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Abstract 

As more than 50% construction and demolition (C&D) wastes are composed of concrete 

debris in Hong Kong, recycling this debris into Recycled Aggregate (RA) for production of 

Recycled Aggregate Concrete (RAC) is an efficient way to alleviate the burden on landfill 

areas. Since RA is generated from concrete debris which has undergone years of services, the 

resulting RAC bears the weaknesses of lower density, higher water absorption, and higher 

porosity that limit them to lower-grade applications. Pinpointing to these weaknesses, Tam et 

al. [1] developed the Two-Stage Mixing Approach (TSMA) for improving the strength of 

RAC, leading to the possibility in applying RAC for higher-grade applications. While the 

improvement in strength by TSMA has been proven in Tam et al.’s work [1], the durability, 

in terms of deformation (shrinkage and creep) and permeability (water, air and chloride 

permeability), remains to be verified. In this paper, 0%, 20% and 100% of RA substitutions 

have been experimented to compare the durability performance of the Normal Mixing 

Approach (NMA) and the TSMA. Experiment results highlight that: i) the higher the 

substitutions of RA, the weaker the performance of RAC; and ii) the deformation and 

permeability of RAC can be enhanced when adopting TSMA. Therefore, it demonstrates that 

TSMA can help to improve the durability of RAC, on top of the previously verified strength 

improvement, and thus opening up wider applications of RAC.  

Keywords: Deformation, permeability, shrinkage, creep, recycled aggregate concrete. 

                                                 
1* Correspondence Author, Lecturer , Griffith School of Engineering, Gold Coast Campus, Griffith University, 
PMB50 Gold Coast Mail Centre, Qld 9726, Australia. Email: v.tam@griffith.edu.au. Tel: (61) 7-5552-9278; Fax: 
(61) 7-5552-8065. 
2 Professor, Department of Building and Construction, City University of Hong Kong, Hong Kong. 
 

1 

mailto:v.tam@griffith.edu.au


 

1. Introduction 

In recent years, recycling of concrete wastes in producing Recycled Aggregate (RA) has been 

proven to be commercially viable and technically sound for non-structural applications [2] [3] 

[4] [5]. Such recycling operations can reduce landfill consumption, while conserving primary 

resources and reducing transport costs [5] [6]. Some of the examples are shown in Table 1 [7]. 

<Table 1> 

 

Although the reuse of demolished concrete waste can benefit the environment, literature 

reports show that the cement mortar attached to the recycled aggregate particles creates 

numerical problems that have confined the application of Recycled Aggregate Concrete 

(RAC) [2] [5] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] 

[25] [26] [27] [28] [29] [30] [31] [32]. This residual mortar alters the absorption and density 

of aggregate, leading to adverse effects on concrete performance.  

 

The worry on the use of RAC is not limited to structural stability, but also their durability in 

designing concrete structures [24] [33] [34] [35] [36] [37] [38]. Durability plays an important 

role in the life cycle cost of a structure; for example, in Japan, it is estimated that the 

maintenance and renovation costs for infrastructure will exceed 70% of the total public 

investment in 2010. In the United States, it is estimated that the necessary repairs and 

improvements to the infrastructure will amount to $3.3 trillion over a period of 19 years. 

Thus, durability has become a matter of social importance.  

 

To improve the quality of RAC, a new mixing method: Two-Stage Mixing Approach (TSMA) 

has been developed by Tam et al. [1]. The improvement is achieved by forming a layer of 

cement slurry on the surface of RA to fill up the cracks and voids, leading to an improved 
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interfacial zone at the pre-mix stage. The improvement of strength on TSMA has been proven 

by Tam et al. [1] while the performance on durability remains to be studied. The factors 

affecting concrete structures’ durability have been reported by many researchers. Most agree 

that deformation (in the forms of shrinkage and creep) and permeability (in the forms of 

water, air and chloride permeability) are good and reliable indicators to assess the long-term 

durability of concrete [24] [33] [34] [35] [36] [37] [38].  

 

This paper aims in: i) exploring the Two-Stage Mixing Approach (TSMA) developed by Tam 

et al. [1] by highlighting the improvements to RAC; and ii) experimenting the durability 

performance of RAC in terms of deformation (in the forms of shrinkage and creep) and 

permeability (in the forms of water, air and chloride permeability) so achieved by TSMA. 

 

2. Experimental Work 

2.1  Methods and Material  

In investigating the behaviour of RAC, RA was collected from the centralized recycling plant 

at Tuen Mun Area 38, which has met the specification of the Buildings Department (BD) of 

the Hong Kong Special Administrative Region (SAR) [39]. In producing RAC, RA is 

required to be thoroughly wetted before use and follow the designated mix proportions (see 

Table 2) with a water to cement ratio of 0.45. The ratio of ordinary Portland cement: fine 

aggregate: 20mm coarse aggregate: 10mm coarse aggregate: water is 1: 1.8: 1.8: 0.9: 0.45. As 

the Hong Kong government recommends a limit of 20% RA substitution [24] [40] [41], 0%, 

20%, and 100% of RA substitutions have been experimented using the Two-Stage Mixing 

Approach (TSMA) in comparison with those made with the Normal Mixing Approach 

(NMA).  

<Table 2> 
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For NMA, the mixer is first charged with about one half of coarse aggregate, then with fine 

aggregate, then with cement and finally with the remaining coarse aggregate; water is then 

added immediately before the rotation of the drum or starting the pan [42]. In contrast, 

TSMA divides the mixing process into two parts and proportionally splits the required water 

into two which are added at different times. Figure 1 illustrates TSMA mixing procedures. 

<Figure 1> 

 

From the study of Tam et al. [1], improvements in strength can be achieved up to 21.19% for 

TSMA (with 20% RA replacement after 28-day of curing). During the first stage of mixing, it 

uses half of the required water for mixing leading to the formation of a thin layer of cement 

slurry on the surface of RA which will permeate into the porous old cement mortar, filling up 

the old cracks and voids. At the second stage of mixing, the remaining water is added to 

complete the concrete mixing process. As a result, improvements in strength have been 

recorded in the works of Tam et al. [1]. However, the lack of data on durability hinders the 

large-scale adoption of this economic and environmentally friendly mixing approach. 

Therefore, the long-term performance still needs to be examined. 

 

A review of the literature unveils that there are limited studies on the durability of RAC. 

Drying of concrete occurs in a non-homogeneous manner leading to a strong structural effect; 

self-equilibrated stresses do arise within the material [43]. The intrinsic behaviour of the 

deformation of concrete can therefore be deduced in a sort of inverse analysis by focusing on 

the conventional components: drying shrinkage and creep. Furthermore, the permeability in 

concrete is a material characteristic bearing a significant influence on concrete durability, 

specifically regarding freeze-thaw resistance, resistance to chemical attack, and alkali-

4 



 

aggregate reactions [44]. They are considered the important indicators of concrete quality. 

Table 3 summarizes the standard methods used in testing the performance of RAC.  

<Table 3> 

 

2.2 Experimental Results  

Although the use of RAC is an effective method in reducing the problems of C&D waste, the 

problems associated with the quality of RAC are of grave concern. The most important factor 

influencing the quality is the high water absorption due to the large amounts of old cement 

mortar attached to the RA. The use of RAC generally leads to about 10% reduction in the 

compressive and tensile strength, up to 35% reduction in modulus of elasticity, nearly 100% 

increase in drying shrinkage and 100% increase in the permeability [26] [41]. As a result, the 

durability of RAC is lower than that of normal concrete [45]. The physical and mechanical 

properties, durability and deformation become worse when increasing the RA replacement 

ratio.  

 

2.2.1 Deformation 

Deformation is measured by two tests: shrinkage and creep. A saturated cement paste will not 

remain dimensionally stable when exposed to ambient humidity that is below saturation. This 

is mainly because of the loss of physically absorbed water from Calcium Silicate Hydrate 

[CaO.SiO2.H2O or CSH] [46] [47] [48] [49], resulting in a shrinkage strain. Similarly, when a 

hydrated cement paste is subjected to a sustained stress, depending on the magnitude and 

duration of applied stress, CSH will lose a large amount of the physically absorbed water and 

the paste will show a creep strain.  

 

The time-dependent properties of concrete have been researched since the early decades of 
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the last century [50]. Deformation is a complex phenomenon which is influenced by many 

factors including the constituents, the temperature and relative humidity of the environment, 

the age when the concrete is subjected to the drying environment and the size of the structure 

or member [3] [46] [47] [48] [51] [52] [53]. Factors affecting deformation are summarized in 

Table 4.  

<Table 4> 

 

As regards shrinkage of concrete specimens, Table 5 summarizes the average results of the 

six tests with the change of deformation behaviour shown in Figure 2. Similarly for creep, 

Table 6 summarizes the average results of the four tests with the change of deformation 

behaviour shown in Figures 3.  

<Table 5> 

<Table 6> 

<Figure 2> 

<Figure 3> 

 

Porosity of aggregate can influence the deformation of concrete samples [49]. Therefore, RA 

usually leads to higher shrinkage and creep, mainly because the aggregate provides less 

restraint to the potential deformation of cement paste [3] [5] [54] [55] [56]. Experimentation 

highlights the increases in shrinkage, creep strain and creep coefficient at 0.131%, 0.001517 

and 15.1667 with 100% RA substitution and 0.121%, 0.000563 and 5.633 with 0% RA 

substitution respectively for NMA after 182 days of curing. The creep rate [F(K)] listed in 

Table 7 shows that a higher substitution of RA will accelerate the creep deformation. For 

example, 0.00005 strain/day can be recorded on 100% RA substitution and 0.00002 

strain/day can be recorded on 0% RA substitution for NMA. However, the difference 
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between 0% and 20% of RA substitutions is not significant. 

<Table 7> 

 

Although there is an increase in deformation after the adoption of RA, TSMA helps reduce its 

impact. From the experimental results, the reduction on creep strain for TSMA is proven; for 

example, 0.001176 is measured for TSMA and 0.001517 is measured for NMA with 100% 

RA substitution after 182 days of curing. Creep coefficients obtained give similar results at 

11.7611 for TSMA and 15.1667 for NMA with 100% RA substitution after 182 days of 

curing. An improvement of creep rate [F(K)] is recorded with 20% RA substitution at 

0.00002 strain/day for TSMA and 0.00003 strain/day for NMA. However, under the 

controlled humidity condition, the performance in shrinkage did not provide any significant 

difference between the traditional process and TSMA with the same RA substitution. 

Furthermore, the deformation of RAC can be improved after adopting TSMA by up to 

68.09% in shrinkage and 46.42% in creep (as in the case of 100% RA substitution after 14 

days of curing). 

 

After measuring the deformation behaviour in terms of shrinkage and creep, the performance 

of concrete in reversibility and irreversibility after rewetting and unloading the samples are 

investigated [49]. In the case of shrinkage, it can be categorized into reversible shrinkage, 

which is the part of total shrinkage that is reproducible on wet-dry cycles; and irreversible 

shrinkage, which is the part of total shrinkage on first drying that, cannot be reproduced on 

subsequent wet-dry cycles. The reversible shrinkage is probably due to development of 

chemical bonds within CSH structure. The irreversible part of shrinkage is associated with the 

formation of additional physical and chemical bonds in the cement gel when absorbed water 

has been removed [47]. The case on creep is similar. The developments of shrinkage and 

creep are illustrated in Figure 4. It can clearly illustrate that the development of the curves of 
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shrinkage and creep in the samples are very similar as that in Figure 4. 

<Figure 4> 

 

In this research, rewetting and unloading the samples are exercised after 28 days of 

measurement. The results show that the reversible parts of shrinkage and creep gained from 

TSMA are better than those from NMA (see Table 8). For example, 28.70% and 51.11% can 

be reversed for TSMA and 24.56% and 51.02% can be reversed for NMA on shrinkage and 

creep respectively with 100% RA substitution after 182 days of curing. However, the 

difference between 0% and 20% RA substitution is not significant. 

<Table 8> 

 
2.2.2 Permeability 

Penetration into and leaching out of concrete by materials in solution may adversely affect its 

durability, for instance when Calcium Hydroxide [Ca(OH)2] is being leached out or an attack 

by aggressive liquids takes place. This penetration depends on the permeability of the 

concrete, which is defined as the property that governs the rate of flow of a fluid into a 

porous solid [32] [44] [47] [48] [57] [58]. Since permeability determines the relative ease 

with which concrete can become saturated with water, permeability has an important bearing 

on the vulnerability of concrete to frost. Furthermore, in the case of reinforced concrete, the 

ingress of moisture and of air and chloride will result in the corrosion of steel. Since this 

leads to an increase in the volume of the steel, cracking and spalling of the concrete cover 

may well follow [49]. In this paper, three types of permeability tests are experimented: water 

permeability, air permeability and chloride permeability. Tables 9, 10 and 11 summarize the 

results on water, air and chloride permeability respectively.  

<Table 9> 

<Table 10> 

8 



 

<Table 11> 

 

In a hydrated cement paste, the size and continuity of the pores at any point during the 

hydration process would control the coefficient of permeability. The mixing water is 

indirectly responsible for permeability of the hydrated cement paste because its content 

determines the total space and subsequently the unfilled space after the water is consumed by 

either cement hydration reactions or evaporation to the environment [47]. The permeability of 

concrete is affected by its porosity, and size, distribution and continuity of the pores [49]. The 

experimentation highlights the reduction on the performance of permeability with higher 

substitutions of RA (see Tables 9, 10 and 11). For examples, the water, air and chloride 

permeabilities obtained are 0.001642mm2/s.BAR, 4.5470s/ml and 2906.60 amperes.s with 

100% RA substitution compared to 0.001284mm2/s.BAR, 9.0082s/ml and 2231.56 ampere.s 

with 0% RA substitution for NMA under 182 curing conditions. However, the difference is 

not significant for RA replacements between 0% and 20%. 

 

Although the adoption of RA will weaken the performance of RAC [24] [32], TSMA helps 

alleviate the problem as a reduction in the volume of large capillary voids in the paste matrix 

would certainly reduce the permeability. Since the porosity of RA is reduced by the provision 

of the cement gel surrounding RA in the pre-mix stage of TSMA, permeability can be 

improved (see Tables 9, 10 and 11). For examples, the water, air and chloride permeability 

obtained are 0.001544mm2/s.BAR, 9.7374s/ml and 2906.60 amperes.s for NMA compared 

with 0.001501mm2/s.BAR, 11.2817s/ml and 2578.04 ampere.s for TSMA on 20 percent of 

RA substitution under 182 curing conditions. Furthermore, the improvement of TSMA can be 

up to 35.41% on water permeability (as in the case of 100% RA substitution after 126 days of 

curing), 51.81% on air permeability (as in the case of 20% RA substitution after 56 days of 
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curing) and 29.98% on chloride permeability (as in the case for 100% RA substitution after 

126 days of curing). 

 

From the above tests, it is obvious that TSMA can help improve the durability, in terms of 

deformation and permeability, of the RAC. During the first stage of mixing, TSMA uses only 

half of the water for mixing to form a thin layer of cement slurry on the surface of RA which 

will permeate into the porous old cement mortar, filling up the old cracks and voids [Figures 

5 shows the filled crack after using TSMA, while Figure 6 shows the unfilled crack after 

using NMA]. At the second stage of mixing, the other half of water is added to complete the 

concrete mixing process. The experimentation shows that TSMA can enhance the 

performance of RAC by the development of a stronger interfacial zone in comparison with 

the traditional process (see Figure 7 for TSMA and Figure 8 for NMA). The quality of ITZ 

depends on surface characteristics of the aggregate particles, the degree of bleeding, chemical 

bonding and the specimen preparation technique which, however, are notoriously difficult to 

measure. Although these effects have been reported by some investigation, the results are 

difficult to reconcile. Nonetheless, it is generally agreed that as the paste-aggregate bond 

strength increases, the concrete strength also increases [48]. Figure 9 highlights the fracture 

mode for TSMA which is not around ITZ, while that for NMA is. It is therefore proved that 

TSMA can improve the ITZ of RA and thus the strength and durability of RAC. Figure 10 

illustrates the concrete matrix scenario for NMA and TSMA schematically.  

<Figure 5> 

< Figure 6> 

< Figure 7> 

< Figure 8> 

< Figure 9> 
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< Figure 10> 

 

3. Conclusion 

The poor quality of RAC resulted from higher water absorption, higher porosity, weaker ITZ 

between RA and new cement mortar hampers the application of RAC for higher grade 

applications. Two-Stage Mixing Approach (TSMA) has been proposed by Tam et al. [1] to 

strength the weak link of RAC, which is located at the Interfacial Transition Zone (ITZ) of 

the RA. The TSMA allows the cement slurry to gel up the RA, providing a stronger ITZ by 

filling up the cracks and pores within RA. The improvements of strength after adopting 

TSMA have been proven by the works of Tam et al. [1]; the durability on deformation and 

permeability have been explored in this paper. Experimentation highlights that:  

(a) The higher the substitutions of RA, the weaker the performance of RAC; and  

(b) The deformation and permeability of RAC can be enhanced by adopting TSMA 

with up to  

(i) 68.09% on shrinkage (with 100% RA substitution after 14 days of curing);  

(ii) 46.42% on creep (with 100% RA substitution after 14 days of curing); 

(iii) 35.41% on water permeability (with 100% RA substitution after 126 days 

of curing); 

(iv) 51.81% on air permeability (with 20% RA substitution after 56 days of 

curing); and  

(v) 29.98% on chloride permeability (with 100% RA substitution after 126 

days of curing).  

Therefore, this demonstrates that TSMA can provide an effective method for enhancing 

durability, in addition to the previously verified strength improvement, and thus the approach 

opens up a wider scope of RAC applications. 
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Table 1: Reuse of Demolished Concrete [7] 

Demolished Member Man-made Reef, Paving Stone 

Broken into 20 to 40cm Protection of Levee 

Crushed (-50mm) Sub-base, Backfilling, Foundation Materials 

Crushed and Worn (-40mm) 
Concrete and Asphalt Concrete Aggregate Sub-
Base Material, Backfilling Material 

Powder (by-product through crushing) 
Filler for Asphalt Concrete, Soil Stabilization 
Materials 
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Table 2: Mix Proportions [39] 

Ingredients of concrete Mass (in kg) 

Ordinary Portland cement 100 

Fine aggregate 180 

20mm coarse aggregate 180 

10mm coarse aggregate 90 

Water 45 
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Table 3: Standards Controlling the Properties of Concrete 

Properties of Concrete Standard 

Deformation

Shrinkage BS 1881: Part 5 [59] 

Creep ASTM C512-02 [60] 

Permeability

Water permeability Manual of GWT-4170 kit 

Air permeability Manual of P-6000 Poroscope 

Chloride permeability 

American Association of 
State Highway and 
Transportation Officials T277 
[61] 
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Table 4: Parameters Affecting Deformation of Concrete [48] 

Paste parameters Porosity 
Age of paste 
Curing temperature 
Cement composition 
Moisture content 
Admixtures  

Concrete parameters Aggregate stiffness 
Aggregate content 
Volume-surface ratio 
Thickness  

Environmental 
parameters 

Applied stress 
Duration offload 
Relative humidity 
Rate of drying 
Time of drying 
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Shrinkage (in %) 

NMA TSMA Days 

0% 20% 100% 0% 20% 100% 

14 0.005% 0.007% 0.011% 0.011% 0.006% 0.003% 

28 0.019% 0.015% 0.022% 0.021% 0.014% 0.014% 

42 0.049% 0.044% 0.051% 0.046% 0.047% 0.035% 

56 0.062% 0.075% 0.070% 0.064% 0.062% 0.062% 

70 0.072% 0.074% 0.080% 0.070% 0.078% 0.074% 

84 0.078% 0.080% 0.091% 0.083% 0.083% 0.089% 

98 0.083% 0.088% 0.096% 0.086% 0.089% 0.092% 

112 0.095% 0.095% 0.103% 0.095% 0.095% 0.100% 

126 0.099% 0.102% 0.110% 0.101% 0.102% 0.108% 

140 0.108% 0.109% 0.118% 0.112% 0.110% 0.116% 

154 0.114% 0.115% 0.125% 0.117% 0.115% 0.120% 

168 0.120% 0.118% 0.128% 0.121% 0.118% 0.126% 

182 0.121% 0.123% 0.131% 0.124% 0.122% 0.129% 

Rewetting 

189 0.098% 0.095% 0.106% 0.100% 0.093% 0.099% 

196 0.089% 0.088% 0.101% 0.091% 0.088% 0.095% 

203 0.088% 0.087% 0.100% 0.088% 0.086% 0.093% 

210 0.088% 0.086% 0.099% 0.087% 0.085% 0.092% 

Note: 
The specimens are wetted for the first 28 days for curing; and then dried until day 182. After day 182, 
rewetting for another 28 days (until day 210) is undertaken. 

Table 5: Shrinkage Results for RAC 
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Table 6: Creep Strain and Creep Coefficient for RAC 
CSt

^* CCt
^* 

NMA TSMA NMA TSMA t 

0% 20% 100% 0% 20% 100% 0% 20% 100% 0% 20% 100% 

14 0.000146 0.000215 0.000461 0.000133 0.000134 0.000247 1.46 2.15 4.61 1.33 1.34 2.47 

28 0.000219 0.000320 0.000669 0.000216 0.000238 0.000493 2.19 3.20 6.69 2.16 2.38 4.93 

42 0.000291 0.000398 0.000799 0.000280 0.000301 0.000630 2.91 3.98 7.99 2.80 3.01 6.30 

56 0.000326 0.000459 0.000930 0.000323 0.000361 0.000741 3.26 4.59 9.30 3.23 3.61 7.41 

70 0.000371 0.000517 0.001040 0.000373 0.000396 0.000822 3.71 5.17 10.40 3.73 3.96 8.22 

84 0.000390 0.000557 0.001117 0.000404 0.000457 0.000902 3.90 5.57 11.17 4.04 4.57 9.02 

98 0.000443 0.000597 0.001196 0.000430 0.000488 0.000952 4.43 5.97 11.96 4.30 4.88 9.52 

112 0.000473 0.000636 0.001267 0.000445 0.000528 0.001003 4.73 6.36 12.67 4.45 5.28 10.03 

126 0.000501 0.000667 0.001335 0.000482 0.000559 0.001058 5.01 6.67 13.35 4.82 5.59 10.58 

140 0.000510 0.000691 0.001376 0.000485 0.000569 0.001102 5.10 6.91 13.76 4.85 5.69 11.02 

154 0.000533 0.000725 0.001441 0.000502 0.000593 0.001132 5.33 7.25 14.41 5.02 5.93 11.32 

168 0.000549 0.000753 0.001486 0.000517 0.000618 0.001176 5.50 7.53 14.86 5.17 6.18 11.76 

182 0.000563 0.000754 0.001517 0.000530 0.000633 0.001176 5.63 7.54 15.17 5.230 6.33 11.76 

Unloading 

7 days 0.000038 0.000189 0.000806 0.000012 0.000079 0.000722 0.38 1.89 8.06 0.12 0.79 7.22 

14 days 0.000019 0.000161 0.000782 0.000012 0.000054 0.000667 0.19 1.61 7.82 0.12 0.54 6.67 

21 days 0.000017 0.000140 0.000761 0.000012 0.000041 0.000610 0.17 1.40 7.61 0.12 0.41 6.10 

28 days 0.000015 0.000129 0.000743 0.000012 0.000024 0.000575 0.15 1.29 7.43 0.12 0.24 5.75 

Note: 
^ The specimens are loaded for the first 182 days; and then unloaded for another 28 days (until day 210). 
* The creep strain and creep coefficient are measured by Equations (1) and (2) respectively.  

CSt = ε t -
E

1
 - St  Equation (1) 

.    CCt = 

E

CSt

1
  Equation (2) 

Where CSt is the creep strain at time t; CCt is the creep coefficient at time t; ε t is the measured strain at time t; 
E

1  is the initial elastic strain; St is the 

shrinkage strain at time t; and t is the time after loading (in days). 



 

Table 7: Creep Constant for RAC 

NMA TSMA 
Creep Constant* 

0% 20% 100% 0% 20% 100% 

E

1
 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

F(K) 0.00002 0.00003 0.00005 0.00002 0.00002 0.00005 

Note: 

* The creep constant of initial elastic strain (
E

1
) and creep rate [F(K)], can be estimated 

by fitting a curve in Equation (3).  

( )1)(
1

++⎟
⎠
⎞

⎜
⎝
⎛= tInKF

E
tε  Equation (3) 

Where ε t is the measured strain at time t; 
E

1  is the initial elastic strain; F(K) is the creep 

rate (in strain/day); and t is the time after loading (in days). 

 

 



 

Table 8: Reversible and Irreversible Parts on Shrinkage and Creep 

Percentage (%) 

NMA TSMA Mixing Method 

0% 20% 100% 0% 20% 100% 

Reversible 27.73% 29.98% 24.56% 27.88% 30.00% 28.70%
Shrinkage 

Irreversible 72.27% 70.02% 75.44% 72.12% 70.00% 71.30%

Reversible 97.34% 82.89% 51.02% 97.74% 96.21% 51.11%
Creep 

Irreversible 2.66% 17.11% 48.98% 2.26% 3.79% 48.89%

 

 



 

Table 9: Water Permeability for RAC 

Water permeability (in mm2/s.BAR) 

NMA TSMA Curing days 

0% 20% 100% 0% 20% 100% 

14 0.00786 0.00723 0.00887 0.00716 0.00737 0.00722 

28 0.00734 0.00832 0.00719 0.00697 0.00813 0.00678 

42 0.00733 0.00737 0.00723 0.00673 0.00770 0.00744 

56 0.00747 0.00855 0.00786 0.00728 0.00793 0.00866 

70 0.00829 0.00114 0.00150 0.00131 0.00121 0.00146 

84 0.00120 0.00121 0.00140 0.00109 0.00122 0.00113 

98 0.00152 0.00117 0.00137 0.00111 0.00121 0.00120 

112 0.00132 0.00163 0.00144 0.00101 0.00117 0.00122 

126 0.00134 0.00128 0.00172 0.00132 0.00113 0.00111 

140 0.00173 0.00152 0.00142 0.00124 0.00144 0.00162 

154 0.00139 0.00144 0.00140 0.00129 0.00152 0.00140 

168 0.00138 0.00162 0.00140 0.00147 0.00147 0.00164 

182 0.00128 0.00154 0.00164 0.00139 0.00150 0.00147 

Note: 
The measurement of water permeability changed during the test period; a double-line in separated the 
results. 

 

 



 

Table 10: Air Permeability for RAC 

Air permeability (in s/ml) 

NMA TSMA Curing days 

0% 20% 100% 0% 20% 100% 

14 9.64 10.81 6.73 12.54 12.72 7.91 

28 13.90 11.12 7.10 14.15 14.70 8.77 

42 13.65 10.04 7.60 12.18 12.61 10.94 

56 10.603 8.28 4.72 12.01 12.57 6.99 

70 10.55 9.74 5.75 11.67 10.34 6.26 

84 8.84 10.77 6.35 11.67 11.97 5.40 

98 9.65 11.45 7.08 11.28 10.55 6.61 

112 11.28 9.27 4.80 12.18 11.28 6.31 

126 11.50 9.10 6.35 12.05 11.32 5.83 

182 9.01 9.74 4.55 11.24 11.28 6.56 
 

 



 

Table 11: Chloride Permeability for RAC 

Chloride permeability (in amperes.s) 

NMA TSMA Curing days 

0% 20% 100% 0% 20% 100% 

14 3753.29  3153.53  3800.54  3248.91  3827.90  3617.31  

28 2468.93  3054.11  2931.48  2436.47  2487.39  3394.85  

42 2475.68  3025.79  3199.16  2409.26  2301.60  2697.59  

56 2636.46  2269.97  2629.22  2100.35  2911.52  2778.94  

70 2405.66  2606.84  2243.48  2137.37  2414.94  2455.22  

84 2337.51  2410.25  2947.68  2097.71  2728.77  2481.16  

98 2427.69  2615.16  2257.86  1927.43  2596.97  2313.65  

112 2627.20  2766.39  3155.49  2031.45  2739.06  2683.31  

126 2741.46  2211.87  3330.50  2021.21  2811.89  2331.85  

182 2231.56  2703.69  2906.60  1869.96  2121.95  2578.04  
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Figure 1: Mixing Procedures of the (i) Normal Mixing Approach and  

(ii) Two-Stage Mixing Approach 
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Figure 2: Shrinkage deformation behaviour on i) 0% RA replacement for NMA; ii) 20% RA 

replacement for NMA; iii) 100% RA replacement for NMA; iv) 0% RA replacement 
for TSMA; v) 20% RA replacement for TSMA; and vi) 100% RA replacement for 

TSMA 
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Figure 3: Creep deformation behaviour on i) 0% RA replacement for NMA; ii) 20% RA 
replacement for NMA; iii) 100% RA replacement for NMA; iv) 0% RA replacement 
for TSMA; v) 20% RA replacement for TSMA; and vi) 100% RA replacement for 

TSMA 
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Figure 4: Development of (i) Shrinkage; and (ii) Strain, in Concrete [47]  
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Figure 5: Filled Crack in RA using TSMA 
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Figure 6: Unfilled Crack in RA using NMA 
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Figure 7: New Interfacial Zone for TSMA 
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Figure 8: Poorer New Interfacial Zone for NMA 

 



 

 

 

(i) (ii) 
Figure 9: Fracture Mode on (i) TSMA; and (ii) NMA 
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Figure 10: RA Structure after Adopting TSMA  
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