matrix and a regions-by-

topics probability matrix. The former is the final feature

matrix for downstream analyses.

Cicero

This method defines promoter peaks as the union of an-

notated TSS minus 500 base pairs and macs2 defined

peaks around the TSS. It takes as input the peaks-by-

cells binary matrix. It also requires either pseudo tem-

poral ordering or coordinates in a low-dimensional

space (t-SNE) so that cells can be readily grouped. It

then computes the co-accessibility scores between sites

using Graphical Lasso. To get the gene activity scores, it

selects sites that are proximal to gene TSS or distal sites

linked to them and weight them by their co-accessibility.

Then, all the sites are summed and weighted according

to their co-accessibility to produce a genes-by-cells fea-

ture matrix that is used in this benchmarking analysis.

Gene Scoring

This method first constructs a peaks-by-cells count

matrix and defines regions of interest as the 50 kb up-

stream and downstream of gene TSSs. Then, it finds the

overlap between ATAC-seq peaks and TSS regions and

the peaks are weighted by a function of the distance to

the linked genes. Finally, the peaks-by-cells count matrix

is converted into genes-by-cells weighted count matrix

by multiplying the weighted peaks by genes matrix. The

genes-by-cells weighted count matrix is the final feature

matrix for downstream analyses.

Cusanovich2018

This method starts by binning the genome into fixed-

size windows (by default, 5 kbp), and building a binary

matrix from evaluating whether any reads map to each

bin. Bins that overlap ENCODE-defined blacklist regions

are filtered out, and the top 20,000 most commonly used

bins are retained. Then, the bins-by-cells binary matrix

is normalized and rescaled using the term frequency-

inverse document frequency (TF-IDF) transformation.

Next, singular value decomposition (SVD) is performed

to generate a PCs-by-cells LSI score matrix, which is

used to group cells by hierarchical clustering into differ-

ent clades. Within each clade, peak calling is performed

on the aggregated scATAC-seq profiles, and identified

peaks are combined into a new peaks-by-cells binary

matrix. Finally, the new peaks-by-cells matrix is trans-

formed with TF-IDF and SVD as before to get a matrix

of PCs-by-cells, which is the final feature matrix for

downstream analyses.

scABC

This method starts by building a peaks-by-cells count

matrix of read coverage within peak regions. Then, the

weights of cells are calculated by a nonlinear transform-

ation of the read coverage within the peak background,

defined as a 500-kb region around peaks. Since the

weights will be used as part of weighted K-medoids clus-

tering to define cell landmarks and further perform finer

re-clustering instead of normalizing the peaks-by-cells

matrix, the feature matrix in scABC is defined as the

peaks-by-cells count matrix.

Scasat

This method first constructs a peaks-by-cells binary ac-

cessibility matrix by checking if at least one read over-

laps with the peak region. Then Jaccard distance is

computed based on the binary matrix to get a cells-by-

cells dissimilarity matrix. Multidimensional scaling

(MDS) is further performed to reduce the dimension

and to generate the final feature matrix for downstream

analysis.

SCRAT

This method starts by aggregating reads from each cell

according to different features (such as TF motifs or re-

gion of interest of each gene), and then building a count

matrix of features-by-cells. The features-by-cells count
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matrix is normalized by library and region size to get the

final feature matrix for downstream analyses.

SnapATAC

This method starts by binning the genome into fixed-

size windows (by default 5 kb) and estimating read

coverage for each bin to build a bins-by-cells binary

count matrix. Bins that overlap ENCODE-defined black-

list regions are filtered out, as well as those with exceed-

ingly high or low z-scored coverage. Then, the bins-by-

cell matrix is transformed into a cells-by-cells Jaccard

index similarity matrix, which is further transformed by

normalization and regressing out coverage bias between

cells. Finally, PCA is applied to the normalized similarity

matrix, and the top PCs are used to build a PCs-by-cells

matrix that is the final feature matrix for downstream

analyses.

Clustering

For this study, we used three commonly used clustering

methods: k-means, hierarchical clustering (with default

ward linkage) as implemented in the scikit-learn library

[32], and Louvain clustering (a community detection-

based method) [33, 34] as implemented in Scanpy [35].

For both hierarchical clustering and k-means, we set the

number of clusters to the number of unique FACS-

sorted labels or known tissues. In the 10X PBMCs

scATAC-seq dataset, which lacks the FACS-sorted la-

bels, we instead set the number of clusters to 8 since this

is the expected number of populations based on previ-

ous studies [22]. For the Louvain algorithm, we set the

size of local neighborhood to 15 for all the datasets.

Since Louvain method requires “resolution” instead of

the number of clusters and different number of clusters

will affect the clustering evaluation, to make the com-

parison fair, we use the binary search algorithm on the

“resolution” (ranging from 0.0 to 3.0) to find the same

number of clusters as the other two clustering methods.

If the precise number of clusters did not match the de-

sired value, the “resolution” value inducing the closest

number of clusters to the desired value was used.

Metrics for evaluating clustering results

To evaluate clustering solutions for datasets with a

known ground truth (i.e., for each cell, we have a label

that indicated the cell type), we used three well-

established metrics: adjusted Rand index (ARI), mutual

information, and homogeneity. Briefly, for the ARI, first,

the Rand index (RI) is defined as a similarity measure

between two clusters considering all pairs of samples

assigned in the same or different clusters in the pre-

dicted and true clustering. Then, the raw RI score is ad-

justed for chance in the ARI score as described in the

following formula:

ARI ¼
RI−E RIð Þ

max RIð Þ−E RIð Þ

where RI is the pre-computed Rand index and E is the

expected Rand index.

Mutual information is a measure of the mutual de-

pendence between two variables. The mutual informa-

tion value is computed according to the following

formula, where |Ui| is the number of the samples in

cluster Ui and |Vj| is the number of the samples in clus-

ter Vj:

MI U ;Vð Þ ¼
X

jUj

i¼1

X

jV j

j¼1

j U I∩V j j

N
log

N j U i∩V j j

j U i‖V j j

The homogeneity score is used to check if the algo-

rithm used for the clustering can assign to each cluster

only samples belonging to a single class. Its value h is

bounded between 0 and 1, and a low value indicates low

homogeneity and vice versa. The score is computed as

follows:

h ¼ 1−
H Y truejY pred

� �

H Y trueð Þ

where H (Ytrue|Ypred) is the probability to assign true

samples to a set of predicted samples, while H (Ytrue) are

the labels of the samples.

To evaluate clustering solutions for the 10X PBMCs

dataset, we proposed a simple score called the Residual

Average Gini Index (RAGI) and compared the accessibil-

ity of housekeeping genes with previously characterized

marker genes [22]. We reasoned that a good clustering

solution should contain clusters that are enriched for ac-

cessibility of different marker genes, and each marker

gene should be highly accessible in only one or a few

clusters. First, to quantify the accessibility of each gene

in each cell, we used the Gene Scoring approach de-

scribed above. Briefly, the accessibility at each TSS is the

distance-weighted sum of reads within or near the re-

gion. Second, to quantify the enrichment of each gene in

each cluster of cells, we computed the mean of the ac-

cessibility values in all cells for each cluster. Third, based

on the vector of mean accessibility values (one per clus-

ter), we computed the Gini index [36] for each marker

gene. The Gini index measures how imbalanced the ac-

cessibility of a gene is across clusters. This score is

bound by [0,1] where 1 means total imbalance (i.e., a

gene is accessible in one cluster only) and 0 means no

enrichment. This score has been previously used on

scRNA-seq to perform clustering [37, 38]. As a control,

we also calculated the Gini index for a set of annotated

housekeeping genes reported in https://m.tau.ac.il/~
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elieis/HKG/HK_genes.txt. Housekeeping genes should

show minimal specificity for any given cluster since, by

definition, they are highly expressed in all cells. Based on

the set of Gini index values for marker and housekeep-

ing genes, we calculated several metrics: (i) the mean

Gini index for the two groups, (ii) the difference in

means to assess the average residual specificity that a

clustering solution has with respect to marker genes

(this is our proposed RAGI metric), and (iii) the

Kolmogorov-Smirnov statistic and its p value comparing

the two groups of Gini indices for marker and house-

keeping genes. We sorted the methods based on the de-

scending order of the differences in means

(Additional file 1: Table S13); a positive value indicates

that the marker genes on average separate the clusters

better than uninformative housekeeping genes.

Rare cell type-specific peak analysis

FACS-sorted bulk ATAC-seq data was downloaded and

processed from a previously described resource [7]. For

each simulation, we created a randomly sampled set of

200 million unique (PCR-deduplicated) reads, which

roughly represents a complexity similar to recommenda-

tions from the 10X Chromium scATAC-seq solution. Cell

type-specific peaks were defined using the full dataset for

each of the three cell types. Peaks were called using macs2

callpeak with custom parameters as in the ENCODE pipe-

line, i.e., “--nomodel --shift - 100 --extsize 200” to account

for Tn5 insertions rather than read abundance when infer-

ring peaks. Overlaps between the isolated minor popula-

tion and the synthetic mixtures were computed using

GenomicRanges [39] findOverlaps function, which is

equivalent to bedtools [31] overlap. For each minor popu-

lation (B cell, CD4+ T cell, monocyte) and each preva-

lence (1, 5, 10, 20, 30%), each simulation was repeated 5

times for a total of 75 simulations. Reads from the other

two (major) populations were sampled equivalently to

make up the synthetic mixture for comparison.
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