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ABSTRACT: We report on the main results of a collaborative work devoted to the study of the uncertainties associated with Digital image

correlation techniques (DIC). More specifically, the dependence of displacement measurement uncertainties with both image characteristics and DIC

parameters is emphasised. A previous work [Bornert et al. (2009) Assessment of digital image correlation measurement errors: methodology and

results. Exp. Mech. 49, 353–370] dedicated to situations with spatially fluctuating displacement fields demonstrated the existence of an ‘ultimate error’

regime, insensitive to the mismatch between the shape function and the real displacement field. The present work is focused on this ultimate error. To

ensure that there is no mismatch error, synthetic images of in-plane rigid body translation have been analysed. Several DIC softwares developed by or in

use in the French community have been used to explore the effects of a large number of settings. The discrepancies between DIC evaluated

displacements and prescribed ones have been statistically analysed in terms of random errors and systematic bias, in correlation with the fractional part

τ of the displacement component expressed in pixels. Main results are as follows: (i) bias amplitude is almost always insensitive to subset size, (ii) standard

deviation of random error increases with noise level and decreases with subset size and (iii) DIC formulations can be split up into two main families

regarding bias sensitivity to noise. For the first one, bias amplitude increases with noise while it remains nearly constant for the second one. In addition,

for the first family, a strong dependence of random error with τ is observed for noisy images.

KEY WORDS: Digital Image Correlation (DIC), image matching, random error, synthetic images, systematic error

Introduction

Digital image correlation (DIC) is a full-field kinematic

measurement technique, which has recently become one of

the most standard tools in the field of experimental solid

mechanics [1, 2]. Among the optical contactless full-field

techniques [3, 4] including interferometric methods (e.g.

speckle or grating interferometry, holography interferometry)

or non-interferometric methods such as the grid method, the

DIC method has become very attractive and is now

commonly used for measurements of surface deformation.

The rapid diffusion of this technique canmostly be explained

by operability, flexibility and (apparent) ease of use in

comparison with techniques that require, for instance,

coherent sources of light and highly controlled optical and

vibration-free environments. DIC is based on image

processing and on the assumption that the deformation of

the recorded images reflects the actual mechanical

transformation of the specimen. The popularity of DIC stems

from the simplicity of the experimental setup and of the

specimen preparation. In case the natural contrast of the

sample is not sufficient, this preparation mainly consists in a

deposit of an appropriate speckle pattern (e.g. spray painting).

Another reason for DIC popularity originates from its

applicability to various image sources covering a large range

of spatial and temporal scales, including digital cameras

(combined with classical optics for macroscopic observations

or optical microscopy), scanning electronmicroscopy, atomic

force microscopy, etc. Digital images recorded by all these

techniques can be processed by DIC algorithms to provide

quantitative full-field displacement maps and, after

differentiation, strain maps. Note, however, that for the

analysis of any image provided by a 2D imaging technique,

a great care should be taken to avoid or at least to limit (or to

correct when necessary) any additional apparent deformation

On behalf of the Workgroup ‘Metrology’ of the French CNRS
research network 2519 ‘Mesures de Champs et Identification en
Mécanique des Solides/Full-fieldmeasurements and identification
in solid mechanics’. URL: http:// www.gdr2519.cnrs.fr



that could arise from out-of-plane displacements or

misalignments. Whenever necessary, a classical way to take

account of these artefacts is to use stereoscopic techniques [1].

Despite its versatility and apparent ease of use, the DIC

technique suffers from some disadvantages in comparison

with well-established techniques, such as strain gauges,

because the measurement chain in DIC involves a large

number of components, each of which introducing its

own set of error sources. Indeed, DIC measurement errors

strongly depend on (i) the quality of the imaging system,

(ii) the characteristics of the sample’s natural or artificially

applied speckle pattern, (iii) the DIC algorithm itself and

(iv) the particular choice of parameters controlling the

chosen algorithm. Although a large literature on DIC

formulations and applications can be found, very few

contributions address in a systematic way their

metrological performances. The collaborative work carried

out by the workgroup ‘Metrology’ of CNRS research

network 2519 ‘Full-field measurement and identification

in solid mechanics’ aims at contributing to a systematic

approach to this question [5–7] and at proposing general

procedures to assess the measurement errors of DIC

methods.

Several approaches have been reported in the literature to

evaluate measurement errors of DIC methods, often in view

of testing new DIC algorithms, or evaluating a particular

DIC method for some experimental conditions. The first

natural way to evaluate performances of DIC measurements

is to apply them to controlled real experiments. Linear or

rotation stages have for instance been used to impose a set

of in-plane rigid body motions (translation and rotation)

to the sample or the camera [8–11] or even out-of-plane

motions [12]. Whereas this approach takes into account all

components of a particular measurement chain (optics,

camera, speckle pattern, lighting conditions, image

processing, etc.) relative to some real experimental setup, it

suffers from difficulties to experimentally prescribe well-

controlled displacement or strain fields, both in terms of

uniformity and intensity. Indeed, the uniformity of a

prescribed apparent translation strongly depends on the

alignment of the camera and on the stability of its mount.

The control or measurement of the displacement amplitude

requires a very precise mechanical setup, with a resolution at

least one order of magnitude better than the one of the DIC

method, which is in general not available on the

experimental setup under consideration. In-plane rotations

are even harder to prescribe and control. Out-of-plane

motions generate more uniform transformations, whose

characteristics can be determined from the image itself [12]

but are limited in intensity by the depth of field and optical

distortions. The set of well-controlled transformations is

thus very limited, and, in addition, such procedures do not

allow us to easily explore the dependence of the errors with

image characteristics.

Another approach consists in taking any real image

extracted from a real experiment and to numerically

transform it with a known displacement or strain field.

The advantage of this approach results from the use of an

image that includes all the characteristics of the speckle

pattern and is thus representative of the experiment. This

approach has been extensively used, first to prescribe rigid

body subpixel translations in order to obtain the well-known

S-shape bias and standard deviation curves first discussed by

Sutton et al. [9]. It has also been used to apply some arbitrary

artificial deformation to images. Transformation can be

generated in the frequency domain by applying a Fourierfilter

according to the shift theorem [13–16] or in the space domain

by applying some image interpolation methods [17–20].

However, it is important to note that the interpolation

technique in use might induce its own set of errors, so that

the conclusions about DIC-related errors might be biassed

[21]. Indeed, it has recently been shown by Reu [22] that the

numerical shifting of images has an impact on the

quantification of the systematic error [9, 10,23] associated

with the interpolation filter of some DIC algorithms.

Unfortunately, the interpolation error cannot be quantified

in practice for real images.

Although real images from experiments are representatives,

the control of their speckle characteristics (histogram, size,

spectral contents, image gradients, etc.) can be difficult to

achieve. In order to study the influence of image parameters

on DIC errors, one may thus generate synthetic images and

numerically shift or deform them with procedures similar to

those described above. However, as discussed previously,

some additional errors (even small ones) could be added by

the procedure and cannot be separated from the DIC

measurement errors.

To avoid adding any error in the images, it is preferable to

generate reference and deformed images by means of

algorithms, which do not rely on any interpolation process.

This can be achieved by algorithms that mimic as closely as

possible the generation of images within a real camera. One

way of doing so is to sample an analytic function representing

a continuous physical pattern on a specimen, on a regularly

spaced grid corresponding to the CCD array, with procedures

that mimic the spatial signal integration of a real sensor. The

transformed image is simply obtained by the sampling of

the continuous transformation of the analytic function. The

difficulty arises from the definition of the noise function that

should produce a speckle pattern as realistic as possible.

Wattrisse et al. [17] and Zhou and Goodson [24] have

proposed to define the analytic function as a sum of

individualGaussian-shaped speckles for the purpose of testing

their own DIC codes. This kind of synthetic images has also

been exploited for example in [16, 25–27]. Orteu et al. [28]

have proposed an image generator based on amodified Perlin

noise texture function. Such synthetic images have already

been used in a previous work by the workgroup ‘Metrology’



of CNRS research network 2519 for DIC methods error

assessments [5–7]. Note that in the case, only image pairs

linked by some particular rigid body translations or

homogeneous strain fields are needed, it is possible to create

such artificially subpixel transformed images, without any

additional interpolation error, by means of a numerical

binning of a ultra-high resolution image, which is either

synthetically generated [29] or recorded by means of a very

high resolution digital camera [22].

In most of the previously cited papers, the assessment of

DIC measurement errors, based on either numerical or

experimental approaches, is in general performed with the

purpose of evaluating or testing a particular DIC code or

algorithm. Thus, published results are highly dependent

on the considered DIC implementation. For studies focused

on sensitivity to DIC parameters or on sensitivity to specific

DIC algorithms or software implementations, results are also

relative to the tested code. In this paper, nine DIC codes are

used in order to give this study a more generic character. The

analysis is based on displacement error assessment derived

from the analysis of synthetic pairs of speckle images. Series

of synthetic reference and deformed images with random

patterns have been generated [28], assuming a known

displacement field. Displacements are evaluated by the

following nine DIC packages developed by or used in the

French community: Vic-2D (L. Robert, ICA, Mines Albi), JH

(J. Harvent/J.-J. Orteu, ICA, Mines Albi), 7D (P. Vacher,

SYMME, ESIA), Aramis 2D (M. Fazzini, LGP, ENIT), Correla

(J.-C. Dupré/P. Doumalin, PPRIME PEM, Poitiers), CMV

(M. Bornert, Lab.Navier,Marne-la-Vallée), Kelkins (B.Wattrisse,

LMGC, Montpellier), CinEMA (J.-S. Wienin, EMA) and SPA

(C. Poilâne, CIMAP, Caen). These academic or commercial

packages are based on a wide range of DIC formulations and

different implementations.

In a previous work [5, 6] based on (almost) the same set of

correlation packages and making use of simulated images

submitted to sinusoidal displacement fields with varying

spatial frequencies, it has been shown that correlation

computations are associated with three main error regimes

depending on the correlation formulation and the real

image transformation. The first error regime, which is a

known limiting situation for DIC, is for high frequency

fields, for which no measurement can be performed when

the period of the signal is smaller than the subset size. For

lower frequencies, two error regimes can be encountered.

The first one, referred to as the ‘mismatch error regime’, is

reached when the adopted shape function does not fit the

actual displacement field in the subset (see also [30]). In this

regime, the error is proportional to the first-order term of the

discrepancy between the adopted shape function and the

actual displacement field, whatever the shape function, and

increases with either increasing window size or increasing

speckle size. The second one, referred to as the ‘ultimate error

regime’, corresponds to the opposite situation where the

adopted shape function fits the actual displacement field

accurately enough. The error then neither depends on the

frequency of the signal nor on the amplitude of the

displacement gradient. Consequently, it is no longer linked

to the shape function mismatch. A first precise observation

of this regime has shown that it is essentially governed by

the same dependencies as in the case of pure translations for

which the local transformation model of the subset naturally

matches the real one. In particular, the RMS error increases

with noise level and decreases with increasing subset size.

The present work is focused on this ultimate error regime;

both the random errors and the so-called systematic errors

[9, 10,23] correlated with the fractional part of the

displacement expressed in pixels are investigated. We

propose to focus on the influence of both (i) the correlation

formulations/parameters chosen by the user and/or relative

to the image analysis software (essentially correlation

criterion, grey level (GL) interpolation and subset size) and

(ii) several image characteristics like speckle size (expressed

in pixels) and image noise.

The Methodology section will be focused on the

description of the adopted error assessment procedure.

Results obtained with our synthetic images processed with

the above mentioned nine DIC packages are thoroughly

presented in the Results section, both in terms of random

and systematic errors. The comparison of some of the

observed results to existing models available in the literature

will be addressed in a subsequent paper, in which some

extensions of these approaches will also be proposed.

To conclude this introduction, let us point out that the

aim of this work is not to compare the relative performances

of these DIC packages (which are often not used at their full

capabilities) but rather to analyse the relationships between

DIC formulations/parameters and DIC measurements errors

and consequently to verify that results are essentially linked

to underlying DIC formulations and not to specific software

implementations.

Methodology

Synthetic images

The set of synthetic reference and deformed speckle-pattern

images is obtained, as in [5], using the TexGen software [28].

This software has been developed to produce synthetic

speckle-pattern images, which mimic as realistically as

possible real DIC speckle patterns, obtained for instance

with spray painting. One of the interests of this software is

that any transformation can be applied to a continuous

texture function assuming perfect convection of image

intensity, and the integration of each pixel is performed

by a super sampling technique, which mimics a real

image sensor, assuming a 100% fill factor. It is

emphasised that the underlying philosophy of TexGen



is not to construct directly virtual images but rather to

design a virtual imaging system. TexGen maps and

digitises a continuous light intensity distribution which

is deformed in a controlled fashion in continuous space,

onto a virtual (possibly imperfect) discrete sensor

representative of a real sensor.

To ensure that there is no mismatch error whatever the

shape function adopted by the tested DIC formulations,

only synthetic images of plane rigid body translation have

been generated. The imposed displacement uimposed varies

from 0 to 1 pixel with a step of 0.02 pixel along the

horizontal direction. The size of the speckle pattern has

been characterised by the radius r at half height of the

auto-correlation function of the images [5]. Speckle patterns

of three mean speckle radii r have been generated (r= r0/2 for

the fine, r0 for the medium and 2r0 for the coarse speckle

with r0 ≈ 2.2 pixels) and uniform Gaussian white noise

with four intensity levels (standard deviation  n = 0, 2,

4, 8, 16 GL) has been added to the pixel GL. Images were

digitised on an eight-bit GL scale (0–255). It should be

emphasised that the digitisation operation generates an

additional noise due to the rounding operation. Its

standard deviation can be evaluated, for noiseless images, to

0.4 GL (see APPENDIX A for more details). Consequently,

the actual noise associated with  n=0 is 0.4 GL. For  n≥2,

the digitisation contribution is less than 2% of the added

noise and thus can be neglected.

The size of the images with medium-sized speckles was

1024×1024 pixels, while the coarse and fine ones were,

respectively, 512× 512 and 2048×2048 pixels, so that the

size of the images with respect to the speckle size was

constant. Figure 1 shows sub-images (192×192 pixels in

size) of the three speckle sizes (fine, medium and coarse)

images. A six times enlargement of the sub-images (32 ×32

pixels windows) is also presented for cases with  n=0 and

 n=16 GL noise. Images used in the paper can be downloaded

from thewebsite of the research network at the followingURL:

http://www.gdr2519.cnrs.fr/image_database/Strain2013/.

DIC parameters

The main DIC parameters of the considered packages are

summarised in Table 1. The various settings have been chosen

among the possible options of each package. Considered, as in

[5] are the following: the order of the shape function ϕ

describing the local transformation of the image (from rigid

to second order, ϕ 2 {0,1,2}, knowing that it has little impact

on simply translated images, see [5]), the correlation window

size d chosen in this work to be 8, 16 or 32 pixels (or 9, 15

and 31 for implementations requiring odd subset sizes), the

interpolation of image GL i 2 {l,c,q} (linear, cubic or quintic

interpolations, either polynomial or spline) and the subpixel

optimisation strategy o 2 {f,p,b,F} (full, partial, biparabolic,

Fourier), which is relative to the optimisation of the higher-

order (≥1) shape function parameters, which can be full (f)

or partial (p) or refers to algorithms based on a biparabolic

interpolation of the correlation coefficient with respect to

the translation components of the shape function (b) or on

an optimisation in Fourier space (F). Note that in case of a

zero-order shape function, the optimisation algorithms work

similarly for full or partial optimisation.

Note also that for the current study restricted to a pure

translation, package 1 based on a biparabolic optimisation

(o=b) of the correlation coefficient does not require any

interpolation of the GL of the deformed image, in contrast

with the other situations (o= f, p). For this optimisation

strategy, there is neither any need to specify a tolerance for

the convergence, since the optimisation of the quadratic

interpolation polynomial is performed exactly. For the other

packages, based on classical iterative optimisation algorithms,

the convergence criteria where set, whenever possible, to

sufficiently restrictive values so that the error on the

numerical optimum is at least one order of magnitude lower

than the experimental errors discussed hereafter. The same

holds for package 4 for which the convergence criterion is

based on the increase of spatial frequencies [31, 32].

Furthermore, all these packages are based on so-called

‘local correlation formulations’. None of the tested academic

codes was run with a pre-filtering of images, while it is not

known what commercial codes actually do with respect to

pre-processing of images.

It is emphasised that the ordering in Table 1 does not follow

the enumeration of the packages given in the introduction,

as the aim of this paper is not to compare the performances

of the implementations of the various packages but rather to

highlight the influence of the underlying formulations on

ultimate errors, as already mentioned in the introduction. In

particular, the packages are in general not limited to the set

of parameters given in Table 1. These parameters have been

selected in order to cover a set of DIC parameter combinations

as large as possible.

Statistical analysis

Displacement error at the centre of a correlation window of

coordinates (i,j) is obtained by

Δuij ¼ umeasured
i; j " u

imposed
i; j (1)

where umeasured
i; j is the evaluation of the displacement field

provided at this position by the DIC package. Note that for

simplicity, the error analysis is restricted to the horizontal

component of the displacement.

The standard deviation  u (random error) is calculated by

 u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n∑
i; j

Δu2ij " ∑
i; j

Δuij

! "2

n n" 1ð Þ

v

u

u

u

u

t

(2)



with n being the number of positions (i,j) where the

displacement is evaluated, while the arithmetic mean

(systematic error or bias) is obtained as

uΔu ¼

∑
i; j

Δuij

n
(3)

Displacements have been evaluated at all positions of a

regular square grid in the initial image, with a pitch such

that correlation windows at adjacent positions do not

overlap, ensuring the statistical independence of the

corresponding errors. Note that the number of positions

depends on the correlation window size and the image size;

in the worst case (512×512 pixels images and 32×32 pixels

windows), there are 256 independent evaluations (and

much more in other cases), which are sufficient for an

accurate quantification of the error statistics.

It is well-known that both arithmetic mean and standard

deviation of errors depend periodically on the displacement

amplitude with a period of one pixel [8–10,23], as a

consequence of the one pixel periodicity of the properties

of the image discretisation process (assuming pixels on the

sensor behave similarly). So, in this paper, the evolution of

these errors is studied for prescribed displacements varying

6x enlargement

32x32 pixels

noise 16 GL

6x enlargement

32x32 pixels

no noise

192x192 pixels

no noise

r0/2 r0 2r0

X

Y

Figure 1: Sub-images (192×192 pixels and magnified view of 32×32 pixels) of the synthetic images with three speckle sizes (fine, medium

and coarse) for both cases of no noise and !n=16 GL. Subsets with sizes of, respectively, 8, 16 and 32 pixels for, respectively, the fine, medium

and coarse speckle sizes are also drawn

Table 1: Various settings for the used packages

Package Criterion Shape function (ø) Interpolation (i) Optimization (o)

P1 ZNCC Second order Not relevant Biparabolic (b)

P2 NSSD Zero order Spline quintic (q) Full (f)

P3 ZNCC First order ? Full (f)

P4 SSD in spectral analysis Zero order Linear (l) Fourier (F)

P5 NSSD Zero order Spline cubic (c) Full (f)

P6 NSSD Zero order Cubic (c) Full (f)

P7 NSSD First order ? ?

P8 NCC First order Cubic (c) Partial (p)

P9 ZNCC Zero order Linear (l) Partial (p)

Question marks refer to non-documented packages.

ZNCC, zero mean normalised cross-correlation; NSSD, normalised sum of squared differences; SSD, sum of squared differences;
NCC, normalised cross-correlation.



between 0 and 1 pixel by 0.02 pixel steps. Consequently, the

prescribed displacement is equal to its fractional part, which

will be noted τ in the following.

The output of this investigation is thus a set of two curves

giving the evolution of the random (Equation [2]) and

systematic (Equation [3]) errors as a function of the subpixel

displacement along the x-direction of the images (see

Figure 1). Note that because of the isotropy of the speckle

patterns, the same curves would have been obtained with

translations along the y-direction. The coupled dependence

of the errors on both x and y subpixel translations has been

partially investigated but turned out to be weak, so that only

the dependences of the errors on the displacement along x

for a vanishing displacement along y have been investigated.

Note also that because of the central symmetry of the statistics

of the speckle patterns and the image generation procedure, a

subpixel translation along x with amplitude u is equivalent to

a translation along x with amplitude  u, which is itself

equivalent to a translation with amplitude 1 u. As a

consequence, the systematic error curves should be central-

symmetric with respect to the point (0.5, 0) and the standard

deviation curves symmetric with respect to the axis x=0.5.

Anydeviation from these symmetry propertieswould indicate

that the set of investigated data is not sufficiently statistically

representative or be the signature of a non-symmetric

behaviour of the used DIC algorithm.

The curves can also be described by some of their overall

characteristics. In particular, the systematic error curve will

be characterised by its amplitude, A—
Δu

, which is calculated

by the difference between its maximum and minimum over

all imposed displacements. The random error curve can be

characterised by its maximum, its mean and its quadratic

mean, which corresponds to the RMS of the random errors

for arbitrary subpixel translation. In addition, the

dependence of the random error with the fractional part τ

of the displacement can be quantified by the standard

deviation of the random error curve. In the next section,

results associated with the random error are characterised

in terms of its mean  u and its standard deviation   u over

all values of subpixel translation τ.

Results

The main results of this analysis, obtained with the nine

DIC packages listed in the introduction are presented in this

section. It is mostly focused on the above presented

systematic and random error curves and their evolutions

with image noise and other DIC parameters. In the first step

(Section Errors versus imposed displacement), the systematic

and random errors are globally and qualitatively compared

for specific choices of images properties and DIC parameters.

This will allow us to define two main types of behaviours of

the DIC packages in terms of the dependence of the errors

with image noise. The evolutions of the main characteristics

of the error curves with noise level, subset size and speckle

size are then more systematically and quantitatively

investigated in the following two sections: the evolutions

of the amplitude of the systematic errors are discussed in

the Systematic errors section while the average and the

standard deviation of the random error curve are considered

in the Random errors section.

Errors versus imposed displacement

Systematic error curves obtained with the nine packages

applied on images with the medium speckle size (r= r0) and

for a subset size of 16 pixels are reported in Figure 2, while

random errors obtained in the same conditions are given

in Figure 3. In each figure, results obtained with the images

without additional noise (Figures 2A and 3A) are compared

to those obtained with the highest noise level of  n=16 GL

(Figures 2B and 3B). These results and their comparisons

suggest the following comments.
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Figure 2: Bias error for (a) noiseless and (b) noisy images ( n=16 GL) versus imposed displacements, obtained with the different packages

(speckle size r= r0, subset size d=16 pixels)



• The well-known S-shape of the systematic error curve is

recovered for almost all packages and for both noise

levels. Curves are in general symmetric with respect to

the point (0.5, 0), with the exception of packages 3 and

4 applied on images without additional noise. The shape

of the S-curve is in general similar to a sine curve, with

maxima and minima close to τ =0.2 and 0.8. This sine-

like shape can evolve into an almost triangular-shaped

curve on the noisiest images (see Figure 2B). The most

noticeable case is provided by package 9 with extrema

below 0.1 or above 0.9. Note that the sign of the

systematic error depends on the packages but seems to

remain the same for a given package when noise is added.

• The systematic error curve and in particular its amplitude

strongly depends on the package in use. This establishes

that this error is strongly dependent on the DIC

algorithms and their parameters. The amplitude of the

systematic errors can vary by a factor of more than 10

between two different packages applied on same images.

Note again that this observation is not linked to the

performances of the implementations of the various

packages but on the algorithms and the particular

options that have been selected to run them. Indeed,

the same package that runs with different DIC options

can lead to very different systematic error curves. At the

higher noise level, several packages exhibit similar

systematic error curves, but significant differences with

other packages are still observed.

• More precisely, a detailed analysis of the evolution of the

systematic error curves with noise shows that two very

different behaviours are observed. On the one hand,

some packages used with the parameter combination

given in Table 1, namely, P2, P5, P6, P8 and P9, exhibit

a strong dependence of the amplitude with noise. The

amplitude is for instance multiplied by 9 when noise is

added for P5 and almost 100 for P9. On the other hand,

there are packages for which the systematic error seems

to be almost independent on noise level. This is the case

of P1 and P7. For these packages and for low noise

images, the systematic error is larger than the one

exhibited by some of the packages of the first set but is

definitively lower for noisy images.

• Concerning the random error, it is observed that it

increases systematically with increasing image noise

level. This is expected as DIC algorithms can be

considered as filters that operate on images as input and

produce displacement fields as output; noisy input

naturally generates noisy output. Note that random noise

is not null at  n=0, as a consequence of both

quantisation error (see APPENDIX A) and discretisation

of images. However, random error levels can be very

different from one package to the other, especially at

low noise levels, for which ratios of 1 to 10 on random

errors can be observed. At higher noise, discrepancies

are less pronounced.

• A significant difference is observed between packages on

the shape of the random error curve as well as on its

evolution with noise (see Figure 3). Again, two main

behaviours can be defined. The first behaviour consists

in a random error level almost independent on τ, for both

noise levels, and in a moderate evolution of this almost

constant random error with  n. Surprisingly, this

behaviour coincides with the absence of dependence of

the systematic error with noise (as observed previously)

and is observed for packages P1 and P7. This behaviour

is also observed for packages P3 and P4. All other

packages, which coincide with those exhibiting a strong

dependence of the systematic error with noise, i.e., P2,

P5, P6, P8 and P9, follow another behaviour characterised

by a random error dependent on τ and a strong evolution

of the shape of this curve with noise. More precisely, for

low noise level, the random error is very low for τ close

to 0 and 1, while it gets very large for the same values of

τ for high noise levels.
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Table 2 summarises the two typical behaviours observed

and the packages that follow them. Note that packages P3

and P4 exhibit some intermediate behaviour.

Systematic errors

Let us now focus on the amplitude of the systematic error

A—
Δu

, given in Figure 4 as a function of the standard

deviation of the image noise  n for three subset sizes (d=8,

16 and 32 pixels) and for the intermediate speckle size

(r= r0). Results are split into three plots illustrating the

observed behaviours as follows: Figure 4A corresponds to

behaviour 1 with a strong nonlinear increase of the

amplitude with noise level; Figure 4C illustrates behaviour

2 with almost no dependence with noise level. Figure 4B

provides results relative to the packages exhibiting some

intermediate behaviour. It can be noticed that this error

amplitude in general does not depend on the subset size,

with the exception of package P4 and, to a limited extent,

of package P1, as well as all packages following behaviour

1 at high noise levels. Most packages exhibit a bias

amplitude below 0.01 pixel at low noise levels, the maximal

amplitude being 0.025 pixel (package P1). At larger noise

levels (typically 4 GL on the 256 available levels), the

systematic error can be much larger and becomes a serious

limitation of packages following behaviour 1.

As systematic errors are induced by interpolation procedures

aiming at restoring continuousGL (or correlation coefficients)

from discrete pixel values, it does make sense to explore the

influence of image resolution with respect to speckle size.

With this purpose, we compare results obtained with several

subsets with the same ratio d/r but different pixel samplings.

Three situations are considered as follows: low (r= r0/2 with

d=8 pixels), standard (r= r0 and d=16 pixels) and fine (d=32

pixels with r=2r0) spatial image discretisations. This

comparison corresponds to the practical situation of the

imaging of the same region of interest of a same sample

with three different cameras with increasing image

definitions (i.e. number of pixels in the image).

In order to compare results in terms of speckle size,

systematic error amplitudes are normalised by the speckle

size. Results are reported in the three plots in Figure 5, which

gives the systematic error amplitude expressed in speckle

size as a function of image noise for the three image

discretisations. Note that the x and y scales of these plots

are the same. The two opposite behaviours in terms of the

dependence of the bias amplitude with respect to image

noise are again clearly observed on these plots. Packages

Table 2: Summary of observed behaviours. Note that packages P3 and P4 exhibit some intermediate behaviour

Behaviour 1 Behaviour 2

Systematic error Strong dependence of amplitude with noise Almost no dependence with noise

Random error -Dependence on  n -Less pronounced dependence on  n

Very small error at low noise Small error at low noise

Similar (average) error at high noise

-Strong dependence on τ -Weak dependence on τ

At low noise: concave shape, minimum for τ close to 0 and 1 (Whatever the noise level)

At high noise: convex shape, pronounced maximum for τ close to 0 and 1

Packages P2, P5, P6, P8, P9 P1, P7

(a) Behaviour 1
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Figure 4: Systematic error amplitude A—
Δu

as a function of noise level  n for three subset sizes (square: d=8 pixels, triangle: d=16 pixels,

diamond: d=32 pixels) and standard speckle size (r= r0); behaviour 1 (a), intermediate behaviour (b) and behaviour 2 (c)



following behaviour 1 exhibit in general a lower bias

amplitude at low noise, but this tendency is rapidly reversed

when image noise increases. In addition, it is observed that

for images with low image noise, or for packages following

behaviour 2 at any noise level, the bias amplitude can be

significantly reduced by increasing the image definition.

This reduction is even faster than the decrease in pixel size,

which means that a better pixel discretisation leads to a

reduced systematic error expressed in pixels (and not only

in speckle size). However, for images with high noise levels

and for DIC softwares that follow behaviour 1, this

reduction of bias amplitude is no longer observed because

of the strong influence of image noise for such packages.

In such a situation, an increase in image definition, does,

in the best case, not lead to any improvement on bias

amplitude expressed in speckle size (which means that there

is no need in using a higher definition camera) or may even

induce an increase of this amplitude. For such packages,

there should thus exist some optimal pixel size with respect

to speckle size, which would allow us to minimise the bias

amplitude. Another implication of these observations is that

it does make sense to pre-filter noisy images before processing

them with a package that follows behaviour 1, by means of

an N×N binning procedure, which at the same time leads

to a reduction of the speckle size with respect to pixel size

by a factor N and a reduction of the noise level (assumed

independent between adjacent pixels) by the same ratio.

An alternative option would be a low-pass pre-filtering

(e.g. Gaussian filtering) of the images, which preserve

the image definition but reduces both the spatial

resolution and the image noise. A thorough examination of

the results obtained with commercial codes indeed suggests

that some of them, following intermediate behaviour,

probably implement such kind of filtering.

Random errors

It has been shown in the Errors versus imposed displacement

section that several different behaviours are observed in terms

of dependence of random error with imposed displacement τ

and noise level (Figure 3). Consequently, random error is now

analysed as function of noise level. More particularly,

Figures 6, 7 and 8, respectively, present the evolution of the

mean random error  u over all values of τ for different speckle
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sizes, themean randomerror u multiplied by the subset size d

for different subset sizes and the standard deviation   u of  u,

which quantifies the dependence of this error with τ. To

facilitate the interpretation, curves are again presented by

distinguishing behaviour 1 (Figures 6A, 7A and 8A), behaviour

2 (Figures 6C, 7C and 8C) and intermediate behaviour

(Figures 6B, 7B and 8B), as done in the systematic error

analysis presented in the Systematic errors section. It is

recalled that the last behaviour corresponds to a behaviour,

which generally is intermediate between behaviours 1 and 2

in terms of random error evolution.

For all the packages, the higher the noise level, the higher

the mean random error (Figure 6). For low noise levels,  u is

globally smaller for behaviour 1 than for behaviour 2,

particularly for small speckle size (r0/2). For packages related

to behaviour 1,  u is weakly dependent on speckle size

whatever the noise level (and particularly for lownoise levels),

whereas for packages related to behaviour 2, the quantity  u

exhibits a more pronounced dependence with speckle size,

particularly for low noise levels. For behaviour 2, the smaller

the speckle size, the higher the mean random error.

In order to analyse the random error dependency on

subset size d, Figure 7 presents the mean random error  u
multiplied by the subset size d for the standard speckle size

r0. This normalisation has been chosen because, at least

to first order, random error is essentially inversely

proportional to window size. For all the packages, the

higher the noise level, the higher the value of (d u ), that

is to say  u decreases with increasing the subset size and

increases with the noise level.

For packages following behaviour 1, master curves are

obtained with respect to the subset size: for a given package,

the evolution corresponding to the three subset sizes are

superimposed whatever d (Figure 7A), which confirms, for

such procedures, the above mentioned proportionality of

 u and 1/d. For packages following behaviour 2, higher

values of (d u ) are observed for smaller subset sizes than

for larger ones, whatever the noise level. Finally, for

packages following the intermediate behaviour, no master

curve can be extracted either in the evolution of ( d u ),

although the dependence on the image discretisation seems

to be less pronounced than for behaviour 2.
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The last analysis focuses on the dependence of the random

error with the imposed displacement τ. Figure 8 presents the

evolution of the standard deviation of the random error   u
versus noise level for the case corresponding to subset size

d=16 pixels and standard speckle size r0. Figure 8A

corresponding to behaviour 1 clearly shows the strong

dependence of the random error with the imposed

displacement τ particularly for noisy images. The higher the

noise level, the higher the standard deviation of the random

error. This trend is a consequence of the evolution of the

shape of the random error curve presented in Figure 3

showing that for high noise levels, the random error is very

large for τ close to 0 and 1. On the contrary,   u is almost

independent of the noise level for packages corresponding

to behaviour 2 or intermediate behaviour, and values of are

at least one order of magnitude below those of packages

corresponding to behaviour 1.

Comments and Conclusion

As recalled in the introduction, random and systematic

errors observed in the context of the measurement of 2D

displacement fields by means of DIC techniques have been

addressed by various authors and several strategies. The

presently described investigation is based on the analysis

of synthetic images, obtained by a numerical process, which

closely mimics the image generation in a real digital camera,

for both the reference and deformed images. It presents the

advantage to be insensitive to image interpolation algorithms

which might be used by other methodology to translate

images. The error is also quantified exactly because the exact

image shift prescribed by the numerical image generation

is known, unlike other procedures making use of

experimentally recorded images, for which this knowledge

depends on the accuracy of the experimental system with

which the motion is prescribed or measured. In addition, in

our procedure, the dependency of the errors with various

image parameters can be investigated separately. Dependence

of errors with image noise ( n), speckle size in pixels (r),

correlation window size (d) and ratio of correlation windows

size to speckle size (d/r) have been established. The most

noticeable novelty of the presented benchmark is related to

the unprecedented wide range of DIC formulations and

packages that have been tested and compared on the same

set of images.

This last aspect allows to clearly establish some generic

behaviours common to all packages, such as the existence

of an S-shaped systematic error curve, the increase of

random errors with image noise and its decrease with

window size (in the present context of the absence of shape

function mismatch error). More importantly, it allowed us

to establish clear differences in the behaviour of different

algorithms or implementations. The precise shape and

amplitude of the systematic error curve are, for instance,

very different from one package to the other. It is however

possible to gather most DIC packages into two families

exhibiting similar behaviours in terms of evolution of

systematic and random errors with respect to image noise

 n and subpixel displacement τ, as summarised from a

qualitative point of view in Table 2. This separation into

two families has again been observed and analysed more

quantitatively in the Systematic errors and Random errors

sections. Family 1, for instance, exhibits an almost ideal

proportionality of average random errors with d and an

almost linear dependence of random error with  n, while

such rules do not apply for packages of family 2. On the

other hand, random errors are almost insensitive to subpixel

displacement for family 2, while a complex dependence,

which strongly evolves with  n is observed for family 1. In

terms of systematic errors, the strong increase with noise

of the amplitude of the S-shaped curve for family 1 has been

quantitatively confirmed for all packages of this family, with

similar but not identical amplitudes of these errors. The

quasi-independence of the systematic error amplitude with

 n for packages of family 2 is confirmed over the whole

range of investigated image noise and various image

definitions (i.e. speckle size expressed in pixels, at fixed d/r).

The strong influence of this last parameter on systematic

errors has also been confirmed in our study: a better image

definition allows reducing systematic errors but only under

the condition that image noise remains sufficiently low in

the case of family 1. Generally speaking, packages of the first

family lead to lower error levels (both randomand systematic)

when the imaging conditions are good (i.e. low image noise

and sufficient image definition), but packages of family 2 are

much more robust to image noise.

Roughly speaking, the packages associated with the first

family globally lead to better results when the noise

standard deviation is smaller than 4 GL because of the low

levels of random errors they generate in that context.

Packages of family 2 behave more efficiently for noise levels

above 8 GL, essentially not only because of their noticeably

reduced amplitude of systematic errors but also because of

their slightly reduced random error. This behaviour of the

packages of family 2 might be explained, at least

qualitatively, by their implementation, based on subpixel

optimisation making use of an interpolation of the

correlation coefficient, instead of GL interpolation used in

packages of family 1. This seems to provide the DIC

packages of family 2 some noise-filtering capacity to the

detriment of larger random errors in the case of small

subsets and no image noise, even though no explicit pre-

filtering of the images is performed by these packages, at

least for one of them. Indeed, for images with low noise,

the interpolation of the correlation coefficient from values

at discrete translations by an a priori (usually quadratic)

function is likely to be less accurate than the computation

of the correlation coefficient for any subpixel translation.



Consequently, a higher error (likely to be essentially

random) might be expected on the optimal value of this

translation.

A practical implication of these observations for a DIC

user is the following. If the images are of good quality, i.e.

exhibit low noise level, algorithms of family 1 will provide

better results; but in case of high noise level, two options

are possible: either use family 2 algorithms or apply family

1 algorithms on pre-filtered images. Another practical

implication of our observations is that there is no need to

increase the resolution of the images with respect to the

speckle size in case of highly noisy images as commented

in the Systematic errors section. At this stage, it is however

difficult to provide more specific recommendations, for

instance, in terms of choice of GL interpolation or

correlation coefficient for packages following behaviour 1,

as no definitive trends can be emphasised as commented

above. Our results show on the contrary that one should

be cautious when using DIC algorithms, when accuracy is

a concern. Some trends observed in some cases might

indeed not apply to other situations, so that no direct

solution can be suggested. Parameter sets providing low

errors, either systematic or random, in some cases might

be much less efficient in others and conversely. Error

analysis requires thus to be performed for each situation,

which somewhat limits the versatility of DIC systems for

non-specialised users and suggests the necessity to develop

tools to quantify errors adapted to real situations, such as

the one presented here.

Some of the observed behaviours, especially those

exhibited by family 1, have already been reported in the

literature [13, 33], and analytical models have recently been

provided for them. In particular, the perturbation analysis

proposed by [13], when specialised to pure translation,

predicts a linear dependence of random errors with image

noise (when white noise is assumed as in this study). In

addition, for a stationary speckle pattern and sufficiently

large window sizes, these errors evolve like 1/d, as almost

observed in our results, in the case of family 1. Such an

analysis has been extended by [33] to take into account

the discrete nature of images and the influence of GL

interpolation; the dependence of systematic error with noise

could for instance be predicted.

A quantitative comparison with these analytical models

could be proposed. However, such a comparison will require

additional developments and will be the object of a

forthcoming paper. As can for instance be seen in Figures 4A,

6A and 7A, the coefficients governing the dependence of

random errors with image noise and window size depend

on the packages, even though they are similar. The

dependence of these coefficients with the particular options

used by the packages (such as type of correlation coefficient

and GL interpolation routine) needs thus to be taken into

account. A similar comment holds if amplitude of systematic

errors would have to be compared to the model proposed in

[33], which has been developed for a specific correlation

coefficient and for bilinear and bicubic GL interpolation. It

can also be noticed that the strong dependence of random

errors with subpixel translation, especially for high noise

level, as observed here and in earlier studies [34], is not

predicted by any of these models and will require additional

modelling efforts.

Let us also notice that even if the presented results are

specific to a particular modelled speckle pattern, the

procedure could be extended to any other one, including

experimental ones, if an appropriate theoretical model is

available or if a way to record them at sufficiently high

resolution is available, in the line of [22]. Some generic

information on the behaviour of some DIC packages with

respect to some image properties or DIC parameters have

also been evidenced in our study and suggest possible ways

to improve DIC performances. In particular, the evolution

of systematic errors with image definition and image noise

evidenced at the end of Systematic errors section suggests

that there is a way to optimise image acquisition conditions

with respect to these errors. For a given noise level (linked to

the camera) and physical size of the speckle pattern

(provided for instance by the natural structure of the

sample), there must exist an optimal optical magnification,

which minimises systematic errors, at least for family 1.

Moreover, some pre-processing of the images (such as pixel

binning as suggested at the end of Systematic errors section),

leading to a reduced noise level and smoother images might

also improve results and might be tested for a given

experimental setup.
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APPENDIX A: ESTIMATION OF QUANTISATION NOISE

Let us consider the recording of images obtained by

converting photons collected over a time-range large

enough to consider the conversion as a time-independent

process. The electrical charge of a given pixel, denoted x

herein, can take NQ=w/2b distinct values inside a

quantisation interval (providing the same digital value),

where w is the electronic well depth and b is the number

of considered bits. NQ is sensor dependent and is usually at

least NQ =100, so that x is considered to be continuous in

the following. Furthermore, we assume that the charge x is

corrupted by thermal fluctuations as well as fluctuations of



the number of photons impinging on the considered pixel

(shot-noise). Let us assume these fluctuations are large

enough to consider all charge values equally probable over

the quantisation interval. The quantisation error εq(x) on

the electrical charge is defined as the difference between

the actual charge x and its rounded value A(x)

εq xð Þ ¼ x# A xð Þ

This error is periodic with a one quantisation step period,

corresponding to 1 GL, and its variation on the interval

[#0.5 NQ, 0.5 NQ], expressed on the GL scale, is illustrated

in Figure A1.

The expectation of εq(x) is equal to hεq(x)i, with hXi
standing for the integrated value of X over the quantisation

interval, because all charge values are assumed equally

probable. Using the analytical definition of εq(x), it is

immediate to see that this expectation is equal to zero.

Consequently, the variance of εq(x) is equal to hεq2(x)i, which
can be easily calculated, and is equal to 1/12.

The quantisation contribution to the noise corrupting a

digital image is described by the distribution of A(x). Its

expectation is equal to

A xð Þh i ¼ xh i # εq xð Þ
 !

¼ xh i

The variance of A(x) is obtained as

A2 xð Þ
 !

¼ x2
 !

# 2 x εq xð Þ
 !

þ ε
2
q xð Þ

D E

¼ x2
 !

þ 1

6

using the identity x εq xð Þ
 !

¼ # 1
24

The noise of the digitised data A(x) can be defined as the

standard deviation of A(x), denoted here  A

 
2
A ¼ A2 xð Þ

 !

# A xð Þh i2 ¼ 1

6
þ x2

 !

# xh i2 ¼ 1

6
þ  

2
x

where  2x ¼ x2
 !

# xh i2 denotes here the variance of x.
Considering noiseless images ( x=0), the standard

deviation describing the noise of the digitised data reduces

to the quantisation noise  A, which is shown to be equal

to  q ¼ 1=
ffiffiffi

6
p

≈ 0:4 GL. For real-life images, the quantisation

contribution may turn negligible so that  A ≈ x since other

sources of noise – depending on both the sensor and the

measured photon flux – may dominate. For instance, for  x
greater than 2 GL, the quantisation contribution represents

less than 2% of the  x.

Figure A1: Variations of the quantisation error εq(x) as a function of

the charge x




