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Abstract: The proper assessment of evapotranspiration ardnsmsture content are
fundamental in food security research, land managéenpollution detection, nutrient flows,
(wild-) fire detection, (desert) locust, carbondrale as well as hydrological modelling; etc.
This paper takes an extensive, though not exhausample of international scientific
literature to discuss different approaches to edmand surface and ecosystem related
evapotranspiration and soil moisture content. Tévgew presents:

) a summary of the generally accepted cohesion thebmglant water uptake and
transport including a shortlist of meteorologicadaplant factors influencing plant
transpiration;

(i) a summary on evapotranspiration assessment atatitfecales of observation (sap-
flow, porometer, lysimeter, field and catchment avabalance, Bowen ratio,
scintillometer, eddy correlation, Penman-Monteitld aelated approaches);

(i)  a summary on data assimilation schemes conceivestimate evapotranspiration
using optical and thermal remote sensing; and

(iv)  for soil moisture content, a summary on soil moestuetrieval techniques at
different spatial and temporal scales is presented.
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Concluding remarks on the best available approathessess evapotranspiration and soil
moisture content with and emphasis on remote sgkita assimilation, are provided.

Keywords. Evapotranspiration, soil moisture content, plarfteld — landscape - regional
scales, remote sensing.

1. Introduction
1.1. The significance of evapotranspiration anill smisture content

The monitoring and modelling of land surface andetation processes is an essential tool for the
assessment of water and carbon dynamics of tealegtcosystems. The proper estimation of
evapotranspiration (ET) and soil moisture conteé8MC) is a fundamental issue as well in food
security research, land management systems, mollditection, nutrient flows, (wild-)fire detection
(desert) locust and carbon balance modelling. Kedgé on ET is fundamental when dealing with
water resources management issues such as theiproef drinking and irrigation water, industrial
water use or water reserve management. These iggudém questions of agricultural and life
sustainability to even direct human life supportaswees for large parts of the globe. They will even
shift closer to direct life support in the years dome [1]. Soil moisture content is a soil status
condition, directly connected with the process af Bince SMC is usually related to moisture
contained in the upper 1-2 m of a soil profile, stoie which can potentially evaporate. Evidently,
SMC is one of the prime environmental variablesitesl to land surface climatology, hydrology and
ecology [2]. Variations in SMC entail a strong inspan land surface energy dynamics, regional run-
off dynamics and vegetation productivity (actuamyield) [3]. More specifically, datasets of ETdan
SMC are indispensable for accurate estimates tiboafiuxes used in carbon balance models such as
C-Fix [4] [5] [6] or CASA (Carnegie-Ames-Stanfordpfroach, [7]). This is especially true in water
limited areas, of which there are many distributgdr the globe. Moreover in Europe, a direct ligk i
observed between soil water status, gross primangygtivity of vegetation and soil respiration [8].
As such, soil moisture and ET affect terrestrialboa uptake and release from and towards the
atmosphere. Hence, knowledge on ET and SMC dynamaiss strong impact on the interpretation of
global change effects [9] and hence, the implentiemand impact of the Kyoto protocol on the global
society. Early detection of dry soil conditions potential drought is important for crop yield
forecasting and hence, crop harvest optimizati@. [Yield forecasting, is an important early waigin
tool for farmers, and is important for the preparaiand logistics of humanitarian food aid missions
famine struck areas. It also serves as an infoomdiase for commodity brokers. SMC can also be
applied as a predictor for flood conditions, wheirlssbecome completely saturated. Under saturated
conditions, soil cannot retain any surplus run-orpr@cipitation, hence a sharp rise in flooding.ris
SMC is an important parameter in watershed modgl[lii] as well and provides information related
to hydro-electric or irrigation capacity. In areagh active deforestation or vegetation cover cleang
SMC estimates help to predict run-off, evaporatites, and soil erosion [12]. Last but not leabtCS
and ET are important status indicators in fire dakger systems.
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Despite the importance of SMC, its accurate assassi® difficult. The standard procedure for soll
water determination against which all other SMC hods are calibrated is the gravimetric method.
This standard procedure is essentially a point oreagent. Hence, local scale variations in soil
properties, terrain, and vegetation cover makesthection of representative field sites difficdlinbt
impossible. Moreover, field methods are complelpla intensive and therefore expensive. In contrast
with the previous, remote sensing (RS) techniquegpeomising because of their spatially aggregated
measurements as well as their relatively low cb3}. [

1.2. Descriptions of evapotranspiration and sodisture content

ET is the process whereby water - originating flmmvide range of sources - is transferred from the
soil compartment and/or vegetation layer to theoahere. ET includes evaporation from surface
water bodies, land surfaces, soil, sublimationnaive and ice, plant transpiration as well as intereg
canopy water. ET represents both a mass and amyeflex. An allocation of ET into plant
transpiration, soil evaporation and interceptedewavaporation fluxes, is generally accepted [14]
[15]. Evaporation is the physically based procelsgransferring water - stored in the soil or on the
surface of canopies, stems, branches, soils anedpaneas - to the atmosphere. Transpiration is the
evaporation of water in the vascular system of fglahrough leaf stomata. Opening and closure of
stomata is controlled by their guard cells. Hertcanspiration is a bio-physical process since it
involves a living organism and its tissues. Thengparation-pull explained by cohesion theory,
determines the dynamics of water transport frontssover plant systems towards the atmosphere.
Cohesion theory was first formulated in thé"¥@ntury by Dixon and Joly [16] and quantified Bnv
den Honert [17].

Apart from ET, potential, reference and actual ewa@mspiration are important as well, as ET
related quantities. Thornthwaite [18] was the firsi introduce the concept of potential
evapotranspiration (Ef). He defined EJ, as the maximal water quantity transferred to the
atmosphere, from a vegetation cover in a statellbjphysiological activity and unlimited water and
nutrient availability. As published by Choisneladt[19], ET,o: corresponds with water consumed by a
grass lawn cover during its active phase and withiestriction of water and nutritional elements
uptake. This quantity is also referred to as padéotr reference evapotranspiration (gDr ETp). A
crop factor (K) is used to estimate Ed for other vegetation than lawns. A widely usedrapph to
estimate ET is the FAO-24 [20] and by extensionRA©-56 procedure, based ongand K [21].

Since most ET assessments are only indirectly basgadant physiological knowledge, it has to be
born in mind that plant water transport involvegivac (energy consuming) plant physiological
processes. Hence, a brief description is givemefmechanism of water transport in plants before an
overview of some ET assessment methods is gives.b@lokbone to present this brief account is that
in general, modelling beyond plant and field scalas shift plant physiological mechanisms in the
background. This can be understood in the senséddsic plant processes may be of less importance
at larger spatial scales. It is however the phggichl basis of the ET process that creates arbette
framework to understand the application of remaesgg (RS) for ET estimation and its limiting
factors. It can also explain why some approachesstionate ET were developed and even why other
possibilities were or should be chosen.
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Summarizing, the main focus of this paper is thevigion of an overview of the international
scientific literature describing different methotis determine land surface ET and SMC with an
emphasis on ET. A wide range of literature sout@sbeen consulted (reports, international jouynals
PhD’s) in an attempt to provide optimal accesdipitif the problem area for the reader. An important
focus is the identification of methods, optimallyited for specific applications as well. Whethebét
ET, estimated as a singular parameter or as a ptearassimilated in integrated agro-ecological
applications. The sub-objectives of this reviewéhbeen identified as follows:

() A summary of the theory of plant water uptakel &ransport and the presentation of a shortlist
of environmental factors influencing plant tranagion;

(i) A summary of ET assessment methods at diffespatial scales, with a discussion on pro’s
and con'’s in different applications;

(i) A summary of SMC assessment methods at diffespatial scales, with a discussion on pro’s
and con'’s in different applications;

(iv) An account on the linkage of ET and SMC assesg approaches with existing remote
sensing techniques.

Evidently, this review paper does not attempt toaesstively cover the broad application field of ET
and SMC. It should rather be perceived as an attéonpresent the reader the broadly used as well as
accepted measuring and modelling concepts to aB§easnd SMC without going into ultimate detail.
From this perspective, this paper can be seen gade to the application fields of ET and SMC
research and development from plant, patch, regtor@ntinental scales.

2. Notions on crop water consumption

2.1. The water pathway in plants from the phygjmal point-of-view: Cohesion Theory

When considering terrestrial plant ecosystemssp@ation is a water flux from the vegetation layer
towards the atmosphere, originating from soil watgake by the plant root system. The transpiration
pull theory offers a cognitive framework explainitige water pathway from soils over plant systems
towards the atmosphere. Because of the critical @bkhe physical concept of cohesion, this thesry
also known as Cohesion Theory and was formulatethén19' century by Dixon and Joly [16].
Quantification was attempted by van den Honert.[A7ffeview article about the current controversies
of this theory was written by Tyree [22].

The three basic elements of Cohesion Theory are:

(i) driving force;

(i) hydration (adhesion) and;

(iif) cohesion of water.

The driving force is a gradient of decreasing (moegative) soil water potential, over the soil -
plant — atmosphere continuum. Water moves in tbigisuum from the soil, through the epidermis,
cortex, and endodermis, into the vascular tissueoofs, up through the xylem of vascular plant
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systems, into its leaves, and finally, by trandmrathrough the stomatal pores, into the atmospher
Fig. 1 depicts a schematic view of the water movdmathway from soil to xylem.

Soil water enters the root system through rootsharotrusions into the soil matrix of the root
system epidermal cells. Apparently, water travedhbin the living cytoplasm and the nonliving
vascular system of the root cells, respectivelyotied as the symplast and apoplast. Water crosees t
plasma membrane and then passes from cell tohreligh plasmodesmata. The water in the apoplast
does not cross plasma membranes. The endodermisvloug impervious to water because of the
casparian strips. Therefore, before passing byplimodesmata into the cells of the stele, apaplast
water must enter the symplasm of the endodermb. c@hce inside the stele, water can freely move
between cells as well as through them. In youndstomater enters directly into the xylem vessels
and/or trachea (nonliving water conducting elemesftghe apoplast). Xylem tissue is the most
important water pathway in woody species and ispmsad of four cell types, i.e., trachea, vessel
elements, fibres, and the xylem parenchyma. Afierdctive transport of water from the soil to the
roots, water reaches plant leaves under nominalitons.

Plasmodesmata Plasma membrane \

Endoder mis Pericycle

S TX =
L = 7
DApoplast D Symplast <Casparian strip

Figure 1. Water pathway of vascular plants: From soil thiotlge root tissue up
to the xylem.

Adhesion and especially cohesion forces are theagyi drivers for water transport in vascular
plants. Hydratation forces between water molecaled plant cell walls are based on the Van der
Waals bondage. In the specific environment of xyléssues the pathway taken by water, implies
cohesive forces so strong that, when water is gdtlem its holding points in the cell walls at ttug
of a plant or tall tree, the pull extends all thaywdown through the stem or trunk and roots int® th
soil. When the pull force is larger than tensilesgth (the ability to resist stretching withouedaking)
the phenomenon of cavitation occurs, usually whemeie water stress impacts on a vascular plant. A
continuous water column can break when the wattanpial drops below a critical level. This results
in an embolism in the transporting elements of scubar plant water transport structure. It is helae
that a reversal of embolism can take place, evéer afavitation has occurred, because of the
containment of atmospheric and water vapour. Wapour can convert into its liquid state and hence
refill the conducting tissue or vessels. Cavitatedsels can also be re-filled with atmosphere er by
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passed. As water stress builds up during drougbbédes, cavitation first occurs in leaves. These ca
then wilt or even die, although the water transpgstem in the trunk remains relatively intact.

2.2. Quantification of evapotranspiration

Basically, the process of evaporation is the diéfaof water molecules into the atmosphere. In that
respect the general formulation of Fick’s First Lamiroduced in the mid 1800’s) is an equation dase
on a concentration gradient per unit are{m

dz

In Eq. (1):

K is a turbulence factor [frs’];

E is the amount of water evaporated [fi; s

dC dz* the concentration gradient [T&g m® m™].

In evaporation theory, Dalton first proposed thessm@ansfer formula in 1802:

E=f(v.)(e -€.) (@)

In EQ. (2):

f(v,) is a function of wind speed [ snillibar™];

Vais wind speed [m'Y;

es is the vapour pressure in the saturated regi@wediter surface [millibar];

€, IS the vapour pressure in the atmospheric spameeahe saturated region [millibar].

Many functions of wind speed are a combination ofdwelocity and some coefficient(s). If this
boundary condition is satisfied, evaporation orépehds on wind speed and the difference in moisture
content of the water saturated atmospheric spageeathe water surface and the atmospheric space
above the saturated region. Clearly, measureménignd speed, surface and atmospheric temperature
as well as the relative humidity above the watefase are required to enable the use of Eq. (2).

To enable the determination of leaf transpiratiorgss transfer models of evaporation can be
modified to reflect the atmospheric conditions hre tvicinity of the leaf. Since transpiration is
structurally linked with stomata, it is dependenttbe number of stomata and their degree of opening
Evidently, transpiration is limited by water avéillity as well.

Considering the energetic aspects of transpiratienthat the latent heat of vaporization is limga
related to the mass of evaporated water, one cie: wr

LE =p AE (3)

In Eq. (3):
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LE is the latent heat to vaporize a specific amountater, usually expressed in [WAn

pw is water density [kg i;

/. is the latent heat of vaporization (2,260 at 130 ieeded to transfer water from its liquid to its
vapour phase [kJ K;

E is the amount of evaporated water (flux) expressdgoh® m? s*] or [m s7].

After substitution of Eq. (3) into the mass trandi®). (2), the expression for latent heat can be
written as:

LE =p,AK .V, (e, -€,) (4)

The temperature difference between a water sugadghe atmospheric space above it also induces
heat transfer (sensible heat flux).

Evaporation and transpiration are difficult to m@asdirectly and separately. Hence, usually models
are applied for the estimation of cited water miigses. Evaporation models are based on laws of
mass conservation such as those applied in watkreaergy balances, in mass transfer, or in a
combined approach.

More information on evapotranspiration quantifioatcan be found in [23] and other sources.

2.3. Crop water relationships

Available water is defined as the difference betwdg® amount of water in a soil at field capacity
and the amount of water in a soil at permanenimngilpoint. Permanent wilting point is (more or less
arbitrarily) set at a pF (force of soil water soaoli of 4.2 (i.e. log1l(+1584971in [cm]). Field capacity
corresponds with water held in a soil against tireds of gravity (sometimes set at a pF value 8. 2.
Permanent wilting point is the percentage of sadigture which induces wilting in a plant system.
This wilting is irreversible, i.e. the plant systetoes not recover, even when placed in an atmospher
with a relative humidity of 100%. Some basic fastaffecting water uptake of plants are summarized
in Table 1.

Water stress affects plant yield by a reductioteaf area, a reduction of stomatal conductanceg by
reduction of CQ uptake and hence photosynthesis and by a slow dmwmot elongation and
development. Water stress also affects proper deeelopment (starch filling). Yield and water sges
can be quantified with the concept of Water Useackefiicy (WUE). The physiological definition of
WUE is: “The amount of carbon in milligrams of asgated carbon per gram of,8 transpired”. The
agronomist defines WUE as: “The ratio of dry matmoduced (yield) to water consumed”.
Crassulacean Acid Metabolism (CAM) plants are maiehlly optimized for the highest WUE
compared to C3 and C4 metabolism plants. CAM plaats close their stomata during daytime and
open them at night. This strategy ensures a sggmfireduction of water loss by reduced transjpinati
CAM plants have a low and variable productivity butery high WUE.

In general C4 species elicit a higher WUE than G8ts. Typically C4 plants can close their
stomata (less COand less water loss) during daytime, while stdkrging out a high level of
photosynthesis. Evidently this leads to a higherBAthlan C3 plants, which do not have this capacity.



Sensors008, 8 77

Table 1. Some basic meteorological and plant factors affgat/ater uptake of plants.

M eteor ological factors

Solar radiation (K) Atmospheric water demand increases with K to 5% of the
intercepted K by plants is used for photosynthesis;

Atmospheric temperature The water amount in atmospheric increases withHor every 10°C

(Ta) rise in atmospheric temperature, atmospheric cdd hmeice as
much water as it can at a 10°C lower temperature.
Wind velocity (V) Transpiration increases with,VHigher wind speeds reduce the

boundary layer thickness. In the boundary layeri®RH00%. A high
RH decreases the water potential gradient henceealing
transpiration.

Relative humidity (RH) High atmospheric RH resuitsa less steep water potential gradient
(less transpiration). Transpiration increases wébreasing RH;

Plant factors

Rooting depth Plants with deep roots have morenpiateto find soil water since
they are able to reach the groundwater table.

Leaf amount and Leaf AreaTlhe larger the leaf surface area the higher thespigation flux. LAI

Index (LAI) is the ratio of plant leaf area to leaf area prgemn the field.

Stomatal conductance Light and moisture levels caffstomatal conductance most
prominently. Leaf moisture content affects turgoegsure in the
guard cells of stomata. Water stress (even undemalofield
conditions) results in a loss of turgor in the guaells and hence
induces leaf wilting.

Leaf enrolling folding and Typically maize and bluegrass reduce the exposaiddesa under

reflection water stress. The silver skin of soybean leaveleatsf more K
when enrolled

3. Evapotranspiration assessment techniques atdliff scales of observation

As a result of the spatial heterogeneity of saitgjetation type and cover, soil moisture status and
plant water availability varies spatially [24]. Fuermore, the dependency of hydrological procesees
meteorology and climate makes ET, spatially andptaally variable. The interaction between the
spatial and temporal dimension of evaporation mees result in a complex methodology for ET
assessment [25].

ET estimations can be performed at the scale efaf (porometer), an individual plant (i.e. sap-
flow, lysimeter), at the field scale (i.e. field t@a balance, Bowen ratio, scintillometer) and at
landscape scale (i.e. eddy correlation and catchmvater balance). The assessment of ET always
involves the laws of mass or energy conservatioa combination of both. For regional to continental
scales, the use of earth observation (EO) datacatefs assimilating remote sensing data, is a strong
requirement [26] [27]. A large number of measuriaghniques and modelling approaches have been
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published in this respect [25]. Without claimingrgaleteness, Table 2 gives an overview of a variety
of ET retrieval techniques, frequently encounteiredhe literature. ET retrieval techniques can be
classified according to the spatial scale of ajgpli and the conservation law applied. Severahear
observation approaches can be found in i.e. [53] [29] [60] [61] [62] [25] [55] [54] [63] [64] [69

[66] [67] [68] [69] [70]. Before briefly discussinthe assessment of evapotranspiration, the laws of
mass and energy conservation are formally defirstuice they are the basis of the assessment
methodologies of many variables in this applicafiefd.

Table 2. Different scales of observation to assess evapgpieation using a variety of techniques.

Scale M ethods Example Description

Point/leaf & Mass (water)  Porometer (POM) Water vapour loss from a leaf @hoged chamber is

plant/field balance determined by measuring humidity and temperature.
Lysimeter (LM) Measurement of water balance components suchrdaltai

Water Balance (WB) etc. under realistic environmental conditions.

Energy balance Bowen ratio (BR) Measurement of humidity and atniesjc temperature at
two heights to estimate the sensible heat fluxisEsderived
from the energy balance.

Scintillometer (SCM) Atmospheric turbulence andhtigropagation, a
combination of the conservation of energy and mass

principles.
Energy/ mass Sap-flow (SF) Heat, temperature, Conservation efgn
(water) balance Penman-Monteith Based on the water vapour pressure deficit. Veigetat
(PM) modelled as a big leave.
FAO-24, FAO-56 Based on PM for a reference crowater unlimited

conditions combined with crop factors to derive,&for a
certain crop. If SMC knowledge is included &Ts
derived.

WAVE & SWAP and  Simulation of the vertical water flow in the soiedium

other SVAT's based on the Darcy flux law and mass conservaltipper
and lower boundary data are required such gg,ET
rainfall, groundwater level, etc.

Landscape Energy balance Eddy covariance (EC) @oea between 3D wind speed and water vapour
mixing ratio is determined. Energy fluxes can bewdel as
well as carbon exchange.

Mass (water)  Water balance (WB) Rainfall, hydrographs, groundwégvel, information on
balance soil and vegetation, elevation of terrain, etc...

Energy/ mass SWAT, MIKE-SHE, Using upper and lower boundary conditions to egtntiae
(water) balance SEBAL, SVAT's as 1-2-3D water fluxes in the soil compartment applheda
PROMET, SWAP, etc grid or using hydrological response units.

Regional/ Energy/ mass SEBAL, PROMET etc Including remote sensing datanfiaptical and thermal
Continental (water) balance satellite sensors; Also satellite based microwaata dan be
used.

References: SF [28] [29] [30] [31] [14] [32]; LM [33] [14]); BR [34] [35] [14] [36] [37]; SCM [38] [39] [40] [41]
[42] [43] [44]; EC [45] [35] [14] [36] [37]; POM [46] [47] [14]; WB [48] [49]; WAVE [50]; SWAP [51]; MIKE-SHE
[52]; SWAT [53]; PROMET [54]; SEBAL [25] [55]; PM [56]; FAO-24 [20]; FAO-56 [21].
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3.1. The conservation laws

A typical, daily one-dimensional water (mass) bataequation can be defined as follows:
P+CR+Irr -ET-R-D-S=0 (5)

In Eq. (5):

P is the amount of rainfall [mm™;

CRis the capillary rise from the groundwater tatten] d*;
Irr is the irrigation dose [mm;

ETis evapotranspiration [mm’it

Ris runoff [mm d';

D is drainage [mmd;

andSis the storage of water in the soil compartmemt[d].

A typical, daily one-dimensional energy balancetsr(r ignores) energy storage in the canopy due
to photosynthesis. For a vegetated land surfaeegitiergy balance equation can be written as:

R, -G,-S-H-AE=0 (6)

In EqQ. (6):

R, is net radiation (net short and net long wave)rfif];

Gy is the subsurface heat flux [W3h

Sis the rate of heat storage in the plant canopy¥y.

H is the sensible heat flux [W fh

AE is the latent heat flux [W H;

J is the latent heat of vaporization of water, apprately 2,450 J § H,O at 20°C;
andE is evapotranspiration [g20 m? s].

The energy storage due to photosynthesis is géyestimated to be less than a few percent of land
surface net radiation [71]. Hence, generally thergy storage term S in the equation of the land
surface energy balance is omitted. However, heage in plant canopies can become a substantial
part of the energy balance for periods less thdayaparticularly for massive canopies such asetubs
forests. Quantitative information on S is rareha titerature however and moreover difficult toabt
[49]. Both mass and energy balances can be combimedxample by estimating ET using the energy
balance, it is possible to better estimate therovens of the water balance like for example water
drainage.

3.2. Point / leaf / plant and field scale transpicen and evapotranspiration estimation

The execution of field measurements representsaufantensive endeavour. Moreover, it is a time
consuming activity, which generally requires expea®quipment. In situ, potentially everything can
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go wrong. Despite these caveats, field measurenagatthe very touchstone to confront a modelling
approach with the physical reality of the envirommerield measurements provide a treasure of
information for the validation of models and focarate quantitative information needed and asked fo
by policy and decision makers. Models without acpanying measurements, i.e. calibration and
validation (cal/val) data, may be sophisticated dnoonstructions but they are worthless for sure in
underpinning land management policy making. Inribgt chapter, we give a short overview of sap-
flow sensors, the porometer, the lysimeter anddfwhter balance approaches. These techniques
produce consistent temporal profiles of ET datdaitocal outreach.

3.2.1. Estimation of transpiration based on Sap-fieeasurements

A sap-flow sensor involves heater and temperatuobgs which are inserted into stems or
branches. Sap-flow absorbs heat thereby inducingngperature drop. Different type of sap-flow
measurement principles exist. For instanceHleat Pulse Velocity principle is applied with a heater
probe inserted into the sapwood, with thermocoupissrted downstream and sometimes upstream of
the sensor to measure temperature change due te#itgulse. Th& hermal Dissipation Probe is
applied by insertion of an upper needle contairinpeater element and a thermocouple which is
referenced to a second needle downwards in the aapwtream. Thddeat Field Deformation
Method is applied by the use of a heater and two atmogphef a thermocouple implanted
symmetrically and asymmetrically into the stem. Hheat Balance Method is based on the ratio
between heat input and temperature rise in a pieedk space. Finally, th&tem Heat Balance
method is applied by external heating with a soft andifiee heater and a couple of thermo-sensors.

These techniques allow, to measure plant effeatigier streams. In that respect sap-flow sensors
are very useful for calibration and validation oater and energy balance algorithms whether or not
based on remote sensing. They are a very goodhatiies to lysimeter experiments. Operation of sap-
flow sensors though, requires a vast technicaltigmd maintenance effort. Power supply in areas
without electricity distribution is an evident ptelm. Signal conversion (from temperature to sap/flo
involves a (semi)-empirical approach and is base@ @riori knowledge of the sapwood basal area.
Sapwood basal area is required to convert flow oreés to transpiration rates. Moreover, water
storage in the stem must be considered. Tree diovenare needed for the up-scaling from stem at
breast height to the tree level (hence, tree chematics must be known). More information on the
techniques described can be found in: [72] [30 [28] [29] [32] [14].

3.2.2. Estimation of transpiration based on Poremmtasurements

A porometer measurement estimates transpirati@enedf or twig by measuring:

(1) the increase of humidity within a closed chamb&acited to the leaf, or;

(i) with a steady state porometer that maintains atanh&umidity in a measuring chamber by
matching a flow of dry atmospheric to balance watgpour loss from the enclosed leaf.
Water vapour loss from the chamber by atmosphke €quals the gain in water vapour by
transpiration (mass conservation principle). Th&riniment calculates the amount of water
vapour outflow from measured atmospheric flow, treéa humidity, and temperature and
corrects for the known leaf area in the cuvettegitee transpiration per unit leaf area.
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Porometers are used to determine leaf stomataluctewaice but one may also be tempted to
extrapolate measurements on a single leave to Ewhoopy, when knowing total leaf area.
A porometer measurement provides direct estimdtegater loss from leaves. It suffers however
from the requirement that the estimations at leaéll must be extrapolated to a whole canopy. This
type of up-scaling is not straightforward. Trangpon rates measured with a porometer do not
correspond with those measured in undisturbed alatonditions. This is due to differences in
boundary layer conductance. A more rigorous approec the independent determination of
atmospheric saturation deficit and the transpiratiate by porometry [73] thereby taking boundary
layer conductance into account. Porometers areulugef conductance-based models since leaf
stomatal conductance and transpiration can be meghsMore specific information on this topic can
be found in [46] [47] [14].

3.2.3. Estimation of evapotranspiration based lysieneter

The lysimeter is widely used in laboratories andfield work, mainly for agronomic research. The
weighing lysimeter technique can be extended ifehis a requirement for measurements of tree
transpiration. An undisturbed vegetated soil sangtaken with cylinders of different diameters fop
3.14 nf). ET is estimated from the mass balance of wateénital minus final weight plus rainfall
minus drainage.

The main advantage of lysimeter in situ measuresnsnthat water consumption of vegetation can
be performed under approximately realistic fieldhditions. However, a lysimeter measurement
requires elaborate preparation in fact intrinsifietd measurements. Moreover it is typically ligdtto
only few individual trees or a small surface aréagricultural crops. Additionally only young trees
can be measured, hence this type of measuremewt isepresentative for aged or mixed age forest
stands. Moreover, the installation of lysimeters @ause disturbances compared to surrounding
vegetation and agricultural crops in a lysimetey maffer from a different treatment than cropshie t
field. A more realistic approach is the ‘naturasiiyeter’ [74]. In this type of lysimeter, a barrigr
lateral water flow in and above the soil is ingdlland measurements of precipitation and soil water
content are made while the rate of deep drainagppsoximated.

The lysimeter is very useful for data collectiondafor modelling water use and growth of
agricultural crops. Also known is chemical solutnsport research. More specific information can be
found in [33] [31] [75].

3.2.4. Estimation of evapotranspiration based erBibwen ratio

The Bowen ration (BR) is a micrometeorological shte evaluated for a height of a few meters to a
few tens of meters above a surface, representébivahe surface sub-layer of the atmospheric
boundary layer. Under steady state conditions arabsence of horizontal gradients of vertical feixe
of momentum, heat, and water vapour flux, the galtiluxes of heat and water vapour within a fully
turbulent surface sub-layer are not appreciabliediht from these fluxes at the earth’s surfacq.[76
The scalar vertical fluxes of heat and water vapmfuand or water surfaces are estimated within the
surface sub-layer. Typically, the Bowen ratio isearergy balance method and represents the ratio of
the sensible and latent heat fluxes. The BR isab#i used in a widespread approach for ET
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determination at the local scale. An important ltarg condition, however for the evaluation of a-one
dimensional BR, is the absence of horizontal enéltgges. Hence, it cannot be used inside canopies.
Furthermore, net radiation and soil heat fluxes tmhes measured simultaneously. With the BR
approach, ET can be estimated beyond the poine smad can therefore be used to compare and
classify vegetation types. More specific informatabout this approach can be found in [35] [37] [14
[36].

3.2.5. Estimation of evapotranspiration based otearelogical datasets

Estimation of ET can be based on energy balananset and thBenman-M onteith [56] equation
in one of its many varieties. ET estimation canblased as well on the parameterization of energy
balance components. Both the Penman-Monteith (Pillation and the parameterization can be
implemented in combination with EO assimilationhieiques. In many approaches gTs estimated
from ETpo (i.€. obtained from water balance models such &%/B/see next section); energy balance
models such as Penman-Monteith and derivates. iédbdefinition of ET« was already given in
section 1.2. The formulae to estimate,&Tor other vegetation than lawns is based orsEhd (K)
as mentioned below (FAO-56 procedure).

The Penman-Monteith equation is applied withindbacept of a ‘big-leaf’ approach and evaluates
ET from the energy balance, combined with masssfesin Since in the 1950's and 60’s surface
temperature could not be measured accurately, hatrnespheric-surface temperature differences
could not be applied to calculate sensible heatelu The Penman equation for open water however
does not pose problems, since for this surface &pwspheric and water surface temperatures are
assumed to be quasi equal. This is in contrasttélcase of vegetation and bare soils.

Under the boundary condition mentioned here abdke, amount of water to saturate dry
atmospheric at a given pressure is temperaturendepé (saturated vapour pressure) and is written as
expressed in Eq. (7).

17.27T
e(T.)=6.1lexp(——
«(T2) Io(237.3+Ta

) (7)

Saturated vapour pressure is the maximal partedsure of water vapour in atmospheric at a given
temperature. This expression contains, after atination with a Taylor expansion, the atmospheric-
surface temperature difference. This temperatufierdnce can be inserted in the energy balance
equation to lead us to the sensible heat compomaetPenman-Monteith equation can then be written
as expressed in Eq. (8).

A
A+yD

_ Y pacp(es(Ta)_ea)
(Rn GO)+A+))D (8)

rah

1E

act

In Eq. (7) & Eq. (8):
T, is atmospheric temperature [°C];
es is saturated vapour pressure at temperature Tr[mba
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Ais the slope of the vapour pressure curve [mb3r K
y* equalsy (1+1 rapn’);

yis the psychrometric constant [mbar]K

(efTo)-€y) is saturated vapour pressure deficit [mbar];

ran andr. respectively are the aerodynamic and canopy daciresistances according to the ‘big
leaf’ concept expressed in [s'in Generally ¢ is defined assiLAI™* where g is the stomatal resistance
of leaves.

A simplification of the Penman-Monteith equationtise Priestley-Taylor equation [77]. These
authors stated that the atmospheric drying power awet surface is a constant, multiplied wi{R.-
Go) as expressed in Eq. (9).

\E=a(R. -G, ﬁ

A ©)

ais a constant [-] ranging from 1 to 1.35 for wetfaces [78];
yis the psychrometric constant [mbar]K
Ais the slope of the vapour pressure curve [mb3dr K

Choisnel et al. [19] mentions an expression deriveth the Penman-Monteith equation, Makkink
(1957). It is used in the Netherlands withtaking a value of 0.65 (or 0.8 times of its valoethe
Penman expression in EqQ. (9). Brochet-Gernier tisedame expression for France [19].

For sparse canopies, the Penman-Monteith ‘big-le@fproach no longer holds. Under these
boundary conditions, soil evaporation must be ipoaated in the modelling approach. Shuttleworth &
Wallace [79] suggested the use of a resistance Intddehat approach, the energy available for
evaporation from the canopy and soil compartmentsaiculated first and subsequently a resistance
model is used to estimate the fluxes between sdilN&getation.

Insertion of the parameters of a hypotheticallylweltered lawn (height: 0.12 m; surface resistance:
70 s m*; albedo: 0.23) into the Penman-Monteith equatidlows to evaluate Eg. With ETes, EToot
and ETes for a specific crop is calculated according topcfactors (k) used in Eq. (10). A typical K
value during the mid-summer season for many ceregls is 1.15 [21]). For forest trees between it is
situated between 0.7 and 1.1 (as derived with th&/®/model, [80]).

In theFAO-56 approach [21], a dual crop coefficient is use,chiitakes a dry soil surface layer and
adequate soil water content (SMC) in the root camnpent into account for full transpiration
evaluation. Root zone moisture depletion is evaldias the difference between SMC at field capacity
(pF = 2.3) and actual SMC. The Kalue (which is a water stress factor) equalsas.tong as SMC is
higher than readily available water (a fractiorthe total available water). If SMC is lower thaaddy
available water (RAW), Kdecreases linearly from one to zero accordingtal @available soil water
consumed. The FAO-56 procedure is a revised FA@e2gion [20].
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ET,, =K ET (10)

crop ref

ET

actcrop

=K, K, ET (11)
In Eq. (10) & Eq. (11):

K¢ is a crop factor [-];

ET. is reference crop ET [mm'

ETootis potential crop ET [mmY;

Tacterop IS Crop ET under water stress conditions [mith d

Ksis a stress factor [-].

Xu & Singh [81] evaluated and generalizeshperature and radiation based methods for B
estimation. Most equations adopting this methodgldégke the same shape as Eq. (10) & (11). The
following methods have been evaluated (see [81priithwaite (1948), Linacre (1977), Blaney and
Criddle (1950), Hargreaves (1975), Kharrufa (1988mon (1961) and Romanenko (1961). Singh &
Xu [82] evaluated and compared 13 ET equationsngghg to the category of the mass transfer
methods and developed a generalized model. Theyexlamined the sensitivity of the equations to
errors in daily and monthly input data [81].

ET,, =CT? (12)
ET,, =¢,d,T,(c, -¢;h) (13)
ET,=aR,+b (14)

In Eq. (12), Eq. (13) & Eq. (14):

EToot is the potential evapotranspiration [mifd
T, is atmospheric temperature [°C];

his a humidity term [-];

d; is day length [hours];

c, a, b, ¢, &, iz are coefficients [-].

R, is daily global radiation [MJdm™].

3.2.5. Estimation of evapotranspiration based eld fivater balance methods

Field water balance methods are based on in siasanements of hydrological mass fluxes. ET in
this approach is calculated as a residual of allatiner terms of the field mass balance equatiath W
pluviometers rainfall rate is measured, Time DonReflectometry [83] or other sensors (see section
4, Table 4) when inserted into different soil layere used to determine soil moisture dynamics.
Tensiometers or groundwater level tubes, give amate of the lower boundary of the soil
compartment.

Note that the results obtained are very sensitiveneasurement frequency differences and the
amount of measurement locations, especially for fiblel scale spatial level. Field water balance
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methods are useful typically to obtain tree cragdes (popular [48]). More specific information aibo
this approach can be found in [48] [49].

In addition to the measurement of hydrological comgnts to estimate ET, 1D models can be used
to simulate vertical water flow. The Darcian fluawl for example states that a water flux in a
homogeneous porous medium equals the product diyitheulic gradient and hydraulic conductivity.
When combined with the law of mass conservatiomvikll know Richard’s equation is obtained. This
equation can even be extended to 3D conditionsdasdribes the water flux into soils. Typical 1D
models are WAVE (Water and Agrochemicals in the &&dEnvironment [50]) and SWAP [51]. ET is
modelled using inputs like rainfall, interceptiomapacity and a (grass) reference potential
evapotranspiration as the upper boundary conditidre major lower boundary condition is the
groundwater table or the drainage flux. Additioimgduts are crop factors, root distribution, leadar
index and critical pressures for water uptake. Ebé system is described using its soil physical
properties like the hydraulic conductivity and rdien curves according to the corresponding soil
layer. Obviously, 1D modelling corresponds with fieéd water balance method discussed earlier.

To estimate ET with a 1D water balance model, cgnioperception is calculated first using
interception capacity. When the amount of grossfadli is larger than canopy capacity, excess
rainwater will reach the soil surface. Rainwatersmmaqual or smaller than interception capacity is
assumed to evaporate. Depending on the maximuitratifon rate of the upper soil, runoff may occur
while the remainder of rainwater infiltrates intoetlower soil layers of the soil compartment. The
product of ETer and the crop factor @K of the vegetation considered results ingT.e. the maximum
rate of water consumption under a non-stress bayncandition. Using leaf-area-index (LAI) in
Beer's law, EJo is split into potential soil evaporation and crispnspiration. This potential crop
water use in combination with crop root distributiand SMC, determines the amount of water
extracted from the soil compartment. If SMC is derahan the moisture amount required according to
potential water use, then the actual water uséiaimed. Actual soil evaporation is calculated from
water stress in the topsoil. Non evaporated watatared in the soil while excess water (not stfpred
will drain into the deeper under-field. In casecapillary rise, more water will reach the root z@msl
less water stress occurs.

Although ET. is determined using a water balance approach,Efust be calculated first,
generally by applying the Penman-Monteith relatiopsor its derivates. A description and
implementation of the WAVE model to estimate ETF#mish forest can be found in [80]. The spatial
up-scaling of 1D models is possible by input of tipgper and lower boundaries in a spatially explicit
mode. In that case, soil physical properties ageired to be input in 3D mode. 3D models must also
be able to account for unforeseen water fluxes.

3.3. Evapotranspiration estimation at the fieldhdiacape, regional and continental scales

Where local estimates of ET are satisfactory neetgiically for validation purposes or where
detailed small scale application, many applicaticetguire spatially up-scaled ET maps. Rather well
adapted techniques for this objective are the Bowaé&n, eddy correlation, the scintillometer aneldi
water balance methods.
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3.3.1. Scintilometer measurements

A scintilometer measurement is based on the physprinciple of the propagation of
electromagnetic waves in atmospheric and theirudisince by atmospheric turbulence. This
turbulence effect induces the so-called scintdlatof the electromagnetic wave. It is the result of
fluctuations of atmospheric temperature, moistypegssure and their interactions. Basically a
scintilometer measures the variance of radiatigarisity fluctuations. An area-averaged sensibé he
flux can be derived from this type of measuremeiitse scintillometer consists of a transmitter
equipped with disc shaped arrays of light emittiiigdes and a receiver, which records the perturbed
light at a distance up to 5 km. Latent heat isdalbrived from the energy balance.

Scintillometers are applied to estimate turbuleasevell. Typically the turbulence parameters are
the turbulent heat and momentum fluxes, the Monukbov length (see also, the chapter on energy
flux based ET assessment method), the dissipatiten af energy, and the vertical distribution of
atmospheric temperature and finally refractive xad®lore specific information on the approach
described is found in [38] [39] [40] [41] [42] [4$44].

3.3.2. Eddy covariance (EC) methodology

Basically, wind vector fluctuations in the threenginsions and in the constant flux region (lowest
section of the inertial sub-layer where the flurésnomentum and heat, water vapour, and other gases
are constant with height) of the atmospheric sartacundary layer are measured with very short time
intervals. Combined with the associated fluctuaionatmospheric temperature, humidity, or mixing
ratios of typically, water vapour or carbon dioxidbe average net flux of the physico-chemical
variables mentioned is obtained by integratingrtivstantaneous fluxes. These fluxes are obtaiyed b
evaluating the means, variances and co-variancéseofertical wind vector with its horizontal wind
counterpart, with sonic temperature (which is appnately equal to virtual temperature), with water
vapour as well as carbon dioxide mixing ratios.

A 3D sonic anemometer is used to obtain the orthalywind vectors and sonic temperature. A
folded, open path ¥0/CQ; infrared gas analyzer is used to measure wateswagnd carbon dioxide
mixing ratios. The application of footprint theois required to produce a spatial representation of
evapotranspiration. Spatially explicit carbon daxifluxes can be derived accordingly. Needless to
stress the importance of this type of output fer ¢alibration and validation of carbon balance nigde
Eddy covariance is a very accurate method. It requdelicate planning with respect to obtaining
reliable instrumentation, calibration procedureg thetermination of the exact measurement height
above the surface exchanging water vapour and eaidtmxide in relation to the required fetch, the
length of the sampling period etc. [84]. EC systaanagement and logistical support is expensive and
time consuming, both from the point of infrastruettas human resources needed. The technique
however due to its accuracy and importance is widpplied for the determination and monitoring of
energy components and carbon dioxide and waterwapass fluxes. Tower networks include for
instance the EUROFLUX towers in Europe [49], unigedhe global scale with other continental scale
networks in FLUXNET, the global eddy covariance ¢owmetwork. More specific information is found
in [45] [35] [14] [36] [37].
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3.3.3. Catchment scale water balance methodology

With a hydrograph, instantaneous discharge can éasared and consequently, this enables the
calculation of annual runoff by dividing the to&hnual discharge with the surface area of theeentir
watershed. Annual ET, integrated over the entireemmeatchment surface area, is then estimatedeas th
residual of total annual rainfall and total rundfithough this method appears to lead to ratheghou
EF estimates, Wilson et al. [49] for example fouthat the magnitude of annual ET estimated over 5
years (1995-2000) is in good agreement betweei@and the catchment water balance methods for
a catchment in the South-East of the USA. A magivaatage of the catchment scale approach is that
only a limited amount of information sources (arindécharge, precipitation, area) is needed.
However, some other boundary conditions for usthigfmethod are less favourable. For example, the
approach is only applicable for coarse time regmhst such as one year. Moreover an area-averaged
estimate is obtained. The field water balance ntethdypically used in combination with physicadan
empirical (regression) computer models. More spetiformation is found in [85] [49].

3.4. Introduction of Earth Observation technologyquantify evapotranspiration

3.4.1. Energy flux measurements

A primordial observation from earlier sections lnstpaper is, that both SMC and ET, as spatially
as well as temporally variable processes, are medsand/or modelled based on the law of mass
and/or energy conservation. Since EO provides apatxplicit as well as multi-temporal information
on reflected or emitted electromagnetic radiatiof the earth’s surface, appropriate techniques to
assess area ET and SMC is based on remote seh&ing [

The Planetary Boundary Layer (PBL) is that parthed atmosphere where the influence of land
surface densities is elicited. Considering the &tary Boundary Layer (PBL) and especially its lower
atmospheric part or Atmospheric Surface Layer (ASh¢ estimation of energy balance components
are related to the flux-profile as for instance swead with the eddy covariance. The different fhixe
under consideration are:

H=p.c, Toon—Ta (15)
ah
ME = pan (qzoh - qa) (16)
GO = pscsm (17)
sh
R, =K' -K'"+L' =L (18)
R, =(1-0,)K' +g,L' —g,0LSTy (19)

In Egs. (15) to (19):

H, AE, & and R are sensible and latent heat, the soil flux and

the net radiation flux respectively [W

p. andps are respectively the atmospheric and soil bullsifiess [kg m];
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Cp, Gs are the specific heat of atmospheric at a congt@sisure and soil specific heat [3'KG;
ranand g, are the resistance to heat transfer for atmosphed soil respectively [s

Ta Toonm Ts and LST are respectively atmospheric, heat source, sdilland surface temperatures
[°Cl;

0a and gon are respectively atmospheric humidity and humidityeference height [-];

K' and K are incoming and outgoing short wave radiafithm™;

L' and L' are incoming and outgoing long wave radiaf\éhm];

0o Iis surface albedo [-];

€o is surface emissivity [-];

o is the Stefan — Boltzmann constant [W ).

For homogeneous land surfaces flux-profile relaiops are introduced using the similarity

hypothesis for wind, temperature and humidity \aitprofiles.

The similarity hypothesis implies that:

(i) Flux densities are linearly related to the geats of these parameters;

(i) Flux densities of momentum, moisture and heay less than 10% with height and finally;

(iif) Buoyancy effects on before mentioned densitean be accounted for by one dimensionless

variable.

Shear stress is induced when a land surface ismobth. Since kinetic (wind) energy is lowered by
surface friction, a compensating energy flux orges, which is the vertical flux density of
momentum. The typical shape of a wind speed pr@ite according to the natural logarithmic of
height in a neutral atmosphere is well known. Qirse, both forced and thermal convection do occur,
hence mixed convection occurs as well. At this pdire Monin-Obukhov length scaled for mixed
convection is introduced. An equivalent temperapnaile can also be derived. This profile genesate
the scaling parameters for momentum and heat, latioe to their flux densities. This makes it
possible to convert measured wind speed and/orsthesic temperature under given environmental
conditions into scaling parameters and their redpefux densities.

A typical approach for the representation of theliag parameter of a wind profile is determined by
the use of resistance schemes for homogeneousduadivand surface elements. For the sensible heat
flux density the resistancegnito heat transfer betweeg,zand a reference heighd,zis related to the
eddy diffusion coefficient and more explicitly tanel speed. Analogous, the resistance to sensilale he
transport in the soil can be written @g For latent heat, resistance parameters can blenmepted as
well, but an appropriate choice of their valuegptisblematic. Since land surfaces are generally not
homogeneous, resistance schemes have to be adjostegresent surface heterogeneity, either by
implementing a one-layer scheme with effective eystparameters or a multi-layer scheme with
separate parameters according to land surface athastics. The second solution requires many
additional coefficients, difficult to obtain. Baainssen [86] concluded from a literature reviewt th
one layer resistance scheme is quite convenidre epplied.

A theoretical link between evapotranspiration dediyrom the energy balance equation and EO can
be made assuming the next boundary conditions B#&ed on equations 15-19 and wheg, €quals
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LSTo,, the surface energy balance for a specific looatb a pre-defined moment in time can be
combined as follows, to obtain:

(o C
(L-0g) K' +e,L' —AE = (g,0 LST? + 220 LT, +PCe g1y (Lol 4 PCor (20)
I

ah sh ah sh

After the application of a first order Taylor exjséon on the terngooLSTo* and after re-expressing
the equation into LSI[86] we obtain:

¢, +(1-a,) K' +g,L' —AE

LST, = (21)
CZ
Further reductions lead to Eq. (22):
LST, =c, —C,AE (22)

Eq. (22) implies that evaporation is a linear comabon of surface temperature. The different
coefficients ¢ can be derived using basic mathematical rules. ahef remote sensing is in this
specific case, the identification of the spatiattgrms of ¢ and g during a satellite (or aircraft)
overpass. Eq. (22) is the basis of quite a few nustlapplied to model the spatio-temporal patterns of
evapotranspiration.

3.4.2. Remote sensing based assessment of eveguotedion

To exhaustively review existing remote sensing (BiShield scale based approaches to determine
ET is a time consuming task indeed. We gladly redgB7] and other authors for their evaluations of
remote sensing applications in the field of wagsources management. Since a review on ET will
hardly ever be complete, this paper covers a laonlitd of remote sensing techniques assessing ET as
listed in Table 3. The advantages as well as disadgas of the methods considered are indicated in
Table 3. Apart from the parameterization of the atefenergy balance, other approaches are based on
a combination of the water balance approach, rdynsensed surface temperature and vegetation
retrievals. Another frequently applied approactbased on a combination of the Penman-Monteith
equation and RS data assimilation. Hence, the rdsthisted in Table 3 can be classified according to
whether they are based on:

(1) the parameterization of the surface energy balance;

(i) the Penman-Monteith equation;

(i)  the water balance approach, or;

(iv)  relationships between vegetation indices and lamthce temperature assessed with remote

sensing.

A short description of the methods is given in teet below. From Table 3, one can conclude -
when generalizing - that most methods to assess Hilramote sensing require non-uniform surfaces
in the region of interest (ROI).
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Table 3. A limited list of evapotranspiration assessmenthods based on Earth Observation
techniques. A summary of (some) model parametagwén, as well as model (dis-)advantages.

Concept | Method Parameters Advantages Disadvantages Ref
EO Other (Sdl.)
SEBAL LST, Ta Var €0, RH, Data requirements are minimal; Dry and wetland requirement to [88],
o 0o, surface Physical concept; no need for land estimate H, hence heterogeneous| [89],
T%G NDVI roughness use; multi-sensor approach. surface needed in the ROI; only [90],
% applicable for flat terrain. [25].
% SEBS LST, Ta Va €0, LAL €, No a-priori knowledge of the Dry and wetland requirement to [68],
2 Oo, & eqy, surface | actual turbulent heat fluxes needed. estimate H; combined with Penman{ [70].
% NDVI roughness Monteith equation.
é RMI LST, Detailed Based on geostationary satellites Monin-Obukhov lengths require | [64].
g 0o meteorological with high temporal resolution. detailed meteorological data (network
E data of synoptical stations).
§ S-SEBI | LST, Ta €0, (RH) Data requirements are minimal; No Dry and wetland requirement to [91],
. iINOAA 0o, need for land use; no need to estimate evaporative fraction [69].
NDVI estimate H, multi-sensor. (dependent on ROI).
Trapezo-| LST, Ta €, Vapour Minimal meteorological data Requirement for biome map, surface [92].
idal SAVI  pressure deficit, requirement, ET estimation at roughness, vegetation height.
shape LAI regional scales.
g Promet Oo, Resistance Across scales, physiologically based Requires a plant physiological | [54].
o values, LA, soil (SVAT). model, land use, extensive
% type meteorological dataset.
g Granger LST, T, Saturated Feedback relationship: LST is Requires long term land a [65].
g 0o, vapour pressure,  used to obtain the vapour pressure  conventional ET model including
% NDVI deficit in the overlying air. vapour transfer coefficient.
- Wang LST, Meteorological Gradients of Tand LST not Day and night LST required. [93].
g, VI data required.
Cleugh LST, Meteorological Linear relationship surface Extensive meteorological data and | [94].
g, VI data conductance and MODIS-LAI. estimations of canopy cover required.
g SWAP | aq, VI Meteorological, A mechanistic model simulating Requires extensive datasets. [66]
g soil, ground plant growth both temporal as Relationships between RS, vegetatign
§ water table data spatially (GIS, EOQ). data, soil profile, groundwater fluxes
g Price LST, Meteorological,| Point method is extended spatially Independent ET estimates required for 58].
% VI soil, ground based on pixels of completely completely vegetated area and for 3
= water table data vegetated and bare soils. non-vegetated area; non-uniform areg.
g Nagler EVI, T, calibration Simple and minimal input Need for site specific calibration, sengor[95],
- LST coefficients requirements. type sensitive. [96].
z Jackson LST Ta (Va), Simple relationship between VI and  Calibration parameter depends on| [57].
> (VI)  calibration coeff. LST. Minimal input datasets. surface roughness and wind speed

EVI: Enhanced Vegetation Index.
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As indicated in Table 3, many methods are baseti®@nge of the remote sensing criteria of dry and
wet pixels or vegetated and bare soils. Hencejalyateterogeneous ROI ’s favours the application
of EO techniques. A rather trivial conclusion simtberwise point techniques would be sufficient
for the assessment of ET.

(i) Parameterization of the surface energy balance

Bastiaanssen et al. [25] [55] developed the md@&lrface Energy Balance Algorithm for Land”
(SEBAL), which estimates energy partitioning at tkgional scale with a minimal requirement for
field data. This algorithm is based on the use ofase albedo, a vegetation index and land surface
temperature and provides enough information forghemeterization of the energy balance fluxes,
e.g., radiation, sensible and soil heat as showj2bly[55]. This algorithm has been applied in many
studies [88 to estimate ET, but also as a tool to estimate atbherponents of the water balance at
large scales [97]. It is based on the paramet@sizatf energy fluxes as indicated in this sectibhe
terms of the incoming radiation equation are basedfield data and the outgoing terms on RS
estimated surface albedo, surface emissivity amd lsurface temperature. The soil heat flux is
estimated empirically, taking surface heating, soibisture and intercepted solar radiation into
consideration. Sensible heat is computed from ithwersions for dry non-evaporating land units and
wet evaporating land surfaces. Roughness lengtlerised from an empirical vegetation index based
relation. ET is the residual of the energy balanegduarde et al. [89] implemented the SEBAL model
over an agricultural area in the South—East of Framady covariance (EC) measurements were
available. Large discrepancies between the referamnsible heat flux from EC and the SEBAL
derived flux were observed. This was attributedrtors in the estimates of roughness length based on
the use of a semi-empirical NDVI relationship. SEB&stimates elicited a much closer fit with EC-
measurements using a prescribed roughness lengtiofmentum.

Gellens-Meulenberghs [64] assessed ET as a residiubk cenergy balance using METEOSAT
imagery (albedo and land surface temperature) agarological and vegetation dafiehe energy
fluxes are parameterized. The soil heat flux is a fractibthe net radiation flux and sensible heat. A
terrain dependent aerodynamic roughness paramadediaplacement height values are both derived
from a digital land use map.

Regional Evapotranspiration through Surface Energyitidaing (RESEP) has been proposed by
Ambast et al. [67] using boundary layer theory.diE estimated using the evaporative fraction (EF)
and 24 hourly net radiation. EF is also used inSbhdace Energy Balance System SEBS [68]. For the
calculation of this fraction the concept of sersiahd latent fluxes under dry-limited and wet-lgnlit
conditions is used.

Verstraeten et al. [69] used evaporative fractiéR)(as a measure for ET. They derived EF from
remotely sensed albedo and land surface temperd&ibrés the ratio of latent heat over the available
energy which indicates the amount of surface enavgyjlable for the evaporation of water [98].

Garcia et al. [99] estimates EF with ASTER reflectwel thermal data to estimate surface water
deficit. Senay et al. [70] developed and implemérdeSimplified Surface Energy Balance (SSEB)
model to monitor and assess & Bnd the performance of irrigated agriculture larsthg MODIS,
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ASTER and Landsat imagery. Kimura [100] estimatedstooe availability using a combination the
NDVI and land surface temperature in a Modified Tenapure-Vegetation Dryness Index (MTVDI).

(if) Penman-Monteith combined with RS

Moran et al. [92] combined the Penman-Monteith équawith land surface temperature and
spectral reflectance to estimate evaporation rfatea semi-arid grassland. This method is basedion (
hypothetical) trapezoidal shape of the relationséxisting between the vegetation index and the
atmospheric-soil temperature difference (four wedi occur: 1. well-watered vegetation; 2. water-
stressed vegetation; 3. dry bare soil and 4. datlifzare soil). ET is assumed to be linearly assatiat
with temperature difference variations.

The PROMET model family assesses ET at field (1 ha)ran(it00 km?) as well as meso-scale
(10.000 km?2) [54] applying théenman-Monteith algorithm and RS data assimilation. The
PROMET models combine a kernel (Penman-Monte#ted SVAT) and a plant-physiological model
(to take environmental parameters and canopy aesistinto account) and a spatial model. Surface
resistance is derived using a coupled plant phygiochl and soil hydraulic model. Stomatal resistéanc
is determined as a function of intercepted PAR. THanicro-scale model layer uses LANDSAT
imagery to determine land cover. Th¥ Byer consists of spatially explicit soil inforrt. The &
layer is a meteorological time series and the fiffalayer contains plant developmental data (LAI,
height). For each image pixel a single set of patars is implemented. The meso-scale model
requires NOAA/AVHRR imagery for sub-pixel informati collection, with the boundary condition
that multi-temporal courses of reflectance andr(ttad) emission as measured for each pixel are
linearly composed of reflectances and emissionalfdand cover types, represented in the pixel.

Granger [65] used a mass transfer method with tsasrigin in the Penman-Monteith equation
applied within a remote sensing framework. He sssftdly used feedback mechanisms between land
surface and the atmospheric layer, so that thereddesurface temperature is a sufficiently reliable
indicator of atmospheric humidity. A relationshiptiveen daily atmospheric vapour pressure deficit
and the saturated vapour pressure at the meansiafhce temperature was derived by this author. A
long-term mean atmospheric temperature site compaseintroduced to account for seasonal and
latitudinal effects.

Cleugh et al. [94] used the Penman-Monteith algoritwith LAI derived from MODIS satellite
data to model leaf conductance.

(iif) Water balance combined with RS

With the integration of agro-hydrological and hyalra simulation models as well as EO and GIS
techniques, D’Urso [66] developed a spatio-temporajation management tool based on thater
balance. SWAP is a combination of spatially extended upged lower boundaries and soil system
conditions. For the upper boundary, meteorologitzdh are assumed to be uniform and their spatial
distribution governed by canopy variables such Ak trop height, K and albedo. Kcoefficients are
mapped using satellite observations either usingssdication approaches (supervised and
unsupervised) validated with field observationsbgrformally defined analytical functions relating
reflectance to LAI, albedo and crop height. LAtétated to a vegetation index. The lower boundary is
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spatially extended using functions relating watex ft the bottom of the soil profile and the depth
the groundwater table. The spatial distribution ofl swydraulic characteristics is obtained by
calibration of pedo-transfer-functions for the dgpe units in a soil map and the functional prtipsr
of the soil type. For example, the time requiredeach a specified value of pressure head at aiert
soil depth. ETot is calculated using Penman-Monteith.

The ALIBi model [101] is based on the mass transfethod as well. It makes use of vapour
pressure deficit in combination with a turbulentcleange coefficient and vegetation surface
conductance which depends on leaf stomatal conglcetdnversion of the model was performed by
Olioso et al. [102], with the retrieval of canopy E®dm RS data including thermal infrared, spectral
reflectances and microwave data.

(iv) Direct relationships with remotely-sensed vegetation indices and land surface
temperatures

Based on Eq. (22), ET is linearly related to landaxgftemperature. Jackson et al. [57] introduced
a simplified equation variant to estimate laterdati{&g. (23):

AME=R, -G, -B(LST,-T,)" (22)

In EqQ. (22):
n (close to one) and B are parameters dependdandrsurface roughness and wind speed and can
be written as a function of a VI [103].

Moran et al. [104] applied the Temperature Vegetalicapezoid (TVT) type of relationship. Qi et
al. [63] used the same approach combined withtin reeasurements. Some years before [62], Price
[58] applied a relationship between a vegetatiat®exand surface temperature to spatially upscale ET.
For heterogeneous land cover and based on the NNdce temperature relationship, three different
assumedly homogeneous terrestrial functional ty{@@sr) were defined. Well watered vegetated
pixels, dry and wet bare soils. Apart from the assdly homogeneous TFT pixels, other pixel types
are assumed to be composed of a linear combinafitime fractions of the three homogeneous cover
types, as previously defined. Similarly, Carlsorakt[59] [60] [61] combined a planetary boundary
layer model with surface temperature and NDVI meaments, to map soil moisture for the surface
and root zone.

4. Soil moisture content assessment techniques at different spatial observation scales

Despite the importance of soil moisture contestaitcurate regional assessment is a complex issue.
This is mainly due to the fact that the standardhedion protocol, i.e., the gravimetric method, is
essentially a point measurement. To map local s@aiations in soil moisture requires a high spatial
density of observation locations. Obviously poineasurements performed in the context just
described is labour intensive and quite costly.

Other measuring techniqgues such as Time Domain ®effetry (TDR) [83] are local
measurements as well, but not very suitable fordgtermination of the soil water status at field an



Sensors008, 8 94

regional scale as well. Earth observation basedcajirg techniques are a compromise since they are
spatially explicit and of relatively low cost [1]13]. For instance, the spatial resolution of most
spaceborne sensors ranges from = 30 m (Landsat E®OM) 250-500 m (MODIS) to £ 1100 m
(NOAA/AVHRR, MODIS) to £ 5000 m (METEOSAT) and even #050000 m (ERS Scatterometer)
and more.

A general non-exhaustive list of methods to detearsoil moisture at point and spatially explicit
scales, is given in Table 4, with a short descnptiédccording to the discussion of [105], well known
techniques to determine soil moisture content are

(1) Gravimetric techniques;

(i) Nuclear (neutron scattering, gamma attenumtiaiclear magnetic resonance);

(i) Electromagnetic (resistive and capacitive sensong, &and frequency domain reflectometer);
(iv) Tensiometric;

v) Hydrometric;

(vi) Remote sensing (passive and active microwave, tideninared) and;

(vii) Optical techniques (polarized light, fibre optimisers, near-infrared);

(viii) An additional technique, is the heat dissipatiorthoé [106] where heating or cooling of a
porous block is measured after a heat pulse;

(ix) Another, more basic field method is the ‘Feel amqgp@arance method’, using a soil moisture
interpretation chart based on texture classificasiod squeezing of soil samples [107].

Apart from RS techniques, all given techniquespmiat measurements. A summary of the advantages
and limitations of optical and microwave soil margt remote sensing is provided by [3]. They made a
discussion on spectral measurements such as viiltle and SWIR reflectances, thermal infrared
emittance, microwave emission and radar measursm@ttier methods to assess soil moisture content
are the implementation of calibrated and validabsdirological and SVAT models. Both one-
dimensional field (WAVE, SWAP see also Table 1) aingtributed catchment models (SWAT [53];
MIKE-SHE [52], among others) can provide usefubmmhation. Gaps in time series of measured soil
moisture content can for example be reconstructetyuhe validated type of models, cited.
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Table 4. An overview of methods to determine soil moistcoatent for point and area scales.

Scale M ethods Example Description
Point/ Gravimetric Oven-drying Standard method, destracsi@mpling
local Nuclear Neutron scattering Fast neutrons emittednfia radioactive source are slowed down by

Nuclear magnetic

hydrogen atoms in the soll

The scattering and absorptiaawima rays is related to the density of

matter in their path

Soil water is subjected to both a static and aillasog magnetic field at

resonance right angles to each other
Electro- _Resistive sensor . Soil resistivity depends on thieesectrical properties and moisture
magnetic Capacitive sensor Using the dielectric constantniigasuring capacitance between two

Time-domain-

reflectometer

Frequency domain

electrodes implanted in the soil

Propagation of electromagnetic signals. Velocitd attenuation depend
on soil properties: water content and electricaidemtivity

An oscillator detects changes dih dielectric properties linked to

variations in soil water content

Tensiometric Soil matrix tension

Measures the s@itrix potential (capillary tension)

Hydrometric Thermal inertia

Relationship betweenishoe in porous materials and the relative
humidity. Since thermal inertia of a porous medidepends on moisture,

soil surface temperature is indicative

Heat Heat pulse Rising or cooling of temperature in @aope block is measured after a
dissipation heat pulse

Feel and Manual Soil moisture interpretation chart based texture classification and
Appearance manual squeezing of soil samples

Optical Polarized light The presence of moistureaasurface of reflection tends to cause

Near-infrared

polarization in the reflected beam

Light attenuation in the undiedr embedded in the soil varies with the
soil water amount in contact with the fiber becaogéts effect on the
refractive index

Molecular absorption of water in Hweface layers

1D hydrologic WAVE, SWAP

Based on solving the 1-D Richards eaqmtiwith knowledge on

models atmospheric upper and soil bottom boundary coraitio
Spatial/  Remote _VIS,NIR, SWIR Reflected electromagnetic energynfrthe soil surface .
regional sensing TIR emittance Emitted EM energy in the thermal $@dand from the soil surface

Attenuation/backscattering of microwave ernergs an indication of

moisture content of porous media

Catchment SWAT, MIKE-SHE

models

Solving the 3D Richards equation wing atmospheric upper and soil

bottom boundary conditions

[50] [105] [52] [51] [106] [107] [3] [53] [108]
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With respect to the production of spatial distribns of SMC, can spaceborne microwave RS be
compared with optical and thermal RS? Briefly, rowave based spaceborne RS demonstrates a
quantitative capacity to estimate soil moisture amd variety of topographic and vegetation cover
conditions so that it can be implemented as meamnetechnique [3]. Spatial resolution however is
problematic with this technique.

The main disadvantage of spaceborne microwave R&ist is currently not operationally applied.
Moreover, the spatial resolution is very coarsg.(®0 x 50 km spatial resolution of the ERS
Scatterometer). A second important limitation okgae microwave RS is the perturbation of the
signal by surface roughness and vegetation biomigssirregular revisit frequency, and quite
importantly as well, water bodies are major obgtoms (e.g. coastlines) in terrestrial applicatiofs
disadvantage of optical and thermal RS approachdbeir limited soil surface penetration depth.
Additionally, optical RS suffers from a high petiation by clouds and vegetation and a significant
signal perturbation by the earth’s atmosphere.

4.1. Local scale soil moisture approaches

The most accurate method to estimate SMC is graxitrempling. Essentially, it is a destructive
method since soil samples must be removed fronpéa®n mass. The procedure of the gravimetric
method starts by taking a soil sample in the fiefdwhich sample mass is immediately measured by
putting the sample for 24 to 48 hours in a dryingroat 105 °C, to measure the mass of the dry soil.
Soil bulk densities are required to convert gratvimmgwater mass per soil mass) to volumetric value
(water volume per soil volume).

Other accepted non-destructive (soil structureoisserved) in situ methods to measure SMC are
methods based on neutron scattering [109] and garaynattenuation [110]. These methods are quite
accurate and non-destructive, but require calinaidr each soil sample and special attention todav
health hazard [111].

A more flourishing non-destructive method is basmd the measurement of soil electrical
conductivity, which is sensitive to SMTime domain reflectometry (TDR) for example is widely
applied to measure soil electrical conductivityrtier SMC. With a minimum of soil disturbance, TDR
enables to simultaneously estimate soil moistunetesd as well as electrical conductivity and is
frequently applied as well in studies of solutegort in porous media [112].

An overview of conceptual dielectric models for TRRplication can be found in [113]. A short
description of the principles of TDR measuremergfiven below.

TDR estimates the dielectric constakt,in a soil matrix by measuring the propagationetiof an
electromagnetic wave (EM) sent from an EM pulse ggnermounted on top of a coaxial cable,
inserted into a soil matrix. EM waves propagateuplothe coaxial cable to the TDR probe, which is a
rod made of stainless steel or brass. Part ofntident electromagnetic waves is reflected at dpeof
the probe because of the difference in impedantedes cable and probe. The remainder of the wave
propagates through the probe until it reaches tlieaé the probe, where the wave is reflected. The
round-trip time of the wave, from the beginning ttee end of the probe is measured with an
oscilloscope branched on the cable tester (see[Hldd). For a homogeneous soil, volumetric water
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contentd (m®> m™) is calculated by using a calibration curve whigs established empirically by [83].
The curve is mathematically formulated in Eq. (23):

6 =-53007+ 2921072 [k - 55010 k2 + 43010° k*°) (23)

In EqQ. (23):
@is volumetric soil moisture content (m33n
K is the dielectric constant [-].

The authors found that the apparent soil dielectritstant is rather insensitive to temperature én th
range of 10 to 36°C. Identically it is quite insiine to soil texture (clay to sandy loam), bulknday
of soil (1.14-1.44 mg m for non-swelling soils) and soluble salt contémbistened with salt-free
water, 0.01 N CaSf{) or 2000 ppm NacCl solution). A physically baseddelomaking a causal link
between SMC and the dielectric constantis the model of [114]. These authors used a linaadel
with parameters including an empirically determinfadtor y representing a quantity of initially
absorbed water (Eq. (24)):

k=K, B+k,[[P-0)+«k, [{1-P) (24)
Kx=Ki+(KW_Kb)GgD/ (25)

t
In EqQ. (23), (24) and (25):
Ky , Ka , Khy Kw, Kb @nd k; are relative permittivities of the initially ab®®d water, atmospheric,
solids (or host) fractions, water, ice and inclasiater respectively;
4 is the transition water content marking a chamgefa slowly to a more rapid increasing relative
permittivity value;
P is the porosity of the dry soil;

Another technique applied at the local scale is gheund penetrating radar (GPR). This
instrument is based on similar techniques as mafleseismics and sonar techniques [115]. The radar
produces a high-frequency electromagnetic wave 1008 MHz), which transmits through the soill
from a source antenna positioned at the earthfaceirThe propagation velocity of the radar waves in
the soil, mainly depend on solil dielectric permaityi. This in turn, is strongly related to SMC [83].
Any subsurface contrast in dielectric propertidkeots part of the wave energy to the soil surfades
reflected wave is detected by the receiving antasna function of time [116].

Another non-destructive method to determine SM@hésuse ofgamma-ray beams. Though the
soil structure remains intact, undisturbed soil glas must be collected in the field. Gamma-ray seam
can be used to determine the soil water retentiowec[117]. The principle of gamma-ray application
for SMC determination is briefly given below.

When a gamma-ray beam passes through a soil saohplleickness x (in cm), photons are
transmitted following the Lambert - Beer law. Calesing two phases in soil samples, solid material
and water, the Lambert - Beer law can be writtefobows:
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| =1, exp(- xfup, +14,0)) (26)

In EqQ. (26):

| andly are respectively the rates of the emerging andémt photon beams;
s and 4, [cm? g'] are soil and water mass attenuation coefficients;

05, is soil bulk density [kg i and;

@ is volumetric soil water content.

Note that, apart from directly measuring SM@ater balance models can be applied to estimate
SMC as well, using meteorological and vegetatiquirdata (e.g. the models WAVE and SWAP). The
soil-vegetation-atmosphere water balance model WAE developed by Vanclooster et al. [50] and
extensively calibrated and validated for the climatonditions of Flanders and crops like wheat,
barley, maize, potato, sugar beet as well as gnadslegetation [118] [119]. WAVE is a conceptual
physically based model simulating 1D transport afev and energy in the variably water saturatet roo
zone of a soil profile. For the crops cited earierthis paragraph, the model contains modules to
simultaneously simulate the nitrogen balance ang cesponses to water and nitrogen availability in
the root zone. In Flanders, until recently [80] tm®del has only sporadically been used for the
simulation of forest water fluxes of a poplar [3]d Scots pine stand [120]. Both applications have
been validated with the use of sap-flow measuremédbnceptual models such as WAVE are very
useful for gap filling purposes in SMC measurementt estimate SMC forward or backward in time
in a SMC time series, in absence of measurementeftain intervals in time.

4.2. Large scale soil moisture approaches

To address different spatial scales in the estimaifcSMC, temporal and spatial stability analysis
was performed. Grant et al. [121] provides a bankbior temporal stability analysis, which was first
introduced by [122]. Temporal stability of SMC igeflection of the temporal persistence of spatial
SMC patterns. A SMC field is temporally stabletd# iemporal fluctuations in soil moisture are sanil
to those of the catchment average [123]. The goalewfporal stability analysis is to provide a
methodology that reduces the number of measurteg sequired for the analysis of the behaviour of a
given soil. The question is whether or not timedged®MC sites can be considered representative of
the areal mean soil moisture. Field measuremesg Bave their merit for the direct measurement of
mean areal responses. Grayson et al. [123] names‘®atchment Average Soil Moisture Monitoring
sites”, or CASMM sites. Vachaud et al. [122], studythree European agricultural plots, found that
soil texture is responsible for an observed highrele of temporal stability. These authors also
demonstrate that SMC time-stable sites, represeatfdor both mean and extreme soil moisture
contents, exist in a landscape with small to in§iggmt slope angles. Hence, only a few low slope
angle sites are needed for a specific landscape todae representative for the SMC for the landscap
as a whole. Some locations may represent statigtemameters of a normal probability distribution,
such as the mean and standard deviation of laneddeapl SMC, potentially reducing the number of
measurements required to characterize landscape &st€Gbution. Kachanoski & de Jong [124]
expanded the definition of temporal stability ag tlegree of linear correlation between SMC
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measured at consecutive times. These authors adsoveéred a scale dependency of the temporal
stability of soil water recharge at their site. Mover they demonstrated that dry periods show scale
independence and wet periods scale dependence. fiimige the bias of SMC estimates when
inferring the location of catchment characteristimil moisture monitoring sites [125] two basic
requirements have to be met:

(i) randomness and;

(ii) independence of individual observations.

Apart from the temporal variability, spatial varility or the variability of point measurements at a
given time, plays as well. The amount of spatialakility as well as the spatial distribution of SMC
can have a critical impact on hydrological processech as stream-flow generation. A starting point
characterize the structure and heterogeneity of Sil@s is an examination of the spatio-statistical
structure [126]. Detailed analyses of TDR determised moisture patterns collected in a 10.5 ha
Tarrawarra catchment (south-eastern Australia) allthe derivation of variograms with a high degree
of reliability [127]. Exponential variogram model#cluding a nugget, fit soil moisture data
variograms closely. Geostatistical structure evolseasonally with high sills (15-25*m) and low
correlation lengths (35-50 m) during the wet wirgeriod and smaller sills (5-15%m™) and longer
correlation lengths (50-60 m) during dry summeiqaty. This seasonality is due to a different lateral
redistribution of soil moisture during summer.

In accordance with [124], [125] describe that dgrihe transition from a dry to a wet period,
uncertainty (temporal instability) is larger thahem a soil is dry (semi-arid Duero basin in Spdtoy.
dry soils a good correlation between mean SMC aedvariance for the whole measurement range
considered, exists. This is in contrast with resfriten [121] indicating that soil moisture temporal
variability does not appear to be preferentialrfmre wet or dry locations (Reynolds Mountain East,
Idaho). Yet, when indirect methods are used tomeggé SMC for larger areas (i.e. with earth
observation) it is necessary to perform a careflgéction of the periods selected for calibration an
validation purposes [125].

4.3. Large scale soil moisture estimation basedenmote sensing

Researchers of the Vienna University of Technologyetbped a change detection method to
retrieve soil moisture based on the active micraaRS-Scatterometer sensor [13] [126] [128] [129].
They consider soil surface moisture as a relativasme of soil moisture in the first centimetreshaf
soil profile. They represent SMC as being the degfegater saturation of the soil with a value sdale
between zero and one e.g., the Soil Water IndexI(SMdwever, SWI cannot be retrieved for snow
covered or frozen soil conditions and for densgita forest. These land use and cover types do
represent a large area of the globe. Moreoversdaone dry and arid regions, strong azimuthal effects
can occur. These effects are currently not correfieénd hence treated in the retrieval. Therefore
they are masked.

The algorithm developed by Vienna University, acasuor heterogeneous land cover and for the
effects of vegetation growth and senescence orethetely sensed signal. It is assumed that the time
series of surface wetness observations from the &@®erometer gives an indication of the wetting
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and drying trend for moisture content in a soilfgeo This is because the moisture content pro8le i
affected by weather patterns during the few daysvéeks preceding the observation. Since soil
moisture content integrated over the deeper sgélrfaexhibits much smaller variations than in the t
layer, it is logical to apply a temporal filter f{@MC series smoothing, thereby reproducing the
temporal SMC trend in the deeper soil layers. Tongedn appropriate low-pass filter, a simple two-
layer water balance model has been considered.iedil layer represents remotely sensed topsoil.
The second layer, e.g., the reservoir, extends dowme reservoirs bottom and is assumed to be
isolated from the outside world via the surfacestayn this model, the water content dynamics i th
reservoir is fully explained by past dynamics offace soil moisture content. Typically, the most
recent precipitation events have a stronger impacthe reservoir water as opposed to older ones,
because of the use of an exponential weightingtiomc The time dependency of water content is
controlled by the parameter T, which representsagaateristic time length and increases in functibn
the depth of the soil moisture reservoir L. Thoughpse, this model is useful as a general concept fo
the estimation of the soil moisture content profittaccounts as well for a decreasing impact of
measurements with increasing time lag.

The SWI is a soil moisture time trend indicator iaggrom zero to one. To estimate water content
in deeper soil layers, auxiliary information ab@ail geophysical properties is required. Again, the
rationale is to define calibration points coveriiny and wet conditions. It thereby assumed that,W
and Whax are the minimum and maximum soil moisture valued tan possibly occur in a particular
soil. Furthermore a linear relationship is assunfdua: profile of SMC at time t can be estimated from
SWI according to (Eq. 27):

W()=Wmin+SWI(t).(Wmax Wmin) (27)

The soil parameters commonly used to define crit®ldliC values are the wilting level WL, the
field capacity FC, and the total water capacity TW8e method has quite some application potential.
Methods describing large-scale soil moisture fielsi® of great importance for land-surface
parameterization of global circulation models. Theadvantage of the SWI is its coarse spatial
resolution (2500 km?2) and the absence of long t&fRS Scatterometer imagery. This promising
methodology was applied by [130] to assess SMCHorope using optical and thermal coarse
resolution spaceborne information and the conckfiteothermal inertia of surface bodies.

5. Measurements, models and model selection

5.1. Evapotranspiration across different scalesldervation

5.1.1. Scale issues and evapotranspiration retrieva

One of the key issues in hydrological applicatiemscale and spatial resolution (pixel size) [126].
Ideally the scales of field measurements, modelladables and EO acquired variables should be
similar. Variability in ET (and SMC) is driven by veigtion, soil, climate and topography. Hence, one
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must consider local (e.g. soil, topography, vegatatand large scale (e.g. precipitation, radigtion

variability. It is clear that understanding theeraf landscape heterogeneity and its influencehen t

scaling behaviour of surface fluxes is critical. Tuyescaling of ET fluxes involves capturing land—
atmosphere feedbacks and effects of land surfaterdgeneity on the surface fluxes and the
atmospheric boundary-layer dynamics that play @elaspatial scales. When downscaling ET fluxes,
appropriate parameterization of sub-grid scale phmma within large-scale frameworks is required
[131].

Scale differences between field measured and edrdkrved ET (and also SMC) are not always
taken into account. This is partly due to the knalgk gap on uncertainty of scaling parameters and
the complexity of data acquisition. One approaclts¢ale up from field level to remotely sensed
measurements is the quantification of scale uncgytonducting VALERI type campaigns [132]
[133].

The influence on the scaling behaviour of ET as oleskby satellite sensors with different spatial
resolutions was studied by McCabe and Wood [134}yThave used data from in-situ tower
measurements, Landsat-ETM (60 m), ASTER (90 m), and QD000 m) satellite platforms over
the Walnut Creek watershed in lowa and applied $8S model. From comparisons of high-
resolution satellite data, a consistent level akeament of ET fluxes across a small watershed was
obtained. Estimates of ET at high resolutions agneet with spatially distributed flux towers.
Coarser resolution satellite data such as MODISuseful to estimate averaged ET values at the
catchment level. In general, the finer the spatablution of the satellite, the better the agregme
between the resulting ET estimates and tower measmtsmCompared to flux tower measurements
Landsat slightly underestimates ET by -6 W, ASTER overestimated ET by 18 W?mnand MODIS
underestimated ET by -57 WmThis resulted in errors of 2, 5 and 15% respelstive

In lowa Kustas et al. [135] studied the effect pétsal resolution (from 60 m to 120, 240, and 960
m) on soybean and corn crops. When the input résolis on the order of 1000 m, variation in ET
fluxes between corn and soybean fields is no lodgeernible.

When crop types are not determined, due to tocsloatial resolution, the plants are decoupled from
the free atmosphere by both the bulk leaf bountangr resistance and the aerodynamic resistance
through the surface layer (which is the controlelyAt the plant level, the leaf (and the stomatal
conductance) is decoupled using a leaf cluster demyncondition [131].

Comparison of satellite-based retrievals with fieltsed evaluation data leads to imperfect
assessments of satellite derived variables dueetoefpresentativeness between site, pixel scalspse
accuracy, and the physical equivalence of the nmedsiersus the observed variables (differences in
the time averaging, differences between atmospHssindary-layer measurements compared with
instantaneous, largely empirically based predisidi36]. Since the impact of heterogeneity on ET
estimates is crucial, flux tower the positioninglameight is critical, particularly where source awe
extend beyond the scale of the field being measuiditiough the positioning of towers is not
arbitrary, non-scientific constraints on their lboa play as well, such as their accessibilityieids or

to equipment, maintenance, energy resources, etc.
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5.1.2. Uncertainty in assessing evapotranpiratsingiEarth Observation techniques

The accuracy to estimate ET with remote sensing mstfarddifferent sources is fairly uniform.
Nagler et al. [96] reports an uncertainty of 20-308¢ET in western riparian corridors of cottonwood
due to inaccuracies in measuring and scaling. 8ud@nducted an error analysis for SEBS and a mean
error of 20% relative to the sensible heat fluxorégd. An uncertainty of 25% on the mean annual ET
was estimated by Nagler et al. [95]. Especially,ds@mation error due to the uncertainty on rougkne
length for heat transfer is important, even mor¢hsm the uncertainty on temperature, wind speeéd an
stability correction. Cleugh et al. [94] also obsat an error on ET between 20 and 25%.

An uncertainty analysis of the evaporative fract{&k) [137] revealed that EF estimates suffer
errors between 8 and 54%. Error scenarios of ET dkrivem NOAA/AVHRR imagery led to
uncertainties between 27 and 66% [69]. The effectNdDAA-Chain derived ET - of errors due to
remotely sensed parameter inputs (LST, albedo)smiall (less than 3%). Errors on meteorological
parameters such ag of 1 K compared to 0.5 K affect the relative ET utaiaty only with 3% (from
a relative error of 50% to 52% as a typical exampte contrast to this, model parameters describing
the sensible heat line of the LST-albedo phaseespasult in major impacts on ET estimation.
Doubling these parameters error values almost @suble error on the ET finally retrieved. A typical
example is an error transfer from a relative patamerror of 50% towards a 93% on ET. McCabe et
al. [136] reports the large sensitivity of surfaesistance in the estimation of spatially distrdzlET.

5.1.3. The performance of Earth Observation techsitu@ssess evapotranspiration

Several authors have compared remote sensing Basedtimations with different other measuring
techniques such as EC, BR, sap-flow etc. for a 8peaeigion of interest. In this section authors are
briefly cited that have used EO based approaches.

Qi et al. [63] conducted sap-flow, BR, scintillometand 3D Sonic measurements to estimate
seasonal riparian ET using remote sensing andums#iasurements in South-Eastern Arizona, USA.
A Sacaton grassland and a Mesquite site were edledihe latent heat values inferred from
measurements with before mentioned devices atahatSn site were very comparable: 64 Vi with
the BR, 82 W rif with the scintillometer and 78 W frwith the 3D device. At the Mesquite site latent
heat estimated with the BR amounted to 123 W the scintillometer estimate gave 124 W.mt the
same location as [63], Goodrich et al. [138] carweit a riparian corridor water balance estimate. ET
estimates were given for a transient groundwatestahonly and for the BR and a Penman-Monteith-
based model, calibrated using sap-flow measurem&hesPM model ET estimate amounts up to 86%
of the estimates simulated with the groundwaterehod

Ambast et al. [67] did show for a well-watered crioppHaryana (India) that the average ET
estimated with RESEP is 2.1 mrit,dvhereas using the PM relationship daily ET is estin to be
1.9 mm. The error involved is 10% and acceptablaast cases.

Lagouarde et al. [89] compared SEBAL and scintillenaensible heat fluxes over an agricultural
area in the South—East of France. Eddy covariance (Eg@surements were available as well. The
result of this study was that large discrepancetsveen the reference sensible heat flux from EC and
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the SEBAL derived flux were observed. This was aifted to errors in the estimates of roughness
length arising from the inadequacy of the semi-eiogli NDVI relationship applied.

Jacob et al. [139] validated the SEBAL model for shene area as mentioned by [89]. They verified
the model assumption of hydrological contrast draresulting evolution of land surface temperature
versus albedo. Moreover the model estimates agséthdthe field references when validating wind
speed and atmospheric temperature. However, aisarti underestimation of the soil heat flux was
observed. Large discrepancies were observed aswveil validating the convective fluxes.

Li & Lyons [140] compared three remote sensing daE& approaches applied on native and
agricultural vegetation: the extra-resistance mod¢l41]; the above mentioned model of [104] [142]
and a two-source resistance model of [143] [144}dMs 1 and 2 exhibited similar performances and
provided better estimates than the more sophisticatodel 3.

Nagler et al. [96] compared sap-flow measuremeritis BT derived from MODIS imagery for a
cottonwood restoration plantation in the USA. Th#arovood monitored ET values by remote sensing
method and calibrated with ground measurements &aeecuracy or uncertainty of 20—30%.

Extensive ET model comparisons are not frequently@amteoed in the literature. Rarely a large suit
of models is applied in comparative campaigns atstime measurement location, this in contrast with
ET measurements. We mention one study, where terapefadsed potential evaporation methods are
compared to pan evaporation values and one venjlelktstudy where models were compared with
measurements made in the Gediz basin, Turkey.

Kite & Droogers [145] evaluated ET estimates basedaiellite observations, hydrological models
and field data for western Turkey (Gediz). The foilogvmethods were applied: the FAO-24 and FAO-
56 procedures, a large aperture scintillometer,hyarological models SWAP and SLURP [146]; a
satellite derived feedback mechanism; a biophysiuadlel assimilating remote sensing data; and the
SEBAL model. The results elicit a wide range of ETreates without an evident pattern of variability
between the different methods. The assumption, ftelat methods are probably more reliable than
other methods, is hard to justify in the framewofkcited experiment, since the three methods used
give rise to considerably different estimates. kemnore, [145] remarks that a clear-cut conclusion
cannot be drawn for the three groups of resulkéd imeasurements, hydrological models and RS-based
models. However, when assumptions on the uncasdaiimtvolved are made, it can be observed which
methods lead to estimates within a reasonable @emde limit. For one field site only, the biophydic
model did not meet the requirements. For othed fetes as well, the SLURP-model did not give
results with a high enough confidentiality. The eliént spatial and temporal capacities of the method
used, maybe due to differences in ET estimation. eleoiher factors than the ET estimates must be
considered, i.e., data requirements, complexitgladh assimilation, temporal and spatial scale &ffec
and prognostic capabilities must be reviewed bedoaging conclusions which can go more in depth.

5.1.4. Evapotranspiration estimates not based onteesensing

ET estimates based on meteor ological relationships
Xu & Singh [81] developed a generalised model bamedeven temperature-based equations to
calculate E}o for Ontario and Canada. Underestimations are axammproblem. The Blaney-Criddle
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equation agreed most closely with the pan valueth \"¢calibrated constants the Blaney-Criddle,
Hargraeves-Thornthwaite methods came out as thesuist to estimate ET.

Beyazgul et al. [147] compared six estimation mé¢hfor crop requirements in the Gediz Basin in
western Turkey. In terms of Efthe FAO-24 methods (Blaney-Criddle, FAO RadiatiBAQO Penman
and Pan Evaporation) delivered the highest ET valueksthe Hargreaves and Penman-Monteith
delivered the lowest values ranging from 885 mmBtaney-Criddle down to 697 mm for Penman-
Monteith. Differences between Efand ETq, including capillary rise (incorporating measuisll
moisture contents in a water budget model), wetatgd between 121 and 216 mm. The differences
observed in Eff; estimates are striking.

ET estimates based on sap-flow, Bowen ratio, Scintillometer, Eddy Covariance techniques

Samson [148] conducted BR and sap-flow measurenieritee Aelmoeseneie forest in Flanders
(plant & field/stand scale). The observed diurnddaw@our of the estimates obtained with two methods
was not similar. Moreover the sap-flow measurementierestimated the BR value by more than 50%.
A possible explanation is that sap-flow measuremeiat not take herb layer transpiration and soil
evaporation into account. Species composition, areazgent and up-scaling errors may explain the
differences observed.

German [36] evaluated regional ET for the EvergladeBlorida using BR and EC measurements
(field & landscape scale). The Bowen ratios estichatéh EC and BR were comparable, though the
mean total heat fluxes estimated with EC were 20%etothan the corresponding energy flux
measured with the BR method. Probably the obsetifeatence is related to friction velocity.

Frihauf et al. [85] concluded that the ET of forgands in a catchment near Dresden (Germany)
and EC measurements elicit a good agreement, thaitfghent forest stands had a different age, and
though different scales of measurement were cordpare

Wilson et al. [49] used sap-flow measurements, i& water budget, eddy covariance and a
catchment water balance to compare forest wateliruSmuth-Eastern USA (from plant to stand to
catchment scale). These authors concluded that ECcatahment methods performed well in
estimates of annual ET. They do not require elab@edbng considerations. In their case study, sap-
flow and EC estimates were qualitatively similar oneich of the season. Sap-flow estimates however
were lower than the results obtained with EC andelothan expected when estimated with the
catchment method. These differences may be duedserssociated with the up-scaling of single tree
estimates or due to measurement errors associatedimg-porous water conducting elements. The
authors concluded that the soil water budget stsgvsficant correlation with sap-flow and EC. Rapid
water movement within the soil profile severely itsnsoil water budget method applicability for the
estimation of annual evapotranspiration.

Ezzahar et al. [44] report a RMSE value of 18.25 Whatween the latent heat fluxes derived from
the scintillometer and Eddy correlation tower measwents. They also observed that the scintillometer
underestimates ET by 14%.
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5.2. Soil moisture across different scales of oleston

At the laboratory scale Liu et al. [149] used oglti;emote sensing to estimate SMC and reported
RMSE values of 0.026-0.056°m 3. Walker et al. [150] compared different automatechniques for
point measurement of soil moisture content. Corordgpe TDR sensors produced soil moisture
measurements within the 0.0256 m* accuracy. RMSE values obtained after calibratididaton of
hydrological models HYDRUS 2D are in the order o®@ nf m™ [151]. Heathman et al. [10]
modelled the soil water profile content with RMSHues between 0.016 up to 0.097 m°.

Weihermdller et al. [152] used two ground peneatiatiadar techniques to estimate shallow soil
water content at field scale. The RMSE values ofitisefield wave technique are 0.076 m™ when
compared to the TDR measurements and 0.1bdgthwhen compared with volumetric soil samples.
The RSME values of the other techniques are 0.083mm when compared with the TDR
measurements and an error of 0.05Inm.

Saleh et al. [153] estimated soil surface moistiame grassland using L-band radiometry and
Microwave Emission of the Biosphere model. They reRMSE values between 0.015 and 0.120 m
m* when retrieving soil moisture. Field observati@fsSMC ranges approximately from 0.050 to
0.450 i m*,

At regional to continental scales the ERS Scattetemeas successfully applied. RMSE values of
SMC retrieved varies between 0.022 and 0.138m for a wide range of soil types and climatic
regions (global, Mongolia, Russia, Spain, Ukraifis] [128] [129]. Other microwave remote sensing
applications (SSM/I, ERS-SAR, PALS) report RMSE valsenaller than 0.100 yrm™ [154] [155]
[156]. Using thermal inertia values derived from METEAY, errors on SMC can easily reach 18%
[69] [137].

5.3. Selection of the appropriate ET and SMC assessapproaches

The important advantage of modelling, especialljhvabnceptual physical models, is that insight
can be obtained in the different mechanisms ofpiteeesses involved in water, nitrate and carbon
cycling. The complexity of in situ events, induceddifferent interaction types, can partly be eédit
by modelling and by incorporating the spatial adl s temporal dimensions. Moreover, scenario
analysis, offering helpful information to decisianakers, can be carried out. Some (carefully
interpreted) predictions can be made. Neverthelesglels are subject to (large) errors and
uncertainties due to low quality or lacking inpattal (noise, gaps, inappropriate measuring dynamics
etc), due to modelling assumptions (such as simatibns, linearization), or due to model structure
(coupling between sub-processes) and computer ggdiogramming).

How to select the appropriate measurement and/aleling tool? Much depends on the assumed
objectives and criteria applied as well as on thelmtive importance. However some general criteria
are valid. If the objective is the calibration avalidation of a model, the acquisition of field aas
crucial. The choice of the measurement methods deifjend on the calibration data required. For
instance, if a water balance model is to be caklordor a forest site, the monitoring of the sodter
balances together with sap-flow data can providmugh data. When, calibration and validation of a
RS model is the objective, then EC equipment isspelisable. Indirect validation may be achieved by
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using catchment hydrological models as well. If tigective is scenario analysis, then a prognostic
model is required. The required spatial and tempscales strongly limit the possibilities for
application. For instance, if the objective is #®sessment of land-use change impacts on water
consumption, a hydrological model and a histonnateorological dataset are needed. If an EO based
carbon balance model for a semi-arid land coves tyjuist be revised and validated, the incorporation
of spatial and temporal water consumption valuesE@ measurements have to be used.

A general procedure to match with objectives, modeld logistics is as follows:

1) Start with a specific scientific objective, cheihe assessment techniques for their limitations,
and check the financial limitations. The method fiaue is easy to obtain.

2) Then feed this back into the methods, and sulesgiyialso into the objectives etc.

Many criteria implemented are both scientific asllveés non-scientific. For instance Kite and
Droogers [145] indicate that a wide range of ET estés has shown that there is no evident pattern of
variability between the different methods. The agstizn of the reliability of field methods is hard t
scrutinize.

Cutting edge conclusions can be drawn only betvieemesults of field measurements, hydrological
models and RS-based models. When model and megsuraertainty is involved, Kite and Droogers
[145] indicated that all ET retrieval techniques faithin a reasonable interval of confidence. Fram a
error study based on error propagation theory andt®Carlo techniques in remote sensing, it seems
that the error on EF easily reaches 54% and on S88&[137]. Nonetheless, other factors than the ET
estimates must be considered such as the avagmbject financial resources, data requirements,
problem area complexity, temporal and spatial stalbe addressed, human resources, time frame,
models etc. To make a good compromise between suesgsraised is an interactive and dynamic
process. It is a process of weighing all the prod aons to be able to ultimately make a sound
compromise. Past experience is invaluable in tims tf decision making.

6. Conclusions

An extensive survey of international literature aésng different methods to estimate land surface
and ecosystem related evapotranspiration (ET) ahdneisture content (SMC) with emphasis on ET,
has been conducted. The generally accepted thegrlantf water uptake has been summarized and a
shortlist of meteorological and plant factors ieficing plant transpiration has been presented. ET
assessment approaches at different s spatial gsaleglow, porometer, lysimeter, field water balen
Bowen ratio, scintillometer, eddy correlation armdcbhment water balance and models) have been the
topic of discussion. We summarized SMC assessneehhigues at different spatial scales and we
suggested that scale is a key issue in hydrologipalications. Ideally the scale for measurement,
modelling and processing should be identical deat similar.

It can be concluded that most assessment methadshéo estimation of ET and SMC are
point/plant/stand scale approaches. Assessmenydblogical impacts can be implemented using
remote sensing and spatially distributed hydrolaigimodels. Extended networks of (field) sensors
[157] have a large potential for ET and SMC estintatigross scales as well. Typically, regional to
continental scale information required for hydrotad) applications, is typically obtained with the
application of EO techniques, although thermal aptical techniques require clear sky imagery.
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Clearly, at these large scales, essentially mangarather than climate scenario based predictisns
possible. Validation and calibration is a stronguieement both in predictive modelling as in sgbtia
distributed approaches. The statement that fielchoakst are probably the most reliable is hard to
justify for large scale applications, since threetmods (field measurements, hydrological models and
RS-based models) give considerably different resuBased on assumptions about uncertainties
involved, the different methods elicit a reasonafdefidence interval. Hence, other factors than ET or
SMC estimates must be taken into consideration, data requirements, complexity, temporal and
spatial scale and the prediction capabilities nimesteviewed before further conclusions can be drawn
with respect to accuracy issues.
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