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SUMMARY

We present a detailed comparative study of three conservative schemes used to transfer interface
loads in fluid–solid interaction simulations involving non-matching meshes. The three load trans-
fer schemes investigated are the node-projection scheme, the quadrature-projection scheme and the
common-refinement based scheme. The accuracy associated with these schemes is assessed with the
aid of 2-D fluid–solid interaction problems of increasing complexity. This includes a static load
transfer and three transient problems, namely, elastic piston, superseismic shock and flexible inhibitor
involving large deformations. We show how the load transfer schemes may affect the accuracy of
the solutions along the fluid–solid interface and in the fluid and solid domains. We introduce a grid
mismatching function which correlates well with the errors of the traditional load transfer schemes.
We also compare the computational costs of these load transfer schemes. Copyright � 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Computational methods for fluid–solid interaction (FSI) simulations can be classified as tightly-
or loosely-coupled. The tightly-coupled (monolithic) approach solves the fluid and solid equa-
tions in a single computational domain using a single numerical framework [1]. The unified
treatment of both media tend to improve stability of this method. However, this coupling ap-
proach often suffers from the ill-conditioning of the associated matrices and from the inability
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to use existing fluid and solid solvers. These two disadvantages are addressed with the loosely-
coupled (partitioned) approach [2], which uses separate and independent techniques for the
fluid and solid subdomains and exchanges data along the fluid–solid interfaces (i.e. transfer
of jump conditions for kinematic compatibility and dynamic equilibrium) via a fixed-point
iteration scheme. The loosely-coupled approach can thus take full advantage of existing, well
developed and tested codes for fluid and solid analysis. Solvers with disparate discretization
scheme can be ‘plugged’ into a loosely-coupled framework, with the only changes of obtaining
the appropriate boundary conditions from the framework.

The loose coupling approach presents two key areas of challenges. The first one is concerned
with the stability, accuracy and convergence of staggered time-integration schemes used for the
partitioned approach [2, 3]. The second one, which is the primary focus of this paper, deals with
data transfer between differing mesh representations of the fluid and the solid subdomains. Such
meshes are in general non-matching (i.e. have disparate nodal connectivities and positions along
the interface) because of differing mesh resolution requirements or discretization schemes. For
example, the fluid system usually requires a finer mesh to capture non-linear features such as
shock waves and boundary layers. In addition, different types of elements used by the solvers
and discretization errors in the respective subdomain geometries can also cause mesh mismatch
on the interface.

In this paper, we consider the problem of enforcing the equilibrium on the fluid–solid interface
boundary by transferring the fluid traction across a discrete mesh interface, and applying the
traction boundary condition on the ‘wet’ surface of the solid. This load transfer between non-
matching meshes must be numerically accurate (small errors in a specific norm) and physically
conservative (balance of loads). While several schemes can ensure conservation [4–6], their
levels of the accuracy in load transfer differ substantially and have significant impact on the
solutions of the coupled system.

Our emphasis hereafter is to study the accuracy of conservative load transfer in the coupled-
field problems with an aid of explicit 2-D loosely coupled FSI framework using a partitioned
approach. The framework combines a compressible fluid solver, an explicit elastodynamic
solid solver, and three conservative load-transfer schemes: the node-projection scheme of
Farhat et al. [4], the quadrature-projection scheme of Cebral and Löhner [5], and the common-
refinement based scheme of Jiao and Heath [6]. Although the comparative examples presented
hereafter are 2-D, all these load transfer schemes have been used in 3-D FSI simulations.
A short discussion of the computational costs and 3-D extension of these schemes are provided
at the end of this paper.

The detailed and systematic comparative study of the accuracy of these three load-transfer
schemes is presented using a 1-D static analysis and three transient fluid–solid interaction
problems. The first two FSI problems have analytical solutions and allow us to determine
the predictive accuracy of the coupling. The first transient problem is 1-D in nature and
consists of expansion fans in the fluid and a compression wave in the solid. The next transient
problem involves a superseismic shock load over an isotropic elastic solid. Both problems have
fully coupled fluid–solid interactions and are relevant to the problems of high pressure/speed
compressible flow interacting with solid materials (e.g. blast waves, pressurized piston). Finally,
to assess the precision of the load transfer schemes in problems involving large dynamic
deflections, we simulate a flexible inhibitor protruding into the core flow.

The outline of this paper is as follows. Section 2 describes the interface coupling conditions
and the load transfer schemes. Sections 3–6 present the spatial accuracy comparison of the load
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transfer schemes for the FSI problems of increasing complexity. Section 7 provides a short
discussion about cost evaluation and 3-D aspects of the load-transfer.

2. GENERALIZED INTERFACE COMPUTATIONS FOR PARTITIONED APPROACH

In the partitioned approach, the decomposed subdomains of the fluid and solid share a common
interface boundary. In computational aeroelastic applications, the solid equations are conven-
tionally formulated in Lagrangian co-ordinates on a mesh that moves along with the material,
while the fluid equations are formulated in Eulerian co-ordinates, where the mesh serves as a
fixed reference for the fluid motion. In a partitioned approach for FSI, the fluid and solid com-
ponents are solved on separate computational domains, and the aforementioned formulations
require moving the fluid mesh at each time step. To avoid severe grid distortions under large
deformations, this paper adopts the three-field arbitrary Lagrangian–Eulerian (ALE) formulation
proposed in Reference [7]. In this formulation, the moving fluid mesh is treated a third field
solved as a pseudo-elastodynamic system.

As illustrated in Figure 1, the coupling of the subdomains is done through exchanging
boundary conditions along the interface by imposing compatibility and equilibrium conditions.
This section describes the numerical schemes for transferring boundary conditions across the
discrete fluid–solid interface. Although non-conservative interpolation-based schemes have been
proposed for FSI applications [8], we focus on conservative transfer schemes as conservation
has been found to be crucial for the repeated data transfer of large spatial gradients (e.g.
shocks) [4, 5] and for the stability of partitioned based method [9].

2.1. Interface conditions and requirements

At each FSI cycle, two interface boundary conditions corresponding to continuity of tractions
and velocities, must be satisfied along the fluid–solid interface �f/s, or simply �. Let tf and

Displacement

Fluid SolverSolid Solver

Nodal

Surface
Nodal Force Surface

Fluid Traction

Motion Transfer
Fluid Mesh

Motion

Load Transfer

Figure 1. FSI simulation cycle for discrete interface.
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uf denote the fluid traction vector and the fluid displacement fields along �f , respectively, and
ts and us denote the solid traction vector and the solid displacement fields along �s. The
equilibrium of tractions and compatibility of velocity field can be expressed as

ts = tf (1)

�us

�t
= �uf

�t
(2)

where tf = − pfnf + �f · nf and ts = �s · ns. Here, pf is the fluid pressure along the interface;
�f and �s are the fluid viscous tensor and solid stress tensor, respectively; nf and ns are
the normals at the fluid interface �f and solid interface �s, respectively. For inviscid flows,
Equation (2) is replaced by the slip-wall boundary condition

�us

�t
· ns = �uf

�t
· nf (3)

and the fluid traction vector in Equation (1) only includes the effect of the pressure field,
i.e. tf = −pfnf .

For matching interfaces where �f and �s have the same geometry, nf and ns are along the
same directions with opposite signs. However, for non-matching interfaces, their geometries
and associated normal directions can in general differ due to discretization errors. To avoid
ambiguity, a common normal direction n̂ can be defined as a linear combination of nf and ns,
i.e. n̂f ≡ f(nf , ns) and n̂s ≡ − n̂f .

In general, while the fluid system addresses the traction field vector tf on the element surfaces
on the interface, the solid system is solved based on a set of concentrated forces at the nodes
on the interface. A distributed fluid load, therefore, must be transferred into equivalent nodal
forces along the solid interface. Such a transformation must satisfy conservation of loads, i.e.
the solid nodal load vector must yield the same net load vector as the original distributed
fluid traction loads. Let mf and ms be the number of fluid and solid nodes on the fluid
and solid interface meshes, respectively. Let Rf ≡ ∫

� tf d� denote the fluid load vector and
Rs ≡ ∫

� ts d� the solid load vector. Conservation of loads can be expressed as

Rs =
ms∑

j=1
Rj

s =
mf∑
i=1

Ri
f = Rf (4)

where the Ri
f is the concentrated force associated with the fluid node i, and R

j
s is associated

with the solid node j .
However, the conservation of loads can be satisfied by an infinite number of possible nodal

load vectors. To be physically consistent and meaningful, the transformation of load must
also be highly accurate, i.e. to have a small errors in a specific norm, and, preferably, the
conservation of energy should be satisfied. For the evaluation of the energy, the definition of
the virtual work can be conveniently used [4, 6].
2.2. Load transfer formulation

We describe a formulation for conservative load transfer (i.e. for which total load on the solid
surface is exactly that on the fluid surface) based on a Galerkin weighted residual method.
This formulation is similar to the mortar element method used in domain decomposition [10]
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and in contact mechanics [11]. This scheme also leads to an energy conservation across the
fluid–solid interface under certain conditions [4, 6, 12].

Let Ni
f and N

j
s denote the standard finite element shape functions associated with node i

of the fluid and node j of the solid interface mesh, respectively, and t̃if and t̃js the approx-
imate tractions at the corresponding nodes. The traction fields tf and ts over �f and �s are
interpolated as

tf(x) ≈
mf∑
i=1

Ni
f (x)t̃if , ts(x) ≈

ms∑
j=1

Nj
s (x)t̃js (5)

respectively. The transfer of distributed loads is therefore to solve for t̃js given t̃if , Ni
f , and N

j
s .

To obtain good approximations for t̃s, we minimize the L2 norm of the residual ts − tf , i.e.

‖ts − tf‖2 =
√∫

�
(ts − tf)

T(ts − tf) d�

This minimization problem can be solved with the aid of the Galerkin weighted residual method
by multiplying both sides by a set of weighting functions (Wi = Ni

s ) and integrating over the
interface boundary �, i.e. ∫

�
Wits d� =

∫
�

Witf d� (6)

From the above derivation, we obtain a discrete linear system for load transfer

[Ms]{t̃s} = {Rs} (7)

where [Ms] is the consistent mass matrix for solid interface elements and is defined by

[Mij
s ] =

∫
�

Ni
s N

j
s d� (8)

and {Rs} is the concentrated force vector to be used by the solid solver,

{Rj
s } =

∫
�

Ni
s t̃f d� (9)

This semi-discrete form in Equation (7) is conservative from the summation property of the
shape functions,

∑
j N

j
s = 1. In typical FSI applications, it is sufficient to evaluate Equation (9)

without solving Equation (7) for t̃s. However, Equation (7) provides a useful tool in the analysis
of errors in {Rj

s }, and allows to extract the traction vector for the solid solvers which supports
only tractions as the boundary conditions.

Similar treatment of the interface displacement condition can be derived using Equation (2).
However, one may choose to transfer the displacements by a pointwise interpolation scheme,
as conservation is not required for the moving fluid system analysis. The following subsection
describes the integration scheme for evaluating the nodal load vectors.
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(a) (b)

Figure 2. Unstructured planar interface meshes for coupled simulations:
(a) matching; and (b) non-matching.

2.3. Discretization schemes

The discretization of the load vector Rs is more involved than that of Rf , because tf is defined
on fluid boundary �f while the shape function Ns is defined on the solid surface boundary �s.
The interface may be matching (i.e. each nodal point of � is shared by both the fluid side �f
and solid �s) or, more generally, non-matching (i.e. some of nodal points are not shared by the
meshes of both domains, and �f and �s may not coincide with �). Figure 2 demonstrates the
load and motion transfers between the fluid and solid solvers for matching and non-matching
unstructured meshes.

2.3.1. Node-projection scheme. As proposed in Reference [4], this scheme projects the fluid
nodes onto the solid surface element to extract the load vector on the solid interface nodes.
Let N

j
s be a shape function associated with the node j of the solid surface element e. This

scheme can be outlined as follows:

• Associate each fluid node on �f with the closest solid interface element on �s.
• Determine the projection of the fluid node onto the solid element.
• Multiply Rf inside the solid element with N

j
s .

The extracted load vector on the solid surface node is then

Rj
s =

mf∑
i=1

Nj
s (xi )Ri

f (10)

where xi denotes the location of node i of the fluid interface mesh. Figure 3 demonstrates this
load transfer scheme using a 1-D interface consisting of six nodes on the fluid side (source
mesh) and five nodes on the solid side (target mesh). From the summation property of shape
functions, the nodal loads is conservative in the sense of Equation (4).
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Figure 3. Illustration of node-projection based load transfer scheme.
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Figure 4. Illustration of quadrature-projection based load transfer scheme.

2.3.2. Quadrature-projection scheme. Similar to the node projection approach, this scheme
projects the fluid quadrature points onto the solid surface element to extract ts and Rs on
the solid boundary [5]. An illustration of this scheme is given in Figure 4. It can be considered
as a rough discretization of the Galerkin weighted residual method, where the integration is
performed piecewise over the fluid interface elements with numerical quadrature. Specifically,
Rs is evaluated by

Rj
s =

ef∑
i=1

∫
�i

f

Nj
s t̃f d� (11)

where ef denotes the number of elements on the fluid interface mesh, and �i
f denotes its

ith element. To avoid the situation in which a solid target element would receive no load,
this scheme may rely on an adaptive quadrature rule by adaptively increasing the number of
quadrature points. Further details about this load transfer scheme can be found in Reference [5].

The quadrature-projection scheme is also conservative in the sense of Equation (4). However,
it can be very inaccurate due to a violation of the regularity assumption of the quadrature
rules. In particular, given a solid node j contained in the interior of a fluid element, the shape
function N

j
s associated with the node is a hat function. Therefore, N

j
s t̃f in Equation (11)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:2014–2038



ASSESSMENT OF CONSERVATIVE LOAD TRANSFER SCHEMES 2021

exhibits discontinuity within the fluid element, and its integration using the quadrature points
of the fluid element may involve arbitrarily large error. A similar inconsistency also applies to
the node-projection scheme. Furthermore, the errors in these two schemes do not tend to zero
as the input meshes are refined simultaneously, and hence they may result in non-convergence
in grid refinement.

2.3.3. Common-refinement based scheme. In Reference [6], Jiao and Heath proposed a common-
refinement based scheme to resolve the violation of the regularity assumption. For piecewise
constant functions, this scheme reduces to area-weighted averaging schemes in finite volume
methods [13]. This scheme utilizes a common refinement, which is composed of the intersection
of the elements of the fluid and solid meshes along the interface. This intersection defines
subelements, as illustrated in Figure 5, over which the integration is performed. Algorithms for
surface meshes are described in Reference [14], and this scheme in 2-D can be summarized
as follows:

• Project the fluid interface nodes onto the solid mesh along the normal directions, where
the normals are computed via element averaging.

• Sort the union of solid nodes and the projections of fluid nodes on the solid mesh to
determine subelements on solid, and the inverse projections of fluid and solid nodes
determine the corresponding subelements on the fluid mesh (as shown as the intermediate
line in Figure 5).

• Integrate over the subelements using linear combination of fluid and solid geometry to
compute Rs.

In this scheme, the load vector R
j
s over the common refinement nodes is computed as

Rj
s =

ec∑
i=1

∫
�i

c

Nj
s t̃f d� (12)

R R R R R

R

Figure 5. Illustration of common-refinement based load transfer scheme.
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where ec denotes the number of subelements on the common refinement, and �i
c denotes its ith

subelement. As Ns and Nf are both low-degree polynomials within a subelement, the integration
can be evaluated exactly using quadrature rules. To ensure optimal convergence and robustness,
the quadrature rules should be sufficiently accurate to integrate the product NsNf exactly.

Since the common-refinement based scheme minimizes the L2 norm exactly, it is conservative
and its discretization error is O(h2

f + h2
s ), where hf and hs are the mesh resolutions of fluid

and solid meshes, respectively. Therefore, the scheme can transfer piecewise linear functions
exactly [6]. By minimizing the Sobolev normal, the common-refinement based method can also
handle strong gradients in the solution, unlike other higher-order interpolation methods which
may experience spurious oscillations [6]. Computationally, the scheme is fairly inexpensive and
easy to implement for curves.

2.4. Time discretization and temporal coupling

The fluid and solid solvers are integrated in time synchronously, thus there is a need for a
continual transfer of load and motion at the interface. Therefore, a temporal coupling and
updating is performed among fluid, mesh motion and solid solvers. It is likely that the time
steps required by fluid and solid solvers are different, as the fluid and solid solvers generally
employ different time integrators and different grid resolutions.

However, a common time step �tc is used herein to focus on spatial variation issues. This
time step is determined by

�tc = min(�tf , �ts) (13)

where �tf and �ts are fluid and solid time steps, respectively, and are restricted by their
respective Courant–Friedrichs–Levy (CFL) conditions.

Assuming that the fluid, solid and mesh motion solutions are known at time tn, we obtain
the solution of the coupled FSI system at time tn+1 using the following explicit coupling
procedure:

1. Predict the state (i.e. displacement) of the solid at the end of the current time step (tn+1).
2. Calculate the mesh movement during the current time step.
3. Integrate the fluid system to the next time level.
4. Update the solid to next time level using the load vector on the interface.

To assess the accuracy associated with the three conservative load transfer schemes, we turn
our attention next to four test problems of increasing complexity: the first problem involves
a static planar interface with varying grid resolutions and other three transient fluid–solid
interaction problems with the deforming interfaces. As we mentioned earlier, for simplicity, our
experiments focus on 2-D FSI problems. The comparative assessment of the precision of the
three load transfer schemes is however expected to generalize to higher dimensions.

3. STATIC ANALYSIS OF LOAD TRANSFER SCHEMES

The objective of this study is to assess systematically the sensitivity and accuracy of the load
transfer schemes with respect to the mesh resolutions and mismatches. We transfer tractions on
the fluid (source) interface mesh �f to nodal forces at the solid (target) interface mesh �s, where
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the geometry of the interface is flat. A range of mesh mismatches are obtained by varying the
ratio of number of source (fluid) and target (solid) elements (with matching end points of �f
and �s). A pressure profile is prescribed analytically over the interface to have either constant,
linear, or quadratic functions on �f . The number of nodes of the fine mesh is fixed, while that
of the coarse mesh vary. To normalize the range of the relative grid resolution of fluid (hf )
and solid (hs) meshes for plotting purpose, we define a mesh ratio parameter �m as

�m = 1 − (hf/hs)

1 + (hf/hs)

which ranges between −1 and 0 if the solid mesh is finer and ranges between 0 and 1 otherwise.
The shape functions are assumed to be linear, so the approximation of pressure on �f is

piecewise linear. We compute relative errors in the load vector Rs as

�l = ‖Rnumerical
s − Rexact

s ‖2

‖Rexact
s ‖2

where Rexact
s is computed over �s from the analytical pressure profile, and Rnumerical

s is obtained
from one of the load transfer schemes. If the pressure over �s was obtained by solving
Equation (7), then relative errors in the pressure could be defined similarly.

Figure 6 shows the dependence of the error �l in Rs on the mesh ratio parameter �m for a
linear pressure profile with 41 nodes on the fine mesh. The common-refinement based scheme
performs consistently well for all the mesh mismatch cases, with an error near the machine
precision. For the node- and quadrature-projection schemes, on the other hand, more than 12
orders of magnitude larger errors are observed for almost all cases. The errors in the latter
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Figure 6. Dependence of load vector error on relative mesh parameter �m
for the three load transfer schemes.
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(a) (b)

Figure 7. Correlation between load vector error and grid mismatch function gmm(hf , hs) for:
(a) node-projection scheme; and (b) quadrature-projection scheme.

two schemes oscillate drastically with respect to �m and are at near machine precision at
isolated points when the fine mesh is nested in the coarse mesh. Similar error profiles were
obtained when using quadratic, and even constant pressure profiles on the source mesh. In
a mesh refinement study using 81 and 161 nodes for finer meshes, the errors in node- and
quadrature-projection schemes show the same trend and have the same orders of magnitude,
demonstrating that errors in these schemes do not tend to zero as input meshes are refined
simultaneously. Similar results were obtained using other error measures.

As stated earlier, the reason of large errors in the node- and quadrature-projection schemes
is the violation of regularity assumption of the quadrature rules. To verify this claim and
characterize the oscillatory patterns in the errors, we define a grid-mismatch function

gmm(h1, h2) =
∣∣∣∣max

{
nint

(
h1

h2

)
×

(
h2

h1

)
,

(
h2

h1

)}
− 1

∣∣∣∣ (14)

where the nint function rounds a real number to its nearest integer. The gmm function for a
given mesh measures how close the ratio between h1 and h2 is to a positive integer, and a
larger value of gmm would, in general, correspond to a more severe violation of the regularity
assumption.

For the node-projection scheme, a strong correlation between the relative error with
gmm(hf , hs) exists, as demonstrated in Figure 7(a), where the peaks and dips of errors
follow those of this grid-mismatch function. For the quadrature-projection scheme, which ap-
plies an adaptive quadrature rule when the fluid (source) mesh is coarse, the errors correlate to
a symmetric grid-mismatch function, min{gmm(hf , hs), gmm(hs, hf)}, as shown in Figure 7(b).
The strong correlations between the errors in node- and quadrature-projection schemes and the
grid-mismatch functions relate the sensitivity of these methods to the grid mismatch, and will
help to discuss errors in following FSI problems.

4. ELASTIC PISTON PROBLEM

To evaluate the integrated framework for transient fluid–solid interaction, the accuracy of the
load transfer schemes are compared for three test problems involving the coupling of an
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inviscid fluid with a solid, where the interface is assumed to be impermeable, non-reactive
and adiabatic. With these assumptions, the interface can be treated as a contact discontinuity
with the following properties: (a) no mass flux; (b) no jump in normal velocity; (c) free-slip
boundary condition for the tangential velocity; (d) no jump in the normal stress. However,
in these problems, jumps in density and entropy across the discrete fluid–solid interface are
allowed. All the above conditions and treatments are enforced by the interface coupling schemes
through the application of boundary conditions at discrete times.

The first comparative assessment involves the analysis of a transient quasi 1-D FSI prob-
lem consisting of expansion fans in the fluid domain coupled with a compression wave in
the elastic material domain. This flexible piston problem has a 1-D analytical solution for an
inviscid compressible flow and linearly elastic solid. The closed-form solution is used to verify
the coupling of fluid–solid interaction as well as for the accuracy analysis of the load transfer
schemes. Figure 8 shows the expansion fans associated with the movement of an interface of
elastic piston lying between rollers. Initially, the fluid domain has quiescent inviscid compress-
ible fluid. It is assumed that there is no reflection of expansion fans in the fluid domain and
compression wave in the solid domain.

We use a perfect gas (� = 1.4) with the physical parameters, an initial density �0 =
8.75 kg/m3, and an initial pressure p0 = 100 MPa. For the elastic solid, we choose prop-
erties similar to that of aluminum, with Poisson’s ratio � = 0.29, density �s = 2800 kg/m3,
and Young’s modulus E = 70 GPa. From these properties, we obtain the speed of sound
c0 = √

�p0/�0 = 4000 m/s in the fluid and the dilatational wave speed cd = √
E/�s(1 − �2) =

5224 m/s in the solid domain for plane stress assumption. We consider the entire coupled
system to be quiescent and stress free at t = 0 for the fluid and solid, respectively. Figure 8

fluid

expansion 
fans wave

interface solid

(a)

P

t=0 t > 0

compression

PP

head

tail

xx
(b)

Figure 8. (a) Schematic of elastic piston problem; and (b) pressure as function of x for simple centered
expansion fans in fluid domain and compression wave in solid domain.
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shows the computational domain for this problem. The Eulerian fluid domain is closed by slip
walls other than solid interface boundary. The Lagrangian solid domain has roller boundary
condition on the top and bottom walls and traction free condition along the vertical end.

Figure 9 shows the solution of velocity field for expansion fans in the fluid domain and a
compression wave in the solid domain obtained with matching meshes. Note that the result is
effectively one dimensional in the fluid and solid domains. Furthermore, the fluid properties
before, after, and in the expansion fans and the solutions of solid domain and of interface
velocity are consistent with the analytical solution.

Next, we analyse the effects of non-matching load transfer schemes in the interface solution
(displacement and velocity) of solid surface, using disparate meshes across the fluid–solid
interface. Figure 10 shows two pairs of representative meshes used in this study, where the
resolution of the fluid mesh (hf ) is fixed and the resolution of solid mesh (hs) is varied to
obtain various mesh mismatches.

Although the theoretical solution is 1-D, with an interface front moving at a uniform speed,
the non-matching interface meshes yield spatial variations and in the local interface velocity in
the x direction (u̇x,I ). We evaluate the spatial non-uniformity of the velocity from the interface
averaged solution (u̇averaged

x,I ) over the range of time evolution as

�v = ‖u̇x,I − u̇
averaged
x,I ‖2

‖u̇averaged
x,I ‖2

(15)

X/H

Y
/H

0 1 2 3 4
0

0.5

1

interfacefluid solid

Figure 9. Contour plot of calculated velocity field for the elastic piston
problem with matching interface meshes.
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Figure 10. Representative meshes for the elastic piston problem: (a) fine-to-coarse projection case
(hf/hs) = 0.625; and (b) coarse-to-fine projection case (hf/hs) = 1.5.
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Similarly, the non-uniformity in the x component of the interface displacement (ux,I ) from the
averaged interface displacement (uaveraged

x,I ) is evaluated as

�d = ‖ux,I − u
averaged
x,I ‖2

‖uaveraged
x,I ‖2

(16)

Figure 11 depicts the evolution �v and �d for the repeated load transfer in fine-to-coarse
projections with hf/hs = 0.875 and 0.5, respectively, with the time normalized by the time travel
of the dilatational wave speed cd along the interface height H . It is apparent that in the case
of hf/hs = 0.875, significantly larger non-uniformity errors exist in the interface velocity and
displacement for the traditional schemes compared to the common-refinement based scheme,
especially for the quadrature-projection scheme. In the case of hf/hs = 0.5, where the grid

Figure 11. Evolution of non-uniformity in interface velocity (�v) and displacement (�d) obtained
for the elastic piston problem with the three load transfer schemes. The top figures correspond to

hf/hs = 0.875 and the bottom figures to hf/hs = 0.5.
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mismatch function is 0 (i.e. each solid node has a matching fluid node), all three load transfer
schemes give the same non-uniformity errors in the velocity and displacement as expected.

Figure 12 depicts the non-uniformity in the interface velocity and displacement in the
cases of two coarse-to-fine projections with hf/hs = 1.125 and 1.5. Similar to the previous
mismatched fine-to-coarse results, the case of hf/hs = 1.125 shows significantly larger non-
uniformity errors for the traditional schemes compared to the common-refinement based scheme.
The case of hf/hs = 1.5 also suffers from larger oscillatory errors and instability for the node-
projection scheme due to severe violation of regularity assumption of the quadrature rules. The
common-refinement based scheme, on the other hand, has orders of magnitude smaller errors
in both cases.

Furthermore, we observe the dependence of time-averaged interface non-uniformity errors
on the mesh mismatch similar to the 1-D static study. To obtain a time-averaged measure, we

Figure 12. Evolution of non-uniformity in interface velocity (�v) and displacement (�d)
obtained for the elastic piston problem with the three load transfer schemes. The top

figures correspond to hf/hs = 1.125 and the bottom figures to hf/hs = 1.5.
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(a) (b)

- -

Figure 13. Dependence of time-averaged interface velocity error �v on mesh mismatch and correlation
with grid mismatch function, where the symbols correspond to numerical values obtained for the

elastic piston problem: (a) node-projection scheme; and (b) quadrature-projection scheme.

integrate the evolution profiles of interface velocity non-uniformity (see Figures 11 and 12) of
the load transfer schemes. Thus, the time-averaged error of the interface velocity �v is given by

�v =
∫ T

t∗=0�v dt∗∫ T

t∗=0 dt∗
(17)

where t∗ ≡ cdt/H is a non-dimensional time scale, and T is equal to 2.5 in the present cal-
culation. Figure 13 shows correlations between grid-mismatch functions and the time-averaged
non-uniformity errors for the node- and quadrature-projection schemes. These correlations are
consistent with the 1-D static analysis presented in Section 3 indicating the appropriateness
of gmm to explain such errors. Similarly, the time-averaged error for the common-refinement
based scheme is less than 10−4 and thus several orders of magnitude smaller than these two
schemes as noted previously, and is nearly zero in the scale used in the plots in Figure 13.

5. SUPERSEISMIC SHOCK PROBLEM

In another comparative study between the three load transfer schemes, we simulated the 2-D
fluid–solid interaction problem consisting of a shock in a compressible fluid traveling at a
superseismic speed over an elastic half space, i.e. at a speed Vsh that exceeds the dilatational
wave speed of the solid (Figure 14(a)). This problem presents an interesting coupling between
fluid and solid solutions since the deformation of the elastic solid behind the traveling shock
affects the fluid flow by changing the shock angle and thereby the intensity of the pressure jump
across the shock. Furthermore, this problem is also chosen because it has an analytical similarity
solution in the frame of the traveling shock and thereby constitutes an excellent test problem
for the explicit 2-D FSI framework described in earlier sections and, in particular, the interface
transfer schemes. This problem was first investigated analytically by Bleich [15], who studied
the coupled wave systems created by superseismic load over elastic and granular material.
It was also used in Reference [16] to test the accuracy of a level set scheme for coupled
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Figure 14. Schematic and computational domain of superseismic shock problem, and details of the
non-matching meshes near the interface.

simulations using matching meshes. For completeness, the analytical solution is summarized
in Appendix A.

In this verification study, we select the fluid flow and solid material properties such that the
acoustic impedances of the two media are comparable and a significant superseismic coupling
occurs. For the linear elastic solid, we use the properties similar to those of copper: Poisson’s
ratio � = 0.33, density �s = 8970 kg/m3, and Young’s modulus E = 110 GPa. For the fluid, we
use a perfect gas with an artificially high initial density, �1 = 1033 kg/m3, and an initial pressure
p1 = 5.55 GPa. The initial upstream Mach number for this problem is M1 = 2.952. We consider
the unshocked fluid system to be under initial pressure p1 and solid domain to stress free.
The net traction along the interface, �p, is computed by subtracting p1 from the calculated
Eulerian fluid pressure field behind the shock p2 (see Appendix A). This yields a zero applied
pressure load in the undisturbed fluid region. As indicated in Figure 14, the boundary conditions
for the fluid solver are supersonic inflow on the left side of the domain, and along the mesh
boundaries that are not in contact with the fluid, the solid domain has unconstrained and roller
boundary conditions. Figure 14 also depicts the non-matching meshes for the fluid and solid
domains along the interface. We have chosen uniform triangular meshes to avoid any numerical
oscillations caused by the finite volume and the finite element discretizations in the fluid and
solid domains, respectively.

The coupled problem is then solved first with a sufficiently resolved matching interface, for
which the three load transfer schemes yield the same solution, and then for non-matching fluid
and solid meshes. Special emphasis is placed on the resulting deformed shape of the interface
and on its effect on the fluid and solid solution in the vicinity of the fluid–solid interface.
Typical numerical solutions obtained with matching and non-matching meshes are presented in
Figure 15, clearly showing the normal shock propagating in the fluid domain, the p- and s-wave
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Figure 15. Superseismic shock problem: contours of pressure in the fluid domain and shear
stress in the solid domain for various load transfer schemes: (a) matching meshes (hf/hs = 1.0);
(b) common-refinement based scheme; (c) quadrature-projection scheme; and (d) node-projection

scheme. In (b)–(d), the interface meshes do not match and hf/hs = 0.875.

‘Mach cones’ in the solid domain, and the deformation of the fluid–solid interface behind the
shock. Note that in the analytical solution, the interface is predicted to remain straight with
an angle that depends on the shock speed and the material properties. Figure 15(a) presents
contour plots of the pressure distribution in the lower fluid domain and of the shear stress
distribution in the upper solid domain for the matching interface meshes. Again, the three load
transfer schemes yield the same results for the matching meshes and these compare well with
the analytical solution. The analytical and numerical values of the various angles entering this
problem, as defined in Figure 14, are presented in Table I for the case of matching interface
meshes. The solution with the matching interface is used as the reference numerical solution
achievable with the explicit FSI scheme for the given spatial and temporal discretizations.

Figures 15(b)–(d) present contour plots obtained with the three load transfer schemes using
the same spatial and temporal discretization for a non-matching interface with hf/hs = 0.875
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Table I. Analytical and numerical angles of the superseismic shock
problem with matching meshes.

Variable Analytical (deg) Numerical (deg) Error (approx) (%)

� 4.23 4.14◦ ± 0.04◦ 2.36
�s 11.13 11.36◦ ± 0.09◦ 2.06
�p 27.49 28.16◦ ± 0.12◦ 2.43
� 1.71 1.73◦ ± 0.08◦ 1.11

(a) (b)

Figure 16. Comparison of interface and fluid solutions: (a) deflection angle �; and
(b) pressure p along the fluid boundary. xsh and Vsh denote the theoretical shock

position and speed, respectively.

(i.e. �m = 0.067). Figure 15(b) corresponds to the common-refinement based load transfer
scheme. For this load transfer scheme, the interface deflection is straight, and the fluid and
solid solutions are quite uniform and similar to matching interface solutions. On the other
hand, the results shown in Figures 15(c) and (d) exhibit significant spurious oscillations along
the interface due to the inaccurate load transfer by quadrature- and node-projection schemes,
respectively. Such errors and oscillations are especially prominent with the quadrature-projection
scheme, as also observed in the elastic piston problem.

Figure 16(a) shows the spatial variation of the interface deflection angle in radians of the
fluid–solid interface for the non-matching meshes, using the matching-mesh and exact solutions
as references. This angle is calculated using the slope of piecewise linear segments. We observe
substantial errors in the interface displacement for the traditional load transfer schemes, while
the common-refinement based scheme yields a uniform and smooth interface displacement very
similar to the matching mesh solution. Furthermore, inaccuracy in the load transfer not only
affects the deformed shape of the interface, but also the solution in the fluid and solid domains.

This effect is quantified in Figure 16(b), which shows a comparison between the analytical
and numerical distributions of the normalized fluid pressure p/p2 along the fluid–solid interface.
The numerical values have been obtained for matching and non-matching meshes with the three
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load transfer schemes. As expected, in all cases, the numerical solutions tend to smoothen the
shock at x ≈ xsh, where xsh denotes the theoretical shock location. The pressure rise is ‘smeared’
over the 5 or 6 elements (see Figure 16(b)). However, the figure clearly illustrates the oscillatory
nature of the solution further behind the shock (x<xsh) obtained with the two traditional load
transfer schemes, with errors reaching up to 20%. The common-refinement based scheme,
however, yields results almost identical to those obtained with matching meshes. We have also
obtained similar findings for the normalized shear stress distribution along the interface of the
solid domain.

6. FLEXIBLE INHIBITOR PROBLEM

To assess the effects of load transfer schemes on aeroelastic problems involving large displace-
ments, we now consider the aeroelastic deformations of a flexible beam subjected to a subsonic
flow field. This problem is motivated by that of an inhibitor protruding into the core flow field
of a solid rocket motor [17, 18].

The problem geometry is illustrated in Figure 17 which presents the meshes in the fluid
and solid domains. The number of interface nodes is the same for both meshes, but the nodal
positions differ along the fluid–solid interface for the non-matching meshes. To capture the
bending response of the beam, six-node triangular elements that include a non-linear kinematic
description for large displacement and rotations are used in the solid domain. The fluid domain
has a relatively coarse mesh, and viscosity is neglected in this calculation. The selected fluid
flow and solid material properties lead to a substantial deflection of the beam. For the elastic
solid beam, we use isotropic properties similar to those of the solid propellant: Poisson’s ratio
� = 0.499, density �s = 1300 kg/m3, and Young’s modulus E = 10 MPa. For the fluid, a perfect
gas is assumed with the inlet pressure set to 0.2026 MPa, and the outlet pressure to 0.1013 MPa.

Transient numerical solutions are obtained with matching and non-matching meshes for this
flexible inhibitor problem. Snapshots of the fluid region in the vicinity of the deflected inhibitor
are shown in Figure 18 for the common-refinement based and node-projection schemes. As
expected, the pressure difference building across the inhibitor leads to its substantial bending.
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Figure 17. Geometry and discretization of beam bending problem.
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Figure 18. Pressure contour of beam bending problem at 1 ms (top) and 3 ms
(bottom). The left plots correspond to the common-refinement based scheme and

the right plots to the node-projection scheme.

Time (sec)

D
is

p
la

ce
m

en
t

0.00046 0.0005

0.02

0.03

0.04

0.05

0.06

Time (sec)

N
o

rm
a

liz
e

d
tip

d
is

p
la

ce
m

e
n

t

0 0.001 0.002 0.003
0.0

0.5

1.0

1.5

2.0

2.5
Matching mesh

Quadrature-projection
Common-refinement

Node-projection

Figure 19. Comparison of beam tip deflection for three load transfer
schemes with reference matching solution.

As shown in Figure 18, the solutions obtained with the common-refinement and node-
projection schemes are very similar initially. However, at later times, the solution of the node-
projection scheme seems to yield a smaller deflection of the inhibitor, which also affects
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Table II. Computational statistics of three fluid–solid interaction problems.

Interface computation (s) Solvers (s)

Test case NP QP CR ALE fluid Solid

Elastic piston 0.435 0.452 0.467 47.12 2.31
Superseismic shock 0.899 0.968 0.972 51.28 3.38
Beam bending 1.832 1.941 1.956 74.72 5.91

the flow solution. The increasing difference between the solutions provided by the two load
transfer schemes is also illustrated in Figure 19, which presents the evolution of the magnitude
of the tip displacement vector (normalized by the initial thickness of the beam) for the first
3 ms as obtained from the three load transfer schemes (symbols) and the matching mesh case
(dashed curve). Similar to the previous results, the common-refinement based scheme yields
a tip displacement evolution effectively identical to that obtained in the matching reference
solution. However, the traditional schemes yield tip displacements that are consistently lower,
with an error of about 8% at 3.0 ms.

7. COST EVALUATION AND 3-D ASPECTS

Computational costs are an important factor when selecting a numerical scheme for large-
scale simulations. In the context of general aeroelastic applications, the size of the interface
discretization is typically orders of magnitude smaller than the fluid and solid meshes. Therefore,
the cost of interface computation typically represents a small fraction of the overall cost, which
is quantified in the following.

In Reference [6], the asymptotic analysis of computation and storage costs of various data
transfer scheme have been summarized. To assess the cost associated with the load transfer,
we report hereafter those obtained on the FSI problems studied earlier. In this assessment
study, we have computed the cost as time spent during converting the fluid tractions to the
load vectors on solid side. Note that it is not necessary to solve a linear system to convert
the load vectors to the tractions on the solid interface nodes in the quadrature-projection and
common-refinement based schemes, as the load vectors are used directly by the finite element
solver of the solid side.

The computational statistics of each fluid–solid interaction problem are tabulated for the three
load transfer schemes in Table II, where NP, QP and CR indicates node-projection, quadrature-
projection, and common-refinement. All the computations are performed on a 750 MHz Ultra-
SPARC III CPU Sun Server with a 8.0 GByte of main memory. We ran each case for 1000
iterations using the same time step for the fluid, mesh motion and solid solvers. As appar-
ent in Table II, the interface computation time increases as the number of interface nodes
increases for the three problems, but the computation time is less than 2% of the overall
CPU time in all cases. The common-refinement based scheme is only slightly more expensive
than the other two load transfer schemes, but this increase is negligible, compared to the
overall costs.
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All three of the load transfer schemes can be extended to 3-D, however the common-
refinement based scheme introduces the additional difficulty of creating a common refinement
surface. Such an algorithm for computing the common refinement has been recently imple-
mented in 3-D [14]. In this approach, the common refinement of two surface meshes is defined
by a common surface of arbitrary shape by overlaying them on top of each other for the
intersection of elements. As far as the computational costs for 3-D problems are concerned, the
interface computations for the surface meshes are insignificant as compared to the volumetric
meshes for the fluid and the solid solvers [19].

8. CONCLUSION

We have systematically assessed three different conservative load transfer schemes, namely,
node-projection, quadrature-projection, and common-refinement based schemes for non-matching
meshes. In the traditional node- and quadrature-projection schemes, the integrand exhibits dis-
continuities that generally lead to load transfer errors depending on the fluid–solid mesh mis-
match along the interface. These errors correlate well to a grid mismatch function developed in
this study and they not only affect the solution of the interface, but also can significantly un-
dermine the solutions in the fluid and solid subdomains. By utilizing a common refinement and
integrating over the subintervals, the error becomes independent of the mismatching along the
interface, such that solution with non-matching meshes was effectively identical to the solution
of the matching meshes. These findings were demonstrated first with the aid of a simple 1-D
static load transfer analysis, then through two classical transient fluid–solid interaction problems
and finally, with the aid of a flexible beam bending problem involving large deformations. The
common-refinement based scheme was found to be have a cost similar to that of the traditional
load transfer schemes. Another interesting subject of non-matching interfaces is to adapt the
interface meshes to minimize errors, which we are exploring using the common-refinement
based scheme.

APPENDIX A: ANALYTICAL SOLUTION OF SUPERSEISMIC SHOCK PROBLEM

As shown in Figure 14, the superseismic shock problem consists of an isotropic, linearly elastic
solid subjected to shock traveling at superseismic speed Vsh in the adjacent fluid domain.
Let cd = √

(E(1 − �))/(�s(1 + �)(1 − 2�)) and cs = √
E/(2�s(1 + �)), respectively, denote the

dilatational and shear wave speeds under plain strain conditions.
Due to the superseismic velocity of the shock, Mach cones corresponding to the p- and

s-waves appear in the solid domain with respective inclinations �p and �s are given by
Kolsky [20]

tan(	/2 − �p) =
√

V 2
sh/c

2
d − 1, tan(	/2 − �s) =

√
V 2

sh/c
2
s − 1 (A1)

Let n� denote the normal to the outer interface surface deformed by the pressure jump �p

behind the shock. The interface velocities in the x- and y-directions are related to the applied
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pressure jump, the shock speed and the material properties, and they can be expressed as[
u̇x,I

u̇y,I

]
= �pVsh(1 − �)

2�sc
2
dN

[
cos 2�s − cos 2(�p − �s)

sin 2�p

]
(A2)

where N = cos2 �s + (1 − 2�) cos2(�s − �p) − 1 + �. The deflection angle � is then given by

tan � = u̇y,I

Vsh + u̇x,I

(A3)

In the fluid domain, let us denote the pressure, density and speed of sound in the undisturbed
region by p1, �1 and c1 = √

(�p1/�1), respectively. Behind the shock, these quantities become
p2 = p1 + �p, �2 and c2 = √

(�p2/�2). The Mach number of the undisturbed fluid particle is

M1 = Vsh

c1
=

[
6p2/p1 + 1

7

]1/2

(A4)

and the shock angle � can be calculated from the deflection � of the flow using plane oblique
shock theory as

tan � = 2 cot �(M2
1 sin2� − 1)

((� + 1)M2
1 − 2(M2

1 sin2 (�) − 1))
(A5)

Further, the pressure jump �p can be expressed as

�p

p1
= 2�

� + 1
(M2

1 sin2 � − 1) (A6)

Equations (A1)–(A6) yield a system of coupled non-linear equations for �, � and �p.
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