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Abstract

Background: Recently, large bio-projects dealing with the release of different genomes have transpired. Most of
these projects use next-generation sequencing platforms. As a consequence, many de novo assembly tools have
evolved to assemble the reads generated by these platforms. Each tool has its own inherent advantages and
disadvantages, which make the selection of an appropriate tool a challenging task.

Results: We have evaluated the performance of frequently used de novo assemblers namely ABySS, IDBA-UD,
Minia, SOAP, SPAdes, Sparse, and Velvet. These assemblers are assessed based on their output quality during the
assembly process conducted over fungal data. We compared the performance of these assemblers by considering
both computational as well as quality metrics. By analyzing these performance metrics, the assemblers are ranked
and a procedure for choosing the candidate assembler is illustrated.

Conclusions: In this study, we propose an assessment method for the selection of de novo assemblers by
considering their computational as well as quality metrics at the draft genome level. We divide the quality metrics
into three groups: g1 measures the goodness of the assemblies, g2 measures the problems of the assemblies, and
g3 measures the conservation elements in the assemblies. Our results demonstrate that the assemblers ABySS and
IDBA-UD exhibit a good performance for the studied data from fungal genomes in terms of running time,
memory, and quality. The results suggest that whole genome shotgun sequencing projects should make use of
different assemblers by considering their merits.

Background
Whole Genome Shotgun (WGS) sequencing projects
have been receiving recent attention since it is a critical
step in many applications. For example, WGS sequencing
of fungi is a fundamental process in several agricultural,
environmental, industrial and medical applications [1-3].
Earlier WGS sequencing projects used Sanger sequencing
as a central methodology for assembly. With the advent
of Next- Generation Sequencing (NGS), recent WGS
sequencing projects started to use NGS technologies
such as Illumina, Roche 454, etc. These NGS technolo-
gies produce a massive amount of reads due to the fact
that they have shorter read lengths than their counterpart

Sanger sequencing. This massive amount of reads
obviously demands high-end computational resources for
assembly.
Several assemblers [4-19] have been developed to han-

dle these vast volumes of data. These assemblers have
different running time and memory requirements; and
produce assembly results with varying quality. For a
given dataset, choosing an appropriate assembler is a
challenging task that entails the identification of a good
trade-off between run time, memory and quality para-
meters of the assemblers. We can find plenty of recent
research works that focus on comparing and evaluating
different NGS assemblers in the literature. In [20-25], the
evaluation of assemblers considers some quality metrics
(which include contiguity, consistency, and accuracy of
output assemblies), while [26-28] additionally consider
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the running-time and memory metrics in their
evaluation.
The Assemblathon [20] is a competitive assessment

study that evaluates the assembling capabilities of assem-
blers based on more than 100 metrics. GAGE [21] evalu-
ates the leading assemblers by conducting several
assembly experiments that use four different datasets gen-
erated using the Illumina technique, three datasets with
reference genomes and one dataset without a reference
genome. GAGE-B [22] evaluated different finished bacter-
ial genomes based on a set of metrics introduced in
GAGE and added new metrics to the evaluation. Finotello
et al. [23] explain the pros and cons of assemblers on bac-
terial data extracted using the 454 pyrosequencing techni-
que. In [24], the authors developed an assessment tool
that can be used for evaluating the assemblers either with
or without reference genomes. The work in [25], presents
a comparative study for four assembly tools to guide the
biologists using fungal data generated by the Illumina
platform.
To the best of our knowledge, there is no separate

evaluation study to assess the performance of de novo
assemblers for draft genomes in the literature. Hence,
this paper proposes a methodology to evaluate de novo
assembler tools, to assess the capabilities of assemblers
based on their computational and quality parameters for
draft genomes. The proposed approach is applied on the
output of seven assemblers against five fungal patho-
gens. It classifies the assemblers based on different
metrics and identifies suitable assemblers that have a
good trade-off between computational and quality
performance.
The rest of this paper is organized as follows: the

methodology to assess the assemblers and the ranking
procedure used in this study is detailed, followed by
results and finally, the results are discussed based on
different criteria and draws the conclusions.

Methods
Evaluation method
In our study, we evaluate the assemblers based on their
assembly performance parameters, which are divided
into computational as well as quality parameters. The
quality metrics that represent the quality of an assem-
bler output generally include contiguity, consistency,
and accuracy. Since we do not have the reference gen-
ome, we propose an evaluation method for the quality
of assemblies which depends on splitting the quality
metrics into three groups:

1. Group-1 (g1) measures the level of goodness in
the assemblies. This group is called the goodness
group.

2. Group-2 (g2) measures the level of problems in
the assemblies. This group is called the problems
group.
3. Group-3 (g3) measures the conservation elements
in the assemblies. This group is called the conserva-
tion group.

The above method gives a general prototype for asses-
sing draft genomes. The conservation group metrics
may vary based on the type of organism. We can select
suitable conservation elements based on the type of
organism by hinging on available literature such as
[29-33]. In this work, we apply our method on fungal
genomes. Therefore, we use the core eukaryotic genes
as elements for the conservation group, which can also
be used for other higher eukaryotic organisms [33].
After obtaining the computational and quality metrics,

we rank the assemblers using a dense ranking technique.
Each assembler on a specific dataset takes computa-
tional and quality ranks. The rank for each metric is
given based on relative performance such that the
assembler with the best performance has a rank of 1,
the second best has a rank of 2 and so on.
Since measuring the quality of assemblies depends on

several metrics and groups we can generally calculate
the quality rank for a specific assembler on a specific
dataset as follows:

1. Rank the assembler based on each metric indivi-
dually using the above method.
2. For each metric mi, assign weight wi that mea-
sures the impact of this metric in its group.
3. Calculate the group rank, Rj , based on the metric
ranks, ri, and metric weights wi of this group, using

the equation: Rj =

∑n
i=1 wiri
n

, where n is the number

of metrics in this group and i = 1, 2,...,n.
4. For each group gj, we assign weight Wj that mea-
sures the impact of this group on the quality of
assemblies.
5. Calculate the quality rank, R, based on the group
ranks, Rj, and the group weights Wj by the equation:

R =

∑m
j=1 WjRj

m
, where m is the number of groups

and j = 1, 2,...,m.

For simplicity, we assume that the g1 and g2 metrics
and all groups have the same unit weight. We give each
metric in g3 a weight proportional to the conservation
level. The quality metrics are obtained for all studied
assemblers and the current version of draft genome
(df_1), which is downloaded from the WGS project page
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in NCBI (http://www.ncbi.nlm.nih.gov/bioproject/). Also,
the quality metrics are measured at both the contigs
and scaffolds levels. We use the quality rank for the
contigs level as the quality rank of the assemblies.

Evaluation metrics
For computational performance, we consider the run-
ning time and memory consumption metrics. The run-
ning time is the total time taken by the assembler to
complete the assembly process for a given dataset,
whereas memory consumption is the maximum amount
of memory used during the entire execution period.
Time and memory measurements are taken using the
Linux utility commands time and top respectively. For
quality performance, we consider the following metrics:
Largest contig size: The length of the largest contig

in an assembly.
N50 size: The length of the smallest contig x, which

makes the ratio of cumulative length of contigs from
this length x to largest contig size covers at least 50% of
the bases of the assembly. An assembler with high N50
size value is obviously considered to be a high quality
assembler.
L50: The number of contigs with length larger than or

equal to N50.
Chaff bases percentage [21]: The percentage ratio of

cumulative length of chaff contigs to cumulative length
of all contigs in the assembly, where a chaff contig is a
single contig with a length less than 200 bp [21]. The
high percentage of chaff contigs length leads to pro-
blems in further genomic analysis [21]. Hence, high
quality assemblers should possess low chaff bases
percentage.
Number of N’s: The total number of uncalled bases

or gaps (N’s) in the assembly bases. Mis-assemblies and
gaps usually result from repeats as well as secondary
structures, either in unrepresented GC-rich regions or
in un-sequenced regions due to a low depth sequence
coverage [34]. This value is high for low quality
assemblies.
CEGs percentages: The percentages of different Core

Eukaryotic Genes (CEGs) mapped in the assemblies. In
[33], the authors identify 248 Core Eukaryotic Genes
(CEGs), which are highly conserved, present in low copy
numbers in higher eukaryotes, and can be used in
describing the gene space. Based on the average degree
of conservation observed from each CEG, the work in
[33] divides the CEGs into four groups (group 1 has the
least conserved CEGs while group 4 has the most con-
served CEGs). This work demonstrates that the percen-
tage of CEGs can be useful as a complement for the
metrics of N50 size and x-fold coverage. In our study
we consider the percentage of CEGs in each group com-
pletely mapped from the assemblies as an independent

metric. In other words, we consider four metrics csg1%,
csg2%, csg3% and csg4%, which represent the percentage
of CEGs in the groups 1, 2, 3, and 4 (defined in [33])
respectively. Refereeing to the values (defined in supple-
mentary table S4 of [33]) to determine the conservation
degree of each group, we assume that, the weights of
metrics csg1%, csg2%, csg3% and csg4% are 0.76, 0.92,
1.04, and 1.28 respectively.
We split these metrics into our three groups as fol-

lows:

• The goodness group, g1, contains the metrics (lar-
gest contig size, N50 size and L50), which reflect the
assembly connectivity and the nature of the bulk of
the assembly [35].
• The problems group, g2, contains the metrics chaff
bases percentage and No. of N’s.
• The conservation group, g3, contains the metrics
csg1%, csg2%, csg3% and csg4%, which represent in
our case (fungal genomes) conservation elements in
the assemblies. These metrics can be used for the
other higher eukaryotic genomes [33].

All these quality metrics are measured using the
QUAST assessment tool [24] except CEGs percentages,
which are calculated using CEGMA tool [33,36]. The g1
metrics and No. of N’s metric are calculated after
removing any chaff contig in the assemblies.

Fungal species data
To apply our assessment method, we have chosen five
fungal pathogens from several WGS sequencing projects
released in 2013, which are still in the draft genome
level and are missing the reference genome (Table 1)
[37-41]. Additionally, all datasets are generated by the
Illumina HiSeq 2000 sequencing platform with paired-
end layout and are downloaded from the DNA Data
Bank of Japan (DDBJ, http://www.ddbj.nig.ac.jp/). The
read length for each data is 100 bp. Since the size of
90% of available fungal data is less than 60 Mb [42], we
have chosen four datasets with a size less than 60 Mb
and one dataset with a size above this threshold (see
Table 1).

Assemblers
For assembling the above chosen fungal datasets, we
selected seven open source assemblers, which can han-
dle the short reads produced by NGS platforms: ABySS
[11], IDBA-UD [17], Minia [16], SOAP [5], SPAdes [19],
Sparse [18], and Velvet [7]. For Minia, we extract the
assembly only at the contigs level (available level in the
used version), whereas for all other assemblers, we
extract the assemblies at both contigs and scaffolds
levels. Table 2 summarizes the details of assemblers that
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are used in this study including their websites, and
versions.

Experimental setup
All assembly experiments of the five datasets over the
seven assemblers are conducted on a dual Octa-core
processors (2.9 GHz Intel Xeon E5-2690) machine with
128 Gb RAM. All experiments are conducted using a
single core. Additionally, we run the assembler tools
several times (except for IDBA-UD and SPAdes) with
different k-mer parameter and choose the optimal value
for k that exhibits high quality of g1 and g2 metrics.
Since the IDBA-UD and SPAdes assemblers are iterative
in nature, the k-mer value that exhibits best quality
metrics are implicitly chosen as an optimal k-mer from
multiple k-mer values so we use the default k-mer
values as defined in the tool.

Results
In this study, we focus on assessing the parameters that
influence the selection of de novo assembler for assem-
bling a given dataset. For that, the assembling experi-
ments are conducted and the computational as well as
quality metrics are measured. In this section, we analyze
and discuss these metrics for all the seven assemblers.

Computational time performance
In general, the running time of a given dataset is a para-
meter in deciding the candidate assembler. Hence, we
measure the running time of seven assemblers over the

five datasets (see Table 3). We rank the assemblers
based on their running time to decide the candidate
assemblers. The ranks for different datasets are shown
in the table inside parenthesis. From Table 3 Minia has
the best rank in three datasets which have larger esti-
mated genome size. Among the assemblers that have
both contigs and scaffolds levels, Velvet obtains the best
rank in four datasets while SPAdes obtains the worst
rank in all datasets. The running time of Minai and Vel-
vet for any dataset did not exceed 10% of the running
time of SPAdes for the same dataset.

Memory consumption performance
The most critical parameter in selecting a candidate
assembler tool is the memory needed by the tool during
the assembly process, especially with the increase of
data volumes in NGS platforms. An assembler demand-
ing huge memory can be the reason for excluding it
from the list of candidate assemblers. Table 4 gives the
measured maximum memory usage of all the seven
assemblers over the five datasets. We rank the assem-
blers based on their memory consumption to decide the
candidate assemblers. The rank for a given dataset is
calculated and given inside parenthesis. From Table 4
Minia obtains the best rank among all datasets followed
by Sparse, while SPAdes obtains the worst rank for all
datasets. The maximum memory consumption of Minia
and Sparse for any dataset did not exceed 1% and 6%,
respectively, of the maximum memory consumption of
SPAdes for the same dataset. In the case of PST21

Table 1 List of fungal genomes studied in the experiments.

Species Accession Number in DDBJ/
EMBL/GenBank

SRA Accession Number
in NCBI

Estimated Size
(Mbp)

Estimated GC
content %

Data Size
(GB)

Botryotinia fuckeliana (BcDW1)
[37]

AORW00000000 SRR680162 42.1323 42 23

Neofusicoccum parvum
(UCRNP2)[38]

AORE00000000 SRR654031 42.5928 56.8 24

Togninia minima (UCRPA7)[39] AORD00000000 SRR654175 47.4654 49.7 18

Eutypa lata (UCREL1)[40] AORF00000000 SRR654028 54.0058 46.6 23

Puccinia striiformis f. sp. tritici
(PST21)[41]

AORR00000000 SRR653741 73.0475 44.4 13

Table 2 List of assemblers evaluated in the study.

Assembler Website Version

ABySS http://www.bcgsc.ca/platform/bioinfo/software/abyss 1.3.7

IDBA-UD http://i.cs.hku.hk/~alse/hkubrg/projects/idba_ud/ 1.0.9

Minia http://minia.genouest.org/ 1.5901

SOAPdenovo(SOAP) http://soap.genomics.org.cn/soapdenovo.html 2-r240

SPAdes http://bioinf.spbau.ru/spades 3.0.0

SparseAssembler(Sparse) http://sourceforge.net/projects/sparseassembler/ –

Velvet https://www.ebi.ac.uk/~zerbino/velvet/ 1.2.10
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dataset, the SPAdes assembler takes more than 128 Gb
(the maximum available memory in our machine).

Assembling quality
The quality metrics of an assembler play an important
role in the selection of candidate assembler. For a given
dataset, various quality metrics of each assembler at the
contigs as well as scaffolds level are demonstrated
(Tables S1-S5; Additional file 1 and Figs. S1-S5; Addi-
tional file 2).
In (Table-S1; Additional file 1), which gives the quality

metrics of all assemblers for the BcDw1 dataset, the
assemblers ABySS, IDBA-UD, and SPAdes have better
goodness (g1) metrics performance than the current
draft genome (df_1) at the contigs level, while the
assemblers ABySS, IDBA-UD, and Velvet have better g1
metrics performance than df_1 at the scaffolds level (see
Fig. S1; Additional file 2). For example, the assemblies
of ABySS, IDBA-UD, and SPAdes have superior N50
size (see Figure 1(a)). Based on the g1 metrics at the
contigs level, ABySS is the highest quality assembler,
whereas Minia is the lowest quality assembler for the
BcDw1 dataset. Similarly for g1 metrics, IDBA-UD is
the highest quality assembler, whereas SOAP is the low-
est quality assembler at the scaffolds level. Furthermore,
SOAP obtains consistent quality at both contigs as well
as scaffolds levels. Sparse generates the large percentage
of chaff bases length at both contigs and scaffolds levels,
which makes it a low quality assembler in g2 metrics.
There are no gaps at contigs level for all assemblers
except ABySS. Velvet, on the other hand, produced a
huge number of gaps with respect to other assemblers
at the scaffolds level. Based on the g2 metrics, at the

scaffolds level, IDBA-UD and SPAdes are high quality
assemblers, whereas ABySS, Sparse, and Velvet become
low quality assemblers from the problems (g2) metrics
point of view. At the contigs level, the ABySS, IDBA-
UD, and Velvet assemblers have better conservation
metrics (g3) rank with respect to other assemblers fol-
lowed by SOAP. While at the scaffolds level, SOAP has
better g3 rank followed by SPAdes. Overall, SPAdes and
IDBA-UD have the best quality ranks at the contigs and
scaffolds level, respectively (see Tables 5, 6).
In the assembly of the UCRNP2 dataset (see Table-S2;

Additional file 1), ABySS and IDBA-UD show higher g1
quality performance as compared to the current draft
genome at both contigs and scaffolds levels (see Fig. S2;
Additional file 2). At the contigs level, ABySS has super-
ior N50 size (see Figure 1(b)). Based on the g1 metrics
at the contigs level, ABySS is a high quality assembler,
whereas Minia is a low quality assembler for the
UCRNP2 dataset. In addition, IDBA-UD is the high
quality assembler for g1 at the scaffolds level. Further-
more, ABySS, Minia, and Sparse (except Minia at scaf-
folds level) generate a huge percentage of chaff bases
length 23%, 54%, and 66%, respectively, at both the con-
tigs as well as scaffolds levels, which makes them as low
quality assemblers from g2 metrics point of view.
ABySS, IDBA-UD, SPAdes, and Velvet produce a large
numbers of gaps with respect to other assemblers at
scaffolds level. Based on g2 metrics, IDBA-UD is the
high g2 quality assembler, while ABySS and Sparse are
low g2 quality assemblers, at the contigs level. On the
other hand, at the scaffolds level, SOAP proves to be
the best g2 quality assembler whose output is as good
as the draft genome, while ABySS and Sparse are low g2

Table 3 Running time measurement in hours of the seven assemblers against the five fungal pathogens.

Dataset ABySS IDBA-UD Minia SOAP SPAdes Sparse Velvet

BcDw1 2.43(5) 7.65(6) 1.02(2) 0.89(1) 17.41(7) 1.24(4) 1.02(2)

UCRNP2 3.45(5) 9.64(6) 2.18(3) 1.55(2) 32.49(7) 2.21(4) 1.5(1)

UCRPA7 2.21(5) 5.96(6) 1.11(1) 1.96(4) 13.51(7) 1.45(3) 1.28(2)

UCREL1 3.41(5) 8.25(6) 1.3(1) 2.12(4) 21.63(7) 1.87(3) 1.71(2)

PST21 3.89(5) 7.88(6) 1.25(1) 2.73(4) ————— 1.51(3) 1.46(2)

Parentheses contain the rank the assembler on the specific dataset. “—” Indicates a corrupted assembly process.

Table 4 Memory consumption in GB of the seven assemblers against the five fungal pathogenes.

Dataset ABySS IDBA-UD Minia SOAP SPAdes Sparse Velvet

BcDw1 5.47(3) 5.91(4) 0.20(1) 22.2(6) 42(7) 1.68(2) 18.3(5)

UCRNP2 8.86(3) 12.1(4) 0.28(1) 19.2(5) 49.4(7) 2.54(2) 28.5(6)

UCRPA7 5.79(3) 6.89(4) 0.19(1) 27.7(6) 36.9(7) 1.99(2) 23.2(5)

UCREL1 5.98(3) 7.37(4) 0.18(1) 27(6) 46(7) 1.83(2) 22.3(5)

PST21 19.5(4) 10.6(3) 0.31(1) 36.6(6) ———— 2.69(2) 30.9(5)

Parentheses contain the rank the assembler on the specific dataset. “—” indicates a corrupted assembly process.
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Figure 1 Comparison for N50 size metric for the studied assemblers at contigs level. (a): BcDw1, (b): UCRNP2, (c): UCRPA7, (d): UCREL1, (e):
PST21.
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quality assemblers. In addition, Velvet proves to be the
highest g3 quality assembler preserving the highest per-
centage of CEGs in three conservation groups at both
contigs as well as scaffolds levels. Overall, IDBA-UD has
the best quality rank at both the contigs and scaffolds
levels (see Tables 5, 6).
In the assembly of UCRPA7 dataset (see Table-S3;

Additional file 1), the g1 quality of ABySS, IDBA-UD,
and SPAdes is better than the current draft genome
(df_1) at the contigs level, while ABySS, IDBA-UD,
SPAdes and Velvet have better g1 metrics performance
than the df_1 at scaffolds level (see Fig. S3; Additional
file 2). Based on the g1 metrics at contigs level, ABySS
is the high quality assembler, whereas Minia is the low
quality assembler for the UCRPA7 dataset. In contrast,
at the scaffolds level, the IDBA-UD assembler shows
best g1 metrics quality performance whereas SOAP
demonstrates the worst g1 quality. The g1 metrics for
SPAdes are approximately equal in both the contigs and
scaffolds levels. At the contigs level, ABySS, IDBA-UD,
and SPAdes have superior N50 size (see Figure 1(c)). By
considering the g2 quality metrics, Sparse generates the
largest percentage of chaff bases length as compared to
other assemblers at both the contigs and scaffolds levels.
There are no gaps at the contigs level for all assemblers
except ABySS. Velvet produces a huge number of gaps
at the scaffolds level. Regarding g3 quality metrics, the
IDBA-UD, and SPAdes are high quality assemblers at
both contigs and scaffolds levels. SPAdes and IDBA-UD
have the best quality rank at the contigs and scaffolds
levels, respectively (see Tables 5, 6).
In the assembly of UCREL1 dataset (see Table-S4;

Additional file 1), ABySS, IDBA-UD, and SPAdes exhibit
high quality g1 metrics performance, which is better
than the performance of the current draft genome

(df_1) at the contigs level, while ABySS, IDBA-UD,
SPAdes and Velvet have better g1 metrics performance
than df_1 at the scaffolds level (see Fig. S4; Additional
file 2). At the contigs level, the ABySS assembler shows
the best g1 quality metrics whereas, IDBA-UD shows
best g1 quality metrics performance at the scaffolds
level. At the contigs level, ABySS, IDBA-UD, and
SPAdes demonstrate high N50 size (see Figure 1(d)). By
considering the g2 quality metrics, Sparse generates the
largest percentage of chaff bases length at both the con-
tigs and scaffolds levels with respect to other assemblers.
There are no gaps at the contigs level for all assemblers
except ABySS. Velvet produces a huge number of gaps
at the scaffolds level. Regarding g3 quality metrics, the
IDBA-UD is the best quality assembler at the contigs
level while IDBA-UD and Velvet are the best quality
assemblers at the scaffolds level. IDBA-UD has the best
quality rank at both the contigs and scaffolds levels (see
Tables 5, 6).
In the assembly of PST21 dataset (Table-S5; Additional

file 1), IDBA-UD exhibits better g1 metrics performance
than the other assemblers, which is lower quality than
the current draft genome at the contigs level (see Fig. S5;
Additional file 2). At the scaffolds level, Velvet produces
the best g1 quality metrics for the assemblies of the
PST21 dataset. There is no scaffold level submitted for
the current draft genome for PST21 dataset. At the con-
tigs level, ABySS, IDBA-UD, and Velvet demonstrate
high N50 size (see Figure 1(e)). Considering g2 quality
metrics, all assemblers except IDBA-UD and Velvet gen-
erated large percentages of chaff bases length at the con-
tigs level. ABySS shows a less efficient chaff bases metric
at the scaffolds level. ABySS, SOAP and Velvet produce a
huge number of gaps at the scaffolds level. Considering
g3 quality metrics, ABySS is the best quality assembler at

Table 5 Quality results of all assemblies against the five fungal pathogens at the contigs level.

Dataset ABySS IDBA-UD Minia SOAP SPAdes Sparse Velvet df_1

BcDw1 1.97 1.92 4.42 3.99 1.87 3.91 2.64 2.18

UCRNP2 2.39 1.61 4.69 3.73 2.44 3.81 2.52 1.89

UCRPA7 1.95 1.75 5.24 3.88 1.48 4.58 3.16 2.17

UCREL1 2.21 1.84 5.11 5.01 1.85 4.87 3.14 2.75

PST21 3.27 1.76 4.64 5.58 ———— 4.28 3.08 1.38

Table 6 Quality results of all assemblies against the five fungal pathogens at the scaffolds level.

Dataset ABySS IDBA-UD SOAP SPAdes Sparse Velvet df_1

BcDw1 2.65 1.71 3.63 2.74 3.96 2.98 3.07

UCRNP2 2.77 2 3.73 3.66 3.7 3.19 2.2

UCRPA7 2.75 1.35 4.37 2.13 4.43 3.43 3.27

UCREL1 3.43 1.53 4.75 2.57 4.23 2.42 3.43

PST21 3.38 1.86 3.85 ———— 2.86 2.46 ————
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the contigs level (but demonstrates significantly lower
performance than the current draft genome), while
Sparse is the best quality assembler at the scaffolds level.
IDBA-UD has the best quality rank at both the contigs
and scaffolds levels (see Tables 5, 6).

Discussion and conclusions
In this section, the studied assemblers are divided into
classes based on the parameters obtained from the
above experiments, which include running time, mem-
ory consumption, and quality. The K-means clustering
method [43] is employed to classify the assemblers into
these classes using the SPSS (Statistical Package for
Social Sciences) tool. Next, we identify the assemblers
that have a good trade-off between running time, mem-
ory consumption, and quality, and therefore can be
selected as the candidate assemblers. Finally, we preset
the conclusions of our study.
Table 7 shows the running time, memory consump-

tion, and quality classes for each assembler based the
partitioning process. Though Minia is classified as a
low-quality assembler, the quality of assemblies for
Minia gets enhanced as the expected genome size
increases. The ideal assemblers achieve an ideal trade-
off between running time, memory consumption, and
quality of assemblies (i.e., the assemblers that belong to
the fastest class, most memory-efficient class, and high-
quality class). Unfortunately, among the studied assem-
blers, we cannot identify such an ideal assembler. How-
ever, ABySS and IDBA-UD have a good trade-off
between running time, memory utilization, and quality
of assemblies as both ABySS and IDBA-UD belong to
the medium-fast, memory-efficient and high-quality
classes.
Considering the quality metrics in details, the behavior

of g1 and g3 metrics is approximately similar to the
overall quality ranking. For g2 metrics we note that, for
all datasets, there are no gaps at the contigs level for all
assemblers except ABySS. However ABySS and Velvet
produce a large number of gaps for most datasets at the
scaffolds level, while Sparse produces a large percentage

of chaff bases. Another observation is that though some
assemblers may demonstrate similar overall level of pre-
servation of the 248 CEGs, they differ at the individual
conservation group percentages of CEGs (see Figures 2,
3 and Tables S1-S5; Additional file 1). This suggests the
idea of combining two or more different assemblies for
improving the overall quality of the assemblies. IDBA-
UD and SPAdes (which are in the high-quality class)
use multiple k-mers and capture the benefits of the
large k-mer. In [44-47], the authors proposed the usage
of different tools in post-assembly to merge different
assemblies in order to benefit from the advantages of
each one.
In conclusion, this paper proposes a general metho-

dology for assessment of de novo assemblers for draft
genomes in terms of running time, memory consump-
tion, and quality metrics. The quality metrics are split
into three groups: g1 measures the goodness of the
assemblies, g2 measures the problems of the assem-
blies, and g3 measures the conservation elements in
the assemblies. We believe that, adding more conser-
vation metrics from closely related species in g3 can
enhance the assessment results. We apply our method
for assessing seven open source de novo assemblers to
assemble five fungal pathogens at draft genome level.
Based on our results, we partition the studied assem-
blers into different classes based on the criteria of
time, memory, and quality. Our results support the
idea of making the assemblies of WGS sequencing
projects using different assemblers to exploit the
strengths of each one by combining the corresponding
assemblies. ABySS and IDBA-UD offer a good trade-
off between running time, memory, and quality among
the studied assemblers for the studied datasets. The
rapidly growing number of WGS sequencing projects
can take advantage of our results and proposed meth-
odology to choose an appropriate assembler for best
quality assemblies based on available computational
resources. The results of this research work are freely
available at http://confluence.qu.edu.qa/display/down-
load/bioinf.

Table 7 Classification of the seven assemblers based on computational and quality metrics.

Assembler Running time class Memory consumption class Quality class

ABySS medium-fast memory-efficient high-quality

IDBA-UD medium-fast memory-efficient high-quality

Minia fastest most memory-efficient low quality

SOAP fastest less memory-efficient medium-quality

SPAdes Slow memory-inefficient high-quality

Sparse fastest most memory-efficient medium-quality

Velvet fastest less memory-efficient high medium-quality
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( a ) ( b )

( c ) ( d )

( e )

Figure 2 Percentage of CEGs in four conservation groups for all assemblies at contigs level. CEGs Mapping results of the seven
assemblers outputs and the current draft genome(df_1) at contigs level for the studied datasets in the four groups of core genes. (a): BcDw1,
(b): UCRNP2, (c): UCRPA7, (d): UCREL1, (e): PST21.
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( a ) ( b )

( c ) ( d )

( e )

Figure 3 Percentage of CEGs in four conservation groups for all assemblies at the scaffolds level. CEGs Mapping results of all assemblers
outputs (except Minia) and the current draft genome(df_1) at scaffolds level for the studied datasets in the four groups of core genes. (a):
BcDw1, (b): UCRNP2, (c): UCRPA7, (d): UCREL1, (e): PST21. In PST21 dataset, the df_1 represents the assemblies at the contigs level because we
do not have scaffolds level.
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Additional material

Additional file 1: Main spreadsheet containing all results. Details of
quality metrics and its ranks for every assembly for each dataset. First,
second, third, fourth, and fifth sheets contain Tables S1, S2, S3, S4, and S5
which are represent a detailed results of BcDw1, UCRNP2, UCRPA7,
UCREL1, and PST21 datasets, respectively.

Additional file 2: Basic plots for all results. Basic plots for all
assemblies of all datasets generated using QUAST tool [24]. For each
dataset we have six plots grouped in a single figure: a1, a2, b1, b2, c1
and c2 such that: a1 and a2 represent the cumulative length plots at
contigs and scaffolds levels, respectively, b1 and b2 represent the GC-
content plots at contigs and scaffolds levels, respectively, c1 and c2
represent the Nx plots for different × values at contigs and scaffolds
levels, respectively. Figures S1, S2, S3, S4, and S5 represent the basic plots
for BcDw1, UCRNP2, UCRPA7, UCREL1, and PST21 datasets, respectively.
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