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Abstract—This paper utilises the proportional hazard model
to understand and quantify the impact of explanatory variables
on the failure rate of circuit breakers (CB). Particularly, 4496
work orders with 2622 high voltage CBs are investigated with an
occurrence of 281 major failures. Different explanatory variables
such as CB type, manufacturer, preventive maintenance (PM),
and others are gathered to quantify their significance and
magnitude of their effect. The results present that PM has a
positive impact, the number of operations within the last year
a negative impact, and age has a small but negative impact on
the failure rate. The CB type is not significant in all analyses
which can be explained by examining the PM and age of these
CB types. This paper contributes to the understanding of how
explanatory variables impact the failure rate which is essential
for power system asset management.

Index Terms—Asset management, circuit breaker reliability,
failure rate, preventive maintenance, proportional hazard model.

I. INTRODUCTION

Power system asset management (AM) is a system of

strategies, decision-making, and prioritization with the overall

aim of achieving a ”lifetime optimum” under the constraints

of acquisition, use, maintenance, and disposal of assets [1].

Generally, it is a business-driven paradigm but practically a

data-driven process that requires data to execute planning and

operation decisions [1]. For this data-driven process, com-

ponent reliability data is essential for reliability calculations,

risk analysis [2], network reliability modelling and optimal

maintenance planning [3] which are the base for the AM

strategies.

One important component reliability measure is the failure

rate which describes the probability of failure in the next pre-

defined interval. Failure rate estimation is a part of statistical

data-driven processes [4] that require failure data and the

respective survival time of the components. Due to the long

lifetime of equipment, the capital intensive data gathering and

documentation, and the poor quality of existing failure data,

an average failure rate is traditionally assigned to all compo-

nents [5]. However, this approach neglects the heterogeneity

of components, such as component specific characteristics,

and therefore does not distinguish between population and

individual failure rates [6] which causes over- or underesti-

mation. Thus, [5] argues that every equipment type’s failure

rate should be a function of critical parameters such as age,

manufacturer, voltage, size, and maintenance. One statistical

model which investigates the impact of explanatory variables

on the failure rate is the relative risk or cox model [7]. It

has gained high popularity, especially, in medical sciences [8]

and is mostly known as proportional hazard model (PHM)

when the investigated covariates are constant over time. The

high data input requirements of the PHM such as occurred

equipment failures, survival time, and explanatory variables

has led to only a few applications in the power system domain

[6]. Explanatory variables such as season, weather, and time

trend or weather, cause, and voltage on failure and repair

data of transmission statistics in the United Kingdom are

assessed in [9] and [10], respectively. Whereas [9] investigates

transmission failures in general, [10] focuses on the analysis

of component specific failures of lines, circuit breakers (CBs),

protection equipment, transformer, and isolators. Here, the

explanatory variables cause and voltage are not significant

but weather, season, and time trend are for some equipment

types. Only time is a significant explanatory variable for CB

failures in the North Wales dataset. Another improvement

towards a failure rate based on critical parameters is [11] where

early cable failures are analysed with the a non-parametric

PHM. Reference [11] assess the impact of installer, joint

manufacturer, and cable manufacturer to essentially identify

two manufacturer who have a significant effect on the cable

joint failures with 7.711 and 34.609 compared to a reference

manufacturer. An in-depth study on a disconnector population

is conducted in [12] where the authors show that remote

control availability has a negative impact but preventive main-

tenance a positive impact on the failure rate. Moreover, it is



shown that single pole disconnectors have a 9.37 times higher

failure rate compared to double side break disconnectors in

this study. Some additional PHM applications in the power

system domain are summarized in [6]. The aforementioned

papers deliver results to model the failure rate as a function

of critical component parameters, however, as more data is

available the PHM offers the opportunity to gain additional

insights into more equipment types.

This article continues with the exploratory failure data

analysis and focuses on a CB population in Sweden. Par-

ticularly, the explanatory variables preventive maintenance,

manufacturer, operating mechanism, geographical area, and

number of operations are investigated towards their impact on

the failure rate.

The next section briefly discusses the exploratory data

analysis approach with the proportional hazard model. Section

III describes the CB dataset and the assumptions made to

conduct the study. In the following, section IV and V present

the results and discussion of the study and section VI the

concluding remarks.

II. EXPLORATORY FAILURE DATA ANALYSIS WITH THE

PROPORTIONAL HAZARD MODEL

The PHM is a relative risk model which belongs to the class

of regression models in survival analysis. This model assesses

explanatory variables, also known as covariates, which might

have an impact on the baseline failure rate of component i.

Lets assume that T is the survival time and xi is the vector

of covariates, the general form of the relative risk model is

λ(t;xi) = lim
Δt−→0

P (t ≤ T < t+Δt | T ≥ t, xi)

Δt

= λ0(t) r(t, xi), t > 0

(1)

with λ0(t) as the baseline failure rate. The most common

approach is to specify the relative risk function with an

exponential form when defining the PHM. Then, the PHM

is given with

λ(t;xi) = λ0(t) e
(Zi(t)β) (2)

where β is the vector of regression parameters and Zi(t) is a

vector of covariates derived from the basic covariate vector xi.

The PHM is a technique which has been treated extensively

in the literature and thus is well described and documented.

Examples of these literature are [8] for an extensive theoretical

treatment, [13] for a self-learning text with straightforward

illustrations, or [14] which focuses on censored and truncated

survival data. Therefore, the process of the exploratory data

analysis is described briefly here from data requirements to

interpretation of the results. The process can be divided into:

data acquisition, covariate coding, cox regression, and the

interpretation of the results.

A. Data Acquisition

The PHM requires a data triplet of the form

(Ti, δi, Zi(t)), i = 1, . . . , n where δi is the failure indicator

and n the population size. The basic covariates xi are initially

selected based on their potential risk on component i. In

this case, knowledge of the impact of certain characteristics,

measurements, and environmental factors on components is

necessary to do the first selection of covariates.

B. Covariate Coding

Covariates which might be investigated are either contin-

uous, categorical, or binary. They need to be known from

the start of the study and are time-independent if they do

not change during the study period and time-dependent if

they do. This crucial distinction is very important because the

methods to analyse time-dependent covariates are different.

Generally, the coding of the covariates is an essential part

because this is the base for the later interpretation. Since

the PHM assumption must be fulfilled which describes that

the hazard ratio (HR) must be constant over time, certain

continuous covariates might be transformed. Reference [13]

discusses the coding of the three covariate types in more detail.

C. Cox Regression

This part is the actual investigation of the impact and the

significance of the covariates which is similar to a linear

regression model [13]. In this setting, the survival time and

failure indicator would be the dependent variables whereas

the covariates are independent variables. The null hypothesis

is stated with β = 0 which describes that the covariate has

no impact on the failure rate. To test the significance of the

covariates, the p-value test is commonly used. Here, the null

hypothesis can be rejected if the significance level is below

α = 0.05. The assessment can be conducted in a univariate and

multivariate analysis. The latter requires a covariate selection

procedure such as forward, backward, or stepwise regression

which is discussed in [15].

D. Interpretation of the Results

In the PHM, the covariates are constant over time and a

possible form of interpretation of β is the use of the ratio

between two individuals 1 and 2 defined as the hazard ratio

(HR)

HR =
λ0(t) e

(Z2(t)β)

λ0(t) e(Z1(t)β)
= e((Z2(t)−Z1(t))β) (3)

If we assume Z1(t) = 0, the failure rate of i-th individual is

proportional to λ0(t) with e(Zi(t)β). Depending on the form

of the covariate, the interpretation differs. In general, if HR

= e(Zi(t)β) = 1 the covariate has no impact, HR < 1 the

covariate has a positive impact, and HR > 1 has a negative

impact on the failure rate. In addition, the confidence interval

(CI) of the HR should always be considered while interpreting

the results.

III. CIRCUIT BREAKER DATASET

CBs are mechanical switching devises to control and protect

the power grid. Since they protect the power grid from

overloading, short-circuit faults, and other faults, CBs are

essential for operating the power grid. The importance of these



Fig. 1. Distribution of CBs installation years

switching devises makes the requirement for understanding

which covariates have an effect on the failure rate even more

important. In this paper, we examine a larger CB population

in Sweden.

A. Dataset Description

The population includes 2622 CBs with a total of 4496

work orders which have been recorded from 2008 to 2015.

General information of the CBs and work orders are extracted

from the internal asset management system of the utility. The

work orders include information such as work order type,

completed task, date, CB type, CB manufacturer and specific

manufacturer type. The study is limited to CBs on voltage

levels from 40 kV to 400 kV which are produced by 18

different manufacturers. The population can be classified into 3

different CB types: Oil CBs (52.9 %), SF6 CBs (45.2 %), and

vacuum CBS (1.9 %). The installation years of the population

are from 1950 to 2015 and illustrated in Fig. 1. These CBs are

installed in four different regions in Sweden where the climate

varies considerably.

B. Selected Data and Assumptions

1) Data Requirements: The dataset needs to be consis-

tent and complete to be investigated with the PHM. Thus,

assumptions are necessary to code the data and missing or

incorrect data must be estimated. Thus, this section states all

assumptions made to conduct the study. Moreover, missing

data are estimated with the multiple imputation using re-

gression switching imputation with predictive mean matching

method (MI-MICE-PMM). The MI-MICE-PMM approach is

described in [16], [17].

2) Failures: A total of 1658 work orders are identified

which describe CB failures. With the definition of major and

minor failures according to [18], the failures can be divided

into 461 major and 1197 minor failures. The major failures are

categorized after failure modes in Fig. 2 and failure locations

in Fig. 3. In this study, only major failures are assumed to be

equipment failures. Moreover, this study is limited to single

failures which means that a CB is removed from the study

after a major failure. Neglecting recurrent failures, 281 major

Maneuverability49%
Maneuverability

under
Current41%

CurrentCarrying2%
SecondaryFunctions4%

Others1%Unknown4%

Fig. 2. Frequency of failure modes of 461 major failures in CB population
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Fig. 3. Frequency of failure locations of 461 major failures in CB population

failures are considered in this study which results in a dataset

with 89.3 % censoring.

3) Time to Failure: Two approaches are commonly used as

time to failure, depending on when an individual is exposed

to risks. Firstly, the time to failure can be measured from

the beginning of a study to a failure or the end of the study

(censored). Secondly, the time to failure is measured from the

point the component is exposed to risks such as the point it is

installed in the power grid. Consequently, age of a CB seems

to be the reasonable choice as time to failure. Reference [12]

mainly used the time on study as time to failure since 31 %

of the installation years are missing and no further knowledge

about the disconnectors is available before study entry. This

study faces the same challenge. Since there is no information

regarding the CB before 2008, the data is known to be left

truncated. Thus, this must be considered when age is used as

time to failure.

4) Covariates: A set of covariates is gathered to investigate

their impact on the failure rate. These covariates are manufac-

turer, CB type, operating mechanism (OM) geographical area

(GA), preventive maintenance (PM) as maintenance intensity

(MI), voltage level (VL), number of operations (average per

year (M#O), within the last year (#OLY)), remote control

availability, and age at admission. The covariate PM is defined

as MI which is number of maintenance tasks per time in

study [12]. It is defined as intensity since as longer as a



TABLE I
CODING OF CATEGORICAL COVARIATES

Covariate Abbreviation Value Category Coding

Circuit Breaker

Type
CB Type

Oil 1 1 0

SF6 2† 0 0

Vaccum 3 0 1

Voltage Level

in [kV ]
VL

(x ≤ 80) 1† 0 0

(80 < x ≤ 134) 2 1 0

(134 < x) 3 0 1

Operating

Mechanism
OM

Hydraulic 1 1 0

Mechanical Spring 2† 0 0

Watch Spring 3 0 1

Geographical

Area
GA

Region 1 1 1 0 0

Region 2 2 0 1 0

Region 3 3 0 0 1

Region 4 4† 0 0 0

Maintenance

Intensity in[
# maintenance tasks

time-on-study

] MI

x = 0 0† 0 0 0

(0 < x ≤ 0.2) 1 1 0 0

(0.2 < x ≤ 0.4) 2 0 1 0

(0.4 < x) 3 0 0 1

Number of

Operations within

the last Year

#OLY

x ≤ 10 0† 0 0 0 0

(10 < x ≤ 20) 1 1 0 0 0

(20 < x ≤ 40) 2 0 1 0 0

(40 < x ≤ 60) 3 0 0 1 0

(60 < x) 4 0 0 0 1

† reference group

CB is in the study as more maintenance tasks it can receive.

Generally, maintenance is defined as a task to prevent failure

and degradation of the equipment [19]. Thus, minor failures,

which according to the definition of [18] do not lead to major

failures, are also counted as maintenance tasks.

IV. RESULTS

The dataset is explored and analysed with the PHREG

function of the software tool SAS University Edition 3.6

(SAS Institute, Cary NC). The exploratory approach of the

failure data analysis assesses the covariates in a univariate and

multivariate setting with varying failure and time to failure

definitions. This approach enables a wider understanding of

the dataset and prevents misinterpretation.

A. Data Preparation and Covariate Coding

The PHM requires that all input parameters (Ti, δi, Zi(t))
are consistent and complete. Fig. 2 and 3 show that also

unknown or incomplete data exist in this dataset. Whereas

unclassified failure data can be tolerated in the PHM when

competing risks are not considered, covariates and time to

failure data must be complete. Thus, the MI-MICE-PMM

algorithm is applied to estimate 2.05 % of the missing in-

stallation years, 2.05 % of the remote control availability,

10.64 % of the OM, and 10.5 % of the CB types. The two

aforementioned time to failure Ti approaches are used in this

analysis. Generally, time-on-study in days is used and age is

adjusted as a linear continuous covariate because there is no

information about the CB before 2008 and using age as time to

failure would bias the results. However, the second approach

is age as time to failure and adjusting for left truncation in the

dataset. In this case, age is recorded in years.
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Fig. 4. Relative Group size of categorical sub classes of covariates with 1 -
GA, 2 - CB Type, 3 - remote control availability, 4 - MI, 5 - VL, 6 - #OLY,
and 7 - OM
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Fig. 5. Relationship between Maintenance Intensity and Age at Event
depending on CB type

The covariates investigated in this study are all categorical

covariates except age at admission and M#O. The abbreviation,

the categories, and the coding are displayed in Table I and

the frequency of the sub-classes is illustrated in Fig. 4.

The covariates maintenance intensity (MI), which is PM as

number of maintenance tasks per time-on-study, and number

of operations last year (#OLY) are continuous but transformed

into categorical covariates because the functional form is not

linear and thus the proportional assumption of the PHM would

be violated. The functional form of age at admission is linear

which can be seen by assessing the martingale residuals.

The pearson correlation coefficients of days in study (DiSt),

age, and other continuous covariates are shown in Table II. A

moderate correlation can be noted between age and MI and

M#O and #OLY whereas others are generally rather weakly

correlated. The relationship between MI, age, and CB type is

illustrated in Fig. 5. Table III presents the results of the one-

way ANOVA to test whether the means of the MI conducted

for each CB type are different. The results show that the means

are not equal, hence, there is a difference in conducted MI

for each CB type which is graphically illustrated in Fig. 6.

Conducting the same test for GA instead of CB type resulted

in no significant difference.



TABLE II
PEARSON CORRELATION COEFFICIENTS, N=2622

DiSt Age MI #OLY VL M#O

Days in Study (DiSt) 1.000 -0.011 -0.001 -0.120 -0.082 -0.052

Age -0.011 1.000 0.390 0.023 -0.126 0.000

MI -0.001 0.390 1.000 0.011 -0.006 -0.005

#OLY -0.121 0.023 0.011 1.000 0.021 0.437

VL -0.082 -0.126 -0.006 0.021 1.000 0.001

M#O -0.052 0.000 -0.005 0.437 0.001 1.000

TABLE III
ANOVA TABLE TO TEST WHETHER CB TYPES HAVE A SIGNIFICANT

EFFECT ON MI CONDUCTED

Source DF Sum of Squares Mean Square F Value Prob >F

Model 2 14.792 7.396 160.79 <.0001

Error 2619 120.466 0.046

Corrected Total 2621 135.257
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Fig. 6. Conducted MI specified by CB type

B. Covariate Assessment

The significance level for rejecting the null hypothesis

β = 0 is set to α = 0.05. Table IV presents the results of the

univariate analysis. Age at admission is significant with a HR

of 1.014. This strengthens the approach of also using age as

time to failure in the later multivariate analysis. Compared to

CB type 2, the other CB types are not significantly correlated.

All MI categories have a positive effect on the failure rate

compared to no maintenance. Moreover, the more the CBs

are operated within the last year, the higher the HR from

1.992 to 6.066. The assessment if one of the manufacturers

is significantly correlated shows no relevant results.

The results of the multivariate model are presented in Table

V and Table VI for time-on-study and age as time to failure,

respectively. The covariates are selected with the stepwise

regression procedure and ties are handled with the Breslow

method. As in the univariate analysis, α = 0.05 is set as

entry requirement. The Tables show the maximum likelihood

estimates, 3 tests to test the global null hypothesis, and the

model fit statistics.

The covariates which have entered the model in Table V

are CB Type, GA, MI, OM, VL, #OLY, and age at admission.

TABLE IV
RESULTS OF THE UNIVARIATE ANALYSIS USING THE PROPORTIONAL

HAZARD MODEL WITH TIME-ON-STUDY IN DAYS AS TIME TO FAILURE

Maximum Likelihood Estimates

Covariate DF β SE Chi-Square Pr>ChiSq HR 95% CI

GA 1 1 -0.325 0.190 2.914 0.0878 0.723 0.498 1.049

GA 2 1 -0.293 0.181 2.634 0.105 0.746 0.524 1.063

GA 3 1 -0.691 0.188 13.459 0.0002 0.501 0.347 0.725

CB Type 1 1 -0.126 0.120 1.112 0.292 0.881 0.697 1.115

CB Type 3 1 -1.830 1.003 3.326 0.068 0.160 0.022 1.146

MI 1 1 -1.773 0.230 59.540 <.0001 0.170 0.108 0.266

MI 2 1 -1.760 0.241 53.570 <.0001 0.172 0.107 0.276

MI 3 1 -0.740 0.163 20.670 <.0001 0.477 0.347 0.657

VL 2 1 0.225 0.124 3.280 0.0701 1.252 0.982 1.597

VL 3 1 0.947 0.240 15.598 <.0001 2.577 1.611 4.123

OM 1 1 0.564 0.452 1.5546 0.2125 1.757 0.724 4.263

OM 3 1 -0.317 0.156 4.0951 0.0430 0.729 0.536 0.990

#OLY 1 1 0.689 0.155 19.742 <.0001 1.992 1.470 2.699

#OLY 2 1 0.778 0.177 19.390 <.0001 2.177 1.540 3.077

#OLY 3 1 1.225 0.327 14.048 0.0002 3.404 1.794 6.459

#OLY 4 1 1.803 0.220 66.963 <.0001 6.066 3.939 9.341

M#O 1 0.001 0.000 8.676 0.0032 1.001 1.000 1.001

Age at

admission

1 0.014 0.004 15.206 <.0001 1.014 1.007 1.021

Remote

Control 2

1 -0.354 0.339 1.088 0.2968 0.702 0.361 1.364

Remote

Control 3

1 1.536 1.001 2.356 0.1248 4.646 0.654 33.021

The covariate effects and their significance are similar to the

univariate analysis but differ in the magnitude of the effects.

The HR of age at admission is 1.038 which means that

with one year difference the failure rate would increase by

this magnitude. The relative risk between two CB with ten

years age difference is then e10∗0.038 = 1.46. An interesting

observation is that CB type 1 is significant and has a positive

impact compared to CB type 2. This unexpected effect will

be further discussed in section V.

In Table VI only the covariates GA, MI, and #OLY have

entered the model. The reference curves for the survival

probability in both settings are depicted in Fig. 7. These

reference curves are plotted based on the reference level

of all categorical covariates and the mean of all continuous

covariates.

The results from this study also strengthen the general con-

clusions of [20] who found that the average failure frequency

increases with the voltage level and number of operations of

the CBs.

V. DISCUSSION

The results underline the importance of applying the PHM

in an exploratory approach. The correct interpretation requires

in-depth knowledge about the dataset and should consider the

whole range of results and data such as sample size of the

population, categorical sub-class size, p-value, HR, and CI.

For example, the category GA 1 in the univariate analysis has

a p-value of 0.087 which is close to α = 0.05. One might



TABLE V
RESULTS OF THE MULTIVARIATE ANALYSIS WITH THE PROPORTIONAL HAZARD MODEL WITH STEPWISE REGRESSION AND TIME-ON-STUDY IN DAYS AS

TIME TO FAILURE

Maximum Likelihood Estimates Testing Global Null Hypothesis: β = 0

Covariates DF β SE Chi-Square Pr>ChiSq HR 95% CI Test Chi-Square DF Pr>ChiSq

CB Type 1 1 -0.735 0.193 14.554 0.0001 0.480 0.329 0.700 Likelihood Ratio 368.604 15 <.0001

CB Type 3 1 -1.745 1.009 2.988 0.0839 0.175 0.024 1.263 Score 447.514 15 <.0001

GA 1 1 -0.466 0.194 5.775 0.0163 0.627 0.429 0.918 Wald 370.169 15 <.0001

GA 2 1 -0.237 0.183 1.685 0.1943 0.789 0.551 1.129

GA 3 1 -0.708 0.194 13.389 0.0003 0.493 0.337 0.720 Model Fit Statistics

MI 1 1 -2.328 0.235 98.127 <.0001 0.097 0.061 0.155 Criterion Without Covariates With Covariates

MI 2 1 -2.415 0.249 93.987 <.0001 0.089 0.055 0.146 -2 LOG L 4361.740 3993.136

MI 3 1 -1.401 0.175 63.992 <.0001 0.246 0.175 0.347 AIC 4361.740 4023.136

VL 2 1 -0.011 0.132 0.007 0.9357 0.989 0.764 1.281

VL 3 1 0.689 0.247 7.772 0.0053 1.992 1.227 3.233

#OLY 1 1 0.936 0.158 35.177 <.0001 2.551 1.872 3.476

#OLY 2 1 1.345 0.186 52.307 <.0001 3.837 2.665 5.524

#OLY 3 1 1.279 0.330 15.014 0.0001 3.594 1.882 6.866

#OLY 4 1 1.844 0.224 67.901 <.0001 6.322 4.077 9.802

OM 1 1 0.179 0.459 0.152 0.6967 1.196 0.486 2.940

OM 3 1 -0.506 0.167 9.219 0.002 0.603 0.435 0.836

Age at

admission

1 0.038 0.005 53.280 <.0001 1.038 1.028 1.049

TABLE VI
RESULTS OF THE MULTIVARIATE ANALYSIS WITH THE PROPORTIONAL HAZARD MODEL WITH STEPWISE REGRESSION AND AGE AS TIME TO FAILURE

DATA CONSIDERING LEFT-TRUNCATION

Maximum Likelihood Estimates Testing Global Null Hypothesis: β = 0

Covariates DF β SE Chi-Square Pr>ChiSq HR 95% CI Test Chi-Square DF Pr>ChiSq

GA 1 1 -0.421 0.205 4.227 0.0398 0.657 0.440 0.981 Likelihood Ratio 324.340 10 <.0001

GA 2 1 -0.306 0.192 2.544 0.111 0.737 0.506 1.072 Score 420.978 10 <.0001

GA 3 1 -0.758 0.214 12.495 0.0004 0.469 0.308 0.713 Wald 309.084 10 <.0001

MI 1 1 -2.482 0.237 109.475 <.0001 0.084 0.053 0.133

MI 2 1 -2.465 0.251 96.809 <.0001 0.085 0.052 0.139 Model Fit Statistics

MI 3 1 -1.694 0.191 79.060 <.0001 0.184 0.127 0.267 Criterion Without Covariates With Covariates

#OLY 1 1 0.731 0.169 18.753 <.0001 2.077 1.492 2.891 -2 LOG L 2711.323 2386.983

#OLY 2 1 1.028 0.193 28.477 <.0001 2.796 1.917 4.079 AIC 2711.323 2406.983

#OLY 3 1 0.965 0.338 8.140 0.0043 2.625 1.353 5.093

#OLY 4 1 1.468 0.245 35.925 <.0001 4.338 2.685 7.010

interpret it as significant but considering the calculated CI,

the effect could be either positive or negative which makes an

interpretation impossible. Moreover, the size of the sub-classes

of the categorical covariates has an effect on the results. The

covariate remote control has a high frequency for the actual

subcategory remote control (95.5 %) but a low frequency for

manual operation with 4.5 %, see Fig. 4. This unbalance bias

the results and thus the subcategories of a categorical covariate

should always be similar in size.

The results in Table V show that CB type 1 compared to

CB type 2, has a positive significant impact. However, this

contradicts with the results of the univariate analysis in Table

IV and the multivariate analysis in Table VI. One reason might

be that the CB type 1 are generally older than CB type 2 and

3 which can be seen in Fig. 5. If age as time to failure is

not adjusted for left-truncation, CB type 1 also has a positive

significant impact which seems logical since survival time

and failure are the response variables. However, the positive

significant effect between CB types might be explained by

the significant difference of conducted MI for both types, see

Table III and Fig. 6.

VI. CONCLUSION

This paper continues to characterise the failure rate of CBs

with critical parameters such as age, manufacturer, size, and

maintenance. Particularly, the impact of explanatory variables

or risk factors is investigated by testing their significance and

quantifying the magnitude of their effect. To do so, a CB

population of 1622 with 281 major failures is analysed. The

results show that age is a relevant factor, PM has a positive

impact, and that the number of operations within the last year

have a negative impact on the failure rate in the multivariate

analysis. The study also addresses the importance of using



(a) Reference survival function for CB at age 19.37 placed in GA 4, CB
type 2, OM 2, MI 0, and VL 1 with time-on-study in days as time to
failure

(b) Reference survival function for CB at age 19.26 placed in GA 4, CB
type 2, OM 2, MI 0, and VL 1 with age in years as time to failure

Fig. 7. Survival probability functions for reference settings with 95% confidence intervals

an exploratory approach when analysing failure data with the

PHM. For example, the impact of the CB type is different in

the univariate and multivariate analysis and could therefore be

misinterpreted if the dataset is not fully understood. The study

should be continued while considering competing risks and the

recurrence of major failures to widen the understanding of the

dataset. Moreover, the CB service role functions in the system

such as line, busbar, reactor, etc or the number of operations

with fault current have not been investigated which could be

done in future studies.
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