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Abstract: This study investigated the genetic diversity of bread-wheat genotypes using canopy
reflectance-based vegetation indices (VIs) and simple sequence repeat (SSR) marker-based geno-
typing for drought tolerance. A total of 56 wheat genotypes were assessed using phenotypic traits
(combination of VIs and yield traits) and 30 SSR markers. The data of the phenotypic traits were
averaged over two growing seasons under irrigated and drought-stressed conditions. The hierarchi-
cal clustering of the wheat genotypes unveiled three drought-tolerant groups. Cluster 1 genotypes
showed minimal phenotypic alterations, conferring superior drought tolerance and yield stability
than clusters 2 and 3. The polymorphism information content values for the SSR markers ranged from
0.434 to 0.932, averaging 0.83. A total of 458 alleles (18.32 alleles per locus) were detected, with the
most polymorphic markers, wmc177 and wms292, having the most alleles (24). A comparative study of
SSR diversity among phenotypic clusters indicated that genotypes under cluster 1 had higher genetic
diversity (0.879) and unique alleles (47%), suggesting their potential in future breeding programs.
The unweighted neighbor-joining tree grouped the wheat genotypes into five major clusters. Wheat
genotypes from all phenotypic clusters were distributed throughout all SSR-based clusters, indicat-
ing that genetically heterogeneous genotypes were allocated to different drought-tolerant groups.
However, SSR-based clusters and model-based populations showed significant co-linearity (86.7%).
The findings of the present study suggest that combining reflectance-based indirect phenotyping
with SSR-based genotyping might be an effective technique for assessing genetic diversity to improve
the drought tolerance of bread-wheat genotypes.

Keywords: bread-wheat; drought tolerance; vegetation indices; SSR markers; genetic diversity;
unique alleles; cluster analysis; population structure

1. Introduction

Drought stress, a major abiotic factor restricting wheat farming around the world,
decreases wheat productivity by altering the crop plant’s physiological and biochemical
processes [1]. Drought is expected to become more frequent, longer, and more severe in
many parts of the world in the twenty-first century as a result of global warming and
other climate-change-driving factors [2,3], reducing wheat production in the future. As
a result, actions to increase wheat production must be implemented as soon as possible,
because the primary crop yield could be decreased by more than half, owing to a lack of
irrigation water [4]. The introduction of new wheat genotypes with greater yield potential
and enhanced drought tolerance is the most acceptable strategy for improving wheat
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production [5]. Drought-tolerant genotypes are often chosen for economic features based
on the presence of genetic variation in the genetic pool [6]. Genetic diversity facilitates the
identification of tolerant genotypes as parental lines in the breeding programs to develop
superior progenies for selection [7], without excluding species of the genus Aegilops, the
wild ancestor of cultivated wheat [8].

It is commonly recognized that phenotypic and molecular methodologies have been
used to investigate the variety and differentiation of wheat genetic resources, either sepa-
rately or in combination [7–11]. There are several phenotypic tools for measuring genetic
diversity; among them, crop ideotypes, phenology, and yield attributes are used extensively
because of their reliability in measuring genetic variation within a gene pool [4,7,12]. Most
phenotyping approaches, on the other hand, are damaging, costly, time-consuming, and
resource-intensive, particularly when a high number of genotypes are being assessed [4].
Canopy-reflectance-sensing has proven to be a valuable high-throughput phenotyping
alternative for precisely and indirectly monitoring drought tolerance traits across a large
number of genotypes in a quick and non-destructive manner [4,12]. The crop canopy re-
flects a certain wavelength of the light spectrum because of its structural features and many
biochemical and physiological processes. These wavelengths are commonly employed
to assess canopy pigment content, senescence, photosynthetic activity, biomass build-
up, leaf-area index, grain production, and plant hydration status [12]. Using the visible
(λ = 400–700 nm) and near-infrared (λ > 700 nm) wavelength ranges of the canopy-reflected
spectrum, several vegetation indices (VIs) are computed to forecast various agronomic
and physiological aspects. Though VIs provides a rapid and non-destructive evaluation of
phenotypic and yield features, the application of both techniques in a target environment
is critical, since VIs and phenotypic traits are strongly related under drought conditions
compared to irrigated conditions [12,13].

Drought phenotyping with morpho–physiological and yield parameters has been
shown to be useful in genetic diversity evaluations and variety production, despite the
restrictions imposed by environmental variables and polygenic nature [9,14,15]. Molecular
markers, on the other hand, complemented phenotype-based genetic diversity and miti-
gated many of the disadvantages of this strategy [9,15,16]. In addition to indirect diversity
evaluations based on phenotypic traits, the majority of molecular markers provide a direct
estimate of genetic variation. The genetic diversity of genotypes has been assessed utiliz-
ing DNA-based markers, avoiding environmental effects, including Random Amplified
Polymorphic DNA, Amplified Fragment Length Polymorphism, SSR (Simple Sequence
Repeat), and Single Nucleotide Polymorphism. SSR or microsatellite markers are the best
candidates for studying wheat genetic variation because of their widespread prevalence in
wheat genomes, chromosomal specificity, multi-allelic composition, co-dominant nature,
ease of assaying, and high polymorphism rates [17–19]. A higher rate of polymorphism,
along with the multi-allelic nature of SSR markers, aids in establishing relationships among
genotypes, even with fewer markers [20]. Some recent studies using SSR markers that
successfully analyzed wheat genetic diversity showed that genotypes were significantly
diverged and should be considered in drought-tolerance breeding programs [7,11,19,21,22].

Introgressing the drought-tolerance potential in new wheat varieties and ensuring their
genetic potential is a primary goal for breeders. In order to achieve this goal, researchers
used a combination of traditional phenotypic data and SSR markers to analyze the genetic
diversity of candidate genotypes [7,23–25]. Nevertheless, the use of high-throughput-origin
indirect phenotypic data along with the SSR markers to explore wheat genetic diversity is
scant [26,27]. Keeping this lacuna in mind, we used canopy-reflectance-based vegetation
indices and yield parameters, as well as 30 SSR markers, to assess the genetic diversity of
56 bread-wheat genotypes under irrigated control and irrigation-simulated dry situations.

The specific objectives of this study were (i) to compute and assess the level of genetic
diversity in wheat genotypes using phenotypic traits (VIs and yield attributes) as well as
genotypic data from SSR markers, and (ii) to extrapolate the neighbor-joining trees and
population structure of wheat genotypes using SSR markers. The findings of this study
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will open up the possibility of integrating canopy-reflectance-based indirect phenotypic
data and SSR-marker-based genotypic data in the genetic diversity assessment of wheat
genotypes for drought tolerance.

2. Materials and Methods
2.1. Phenotyping
2.1.1. Experimental Conditions and Measurement of VIs and Yield Traits

The experiment used 56 different wheat genotypes, composed of 17 varieties, 1 ad-
vanced line, 2 mutant lines, and 36 accessions (Table S1) that were selected from a previous
trial at the seedling stage [28]. Seeds were sown on November 18 for two years (2017–2018
and 2018–2019) at the research field of the Bangabandhu Sheikh Mujibur Rahman Agri-
cultural University (24.038◦ N latitude, 90.397◦ E longitude), Gazipur, Bangladesh. The
experimental soil had a silt loam texture (sand 26%, silt 50%, and clay 24%) and attained
full field capacity at 30.6% volumetric soil water content. The experiment was designed as a
randomized complete block split-plot with three replications. The main plots were divided
into two growing conditions: “control” (regular irrigated) and “drought” (discontinued
regular irrigation after 45 days of seed sowing), while wheat genotypes were assigned
at random to the sub-plots. Figure 1 depicts the mean soil water content (%) and mean
air temperature of the control and drought-stressed plots throughout the reproductive
phases. Importantly, canopy reflectance, canopy temperature, and soil and plant analysis
development (SPAD) values were recorded at heading, anthesis, and 7, 14, and 21 days
after anthesis.
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coupled with a sensor to record the instant air temperature (Model: IR-818, URCERI, 

Figure 1. Soil water status (% moisture content) of control and drought-stressed plots and mean
air temperature at the reproductive stages of wheat genotypes. Soil water content (%) was mea-
sured every day from the randomly selected plots (n = 15) of control and drought-treated blocks.
H—heading and A—anthesis. Data are averaged over two growing seasons.

Using a microprocessor-equipped digital soil moisture meter (PMS-714, Lutron Elec-
tronic Enterprise Co., Ltd., Taipei, Taiwan), the soil water content (%) at a depth of 15 cm
was measured from 15 randomly selected plots in each of the control and drought-treated
blocks. Between 11.30 a.m. and 12.30 p.m., a hand-held infrared thermometer, coupled
with a sensor to record the instant air temperature (Model: IR-818, URCERI, Highland, CA,
USA; the distance-spot ratio of 13:1), was used to measure the temperature of the canopy
and ambient air. Measurements were obtained at an angle of roughly 30◦ to the horizontal
line, one meter away from the spotted canopy. Ten readings were collected from various
locations of each plot. The canopy temperature depression (CTD) was estimated as the
ambient temperature minus the canopy temperature using Fischer’s approach [29]. The
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chlorophyll content was measured using a portable Chlorophyll Meter (Model: SPAD-502,
Konica Minolta Inc., Osaka, Japan) on 10 preselected main shoot flag leaves from each plot.

Between 11 a.m. and 2 p.m., the plant-canopy reflectance was measured using a
handheld multispectral radiometer (Model: MS-720, EKO Instruments Co. Ltd., Tokyo,
Japan) maintaining a field of view of 25◦ and from 40 cm above the canopy, avoiding
shadows, clouds, and strong winds (Figure S1). The reflectance by the radiometer was
measured at 1 nm intervals from 350 to 1050 nm of the light spectrum. The reflectance data
were calibrated using a white reflectance panel and then used to calculate the vegetation
indices (VIs) outlined by Gizaw et al. [12] and is shown in Table 1.

Table 1. Vegetation indices (VIs) evaluated for the drought tolerance of bread-wheat genotypes.

Vegetation Index Formula a

Simple ratio (SR) R800/R680
Normalized difference vegetation index (NDVI) (R800 − R680)/(R800 + R680)

Green-NDVI (GNDVI) (R780 − R550)/(R780 + R550)
Enhanced vegetation index (EVI) 2.5 × (RNIR − RRED)/(RNIR + 6 × RRED − 7.5 × RBLUE + 1)

Normalized water band index (NWI) (R900 − R970)/(R900 + R970)
Normalized chlorophyll pigment ratio index (NCPI) (R680 − R430)/(R680 + R430)

Photochemical reflectance index (PRI) (R530 − R570)/(R530 + R570)
Anthocyanin reflectance index (ARI) R800×(1/R550 − 1/R700)

Xanthophyll pigment epoxidation state (XES) R531
a The letter “R” followed by three-digit numbers stands for the wavelength of respective reflectance. RNIR,
RRED, and RBLUE indicate the mean reflectance of the near-infrared (770–895 nm), red (630–690 nm), and blue
(450–510 nm) region of the spectra, respectively.

At physiological maturity, four-linear-meter plants from the middle of the plots were
harvested at the ground level, and their yield traits and yields were measured. The
biological yield (BY) [straw + grain + chaff] and grain yield (GY) were reported as the
sun-dried weights with a moisture content of 12% and were represented as t ha−1. The
number of kernels per spike (NKS), the weight of kernels per spike (WKS), and the hundred
kernel weight (HKW) were acquired by sun-drying, threshing, weighing, and counting
grain numbers of 10 main-shoot spikes collected separately from each plot.

2.1.2. Statistical Analysis

Statistical analyses were carried out by R version 4.1.0 (http://CRAN.R-project.org/)
(accessed on 15 November 2021). Growth-stage-specific VIs, SPAD, and CTD values were
averaged and, together with the phenotypic traits, subjected to a combined analysis of
variance (ANOVA) in the general linear model using the library lme4 [30]. Tukey’s HSD
post hoc test was employed to assess the mean differences using the library agricolae [31],
with differences at p < 0.05 considered significant. Boxplots and correlograms were pre-
pared using the library ggplot2 along with ggpubr and reshape2 [32] and a web-based
application MVApp [33], respectively. The package dendextend [34] was used to construct
trees of hierarchical clusters (distance = Euclidean and method = wardD2) based on trait
relative values.

2.2. Genotyping
2.2.1. SSR Markers and Extraction of Genomic DNA

To characterize the genetic diversity of 56 wheat genotypes, 30 SSR markers compris-
ing most of the chromosomes of the hexaploid wheat genomes were employed. The SSR
markers were chosen because they were highly polymorphic in the previous investigations
of drought tolerance and genetic diversity and offered substantial genome coverage. Infor-
mation about the markers was collected from the Agricultural Research Service-GrainGenes
2.0 (http://wheat.pw.usda.gov) (accessed on 23 July 2019) and is presented in Table S2.
Genomic DNA of leaf samples was extracted from the 15-day-old pot-grown seedlings
using the modified cetyltrimethylammonium bromide (CTAB) method [35].

http://CRAN.R-project.org/
http://wheat.pw.usda.gov
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2.2.2. Polymerase Chain Reaction (PCR) Amplification and Gel Electrophoresis

PCRs were performed according to Ciucă and Petcu [36], with 50 ng µL−1 DNA. Briefly,
the PCR was performed in 10 µL reaction mixture containing 3 µL DNA, 1 µL 10× reaction
buffer, 2 µL 25 mM MgCl2, 0.8 µL of 25 mM dNTP, 0.5 µL each of 10 µM forward and
reverse primers, and 0.2µL of Taq DNA polymerase. A single-channel pipette was used for
transferring DNA from the dilution plate to the PCR plate. After the initial denaturation
of the mixture for 5 min at 95 ◦C, a total of 36 cycles were run where denaturation was
performed for 45 s at 95 ◦C, annealing was performed for 45 s at 55 ◦C, and extension was
performed for 1 min at 72 ◦C at each cycle with a final extension for 5 min at 72 ◦C. The
DNA amplicons obtained from the PCR were separated on 3.5% metaphor agarose gel [37]
and then visualized and documented using a gel-documentation system (Figure S2).

2.2.3. SSR Marker Data Analysis

Five of the 30 SSR markers did not produce any bands in any of the 56 wheat genotypes
and were thus excluded from the following diversity analysis. Genetic diversity estimates
for individual markers, such as the frequency of allele and number of alleles, the gene
diversity, and the polymorphic information content (PIC) were quantified using Power
Marker 3.23 software [38]. Phenotypic cluster- and population-based genetic diversity, anal-
ysis of molecular variance (AMOVA), principal coordinate analysis (PCoA), and Wright’s
F statistics were calculated using GenAlEx 6.5 [39]. The Bayesian clustering approach in
the STRUCTURE 2.3.4 program was used to analyze the population structure [40], with
10 runs for each K (assumed number of subpopulations [1−10]) and Monte Carlo chain
replicates of 100,000 iterations, and the burn-in period for every run was 100,000 steps.
A Structure Harvester (http://taylor0.biology.ucla.edu/structureHarvester/) (accessed
on 20 November 2021) was used for the determination of delta K and the final popula-
tions [41,42]. Harvested data for K = 3 and 7 were used to create admixture barplots in the
shiny app StructuRly [43]. Dissimilarity coefficient analysis was executed using the SSR
data [44] using Power Marker 3.23 [38] and the dissimilarity matrix was visualized using
the library pheatmap in R v.4.1.0 [45]. The dissimilarity coefficients were used to construct
the unweighted neighbor-joining (NJ) tree by MEGA X [46]. The co-linearity between the
SSR-marker-based clusters and model-based populations was measured using the online
interactive tool Venny 2.1 [47].

3. Results
3.1. VIs and Yield Traits

The evaluation of the VIs and yield traits (together termed as ‘phenotypic traits’ here-
after) in the control and drought environments revealed significant variation in wheat
genotypes (Table S3). For all phenotypic traits, the genotype by treatment interaction was
highly significant, suggesting that the response of the diverse genotypes differed with
changes in water availability. The drought treatment resulted in substantial variations in
phenotypic traits (Figure 2). Among the VIs, Simple ratio (SR), Normalized difference vege-
tation index (NDVI), Green-NDVI (GNDVI), Enhanced vegetation index (EVI), Normalized
water band index (NWI), and Photochemical reflectance index (PRI) were the highest under
the control condition and significantly dropped as a result of drought. The normalized
chlorophyll pigment ratio index (NCPI), the Anthocyanin reflectance index (ARI), and the
Xanthophyll pigment epoxidation state (XES), on the other hand, were the lowest in the
control and increased substantially during the drought. Under drought conditions, the
SPAD value, canopy temperature depression (CTD), days to heading (DTH), plant height
(PH), number of kernels per spike (NKS), weight of kernels per spike (WKS), hundred
kernel weight (HKW), BY, and GY reduced considerably.

http://taylor0.biology.ucla.edu/structureHarvester/
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Figure 2. Descriptive summary of the studied phenotypic traits of 56 bread-wheat genotypes un-
der control and drought treated plots in two growing years. ** and *** denote statistically sig-
nificant at p ≤ 0.01 and 0.001, respectively. The median and mean are represented by horizontal
thickened line and black circle within the box, respectively. Q1 (first quartile/25th percentile), Q3
(third quartile/75th percentile), (Q1−1.5IQR), and (Q3 + 1.5IQR) are represented by the lower and
upper limit of the box, lower and upper whisker, respectively. IQR− interquartile range. The distri-
bution of 56 wheat genotypes is indicated by slate color dots on the boxes. SPAD—chlorophyll
index, CTD—canopy temperature depression, DTH—days to heading, PH—plant height (cm),
NKS—number of kernels per spike, WKS—weight of kernels per spike (g), HKW—hundred-kernel
weight (g), BY—biological yield (t ha−1), and GY—grain yield (t ha−1). Additional details are shown
in Table 1.

3.2. Association among Phenotypic Traits

After combining data from the two wheat-growing seasons, the relationship between
the phenotypic traits was determined under control and drought conditions (Figure 3).
Under control conditions, both BY and GY exhibited insignificant and inconsistent associ-
ations with VIs; however, under drought stress, these relationships were significant and
stronger. With the exception of PH, GY and BY were positively associated with NKS, WKS,
and HKW under drought (Figure 3). In the water-limiting situations, GY was substantially
and positively correlated with the SR, NDVI, GNDVI, EVI, NWI, PRI, SPAD, and CTD,
whereas NCPI, ARI, and XES were negatively correlated. All the VIs, SPAD, and CTD
exhibited stronger correlations among them under drought compared to control.
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Figure 3. The pair-wise associations among phenotypic traits of 56 bread-wheat genotypes were
shown by correlation coefficients as assessed under control (lower diagonal) and drought-stress
conditions (upper diagonal). Data are averaged over two growing seasons. The higher the size
and color intensity of circles, the higher is the correlation coefficient. Crossmark (×) indicates a
nonsignificant correlation at p < 0.05. Table 1 and Figure 2 provide further details.

3.3. Hierarchical Cluster Analysis of Wheat Genotypes

Phenotypic trait values of two growing seasons were averaged, and trait relative
values were calculated. Using the relative values of phenotypic traits, wheat genotypes
were classified into distinct clusters of identical genotypes using hierarchical cluster analysis
(distance = Euclidean and method = wardD2). Three clusters were generated based on the
dissimilarity of the investigated phenotypic traits and presented as a cluster dendrogram
(Figure 4). Cluster 2 has the most wheat genotypes (31), followed by clusters 1 (13) and 3
(12) (Figure 4).
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Figure 4. Hierarchical clustering trees (distance = Euclidean and method = wardD2) of the wheat
genotypes based on traits relative values. Among the clusters, genotypes of cluster 1 showed a greater
degree of tolerance to drought followed by the genotypes of clusters 2 and 3.
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3.4. Cluster-Based Changes in Phenotypic Traits under Drought

Drought had a substantial impact on the SR, NDVI, GNDVI, EVI, NWI, PRI, and
yield traits, with the magnitude of the decrease being smaller in cluster 1 genotypes than
in cluster 2 and 3 genotypes (Figure 5). On the contrary, NCPI, ARI, and XES increased
significantly during drought, with a lesser increase in cluster 1 genotypes than in the other
two clusters (Figure 5). Under drought, the SPAD value declined by 12, 16, and 17 percent
in the genotypes of clusters 1, 2, and 3, respectively (Figure 5). The genotypes of cluster
1 had the lowest decrease (15%) in CTD, whereas the genotypes of clusters 2 and 3 had
significantly greater decreases (35 and 38%) (Figure 5). Cluster 1 genotypes had a smaller
decline in the DTH, PH, NKS, WKS, HKW, and BY under drought conditions than cluster 2
and 3 genotypes (Figure 5). Due to drought, the GY decreased by 7, 21, and 35% in clusters
1, 2, and 3, respectively (Figure 5).
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and 21 days after anthesis). Table 1 and Figure 2 provide further details.

3.5. Genetic Diversity Estimates of SSR Markers

A total of 30 SSR markers were used to detect polymorphism among the 56 wheat
genotypes, five of which produced no bands in the genotypes and were thus excluded from
further processing (Table 2). A total of 56 bread-wheat genotypes showed a considerable
amount of genetic diversity when evaluated using the specified SSR markers. The number
of alleles amplified by the markers varied between loci, ranging from 8 to 24 alleles per
locus. The markers wmc177 and wms292 were the most polymorphic microsatellite markers,
each with 24 alleles, followed by wmc179, which had 23, and wms136, wms337, wms304, and
wms149, which all had 22 alleles (Table 2). A total of 458 polymorphic alleles were detected
from screening 56 bread-wheat genotypes using the 25 SSR markers, with an average of
18.32 alleles per locus.
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Table 2. Genetic diversity estimates in 56 genotypes by using 25 SSR markers.

Marker (Location) Major Allele Freq. Allele Number Allele Size (bp) Shannon Index Gene Diversity PIC

wms136 (1A) 0.286 22 100−300 1.634 0.885 0.879
wmc177 (2A) 0.125 24 115−295 1.598 0.936 0.932
wms304 (2A) 0.161 22 135−350 1.468 0.920 0.915
wms369 (3A) 0.286 20 180−350 1.354 0.872 0.863
wms165 (4A) 0.393 21 100−290 1.370 0.823 0.815
wms186 (5A) 0.732 8 85−260 0.468 0.450 0.434
wms169 (6A) 0.196 16 140−265 1.323 0.890 0.881
psp3071 (6A) 0.304 12 150−270 1.001 0.844 0.829
barc108 (7A) 0.464 21 100−260 1.237 0.768 0.760
wmc9 (7A) 0.357 21 150−300 1.363 0.846 0.839

wms260 (7A) 0.304 18 100−225 1.420 0.869 0.861

Genome A 0.328 18.6 − 1.294 0.828 0.819

wms11 (1B) 0.214 18 135−295 1.444 0.889 0.880
wms257 (2B) 0.125 19 155−285 1.674 0.920 0.914
wms389 (3B) 0.214 16 145−245 1.336 0.879 0.868
wms149 (4B) 0.268 22 100−300 1.431 0.893 0.887
wms375 (4B) 0.125 15 200−300 1.542 0.916 0.910
wms118 (5B) 0.679 14 100−240 0.832 0.530 0.521

Genome B 0.271 17.3 − 1.377 0.838 0.830

wmc179 (1D) 0.179 23 110−300 1.499 0.928 0.924
wms337 (1D) 0.250 22 120−300 1.434 0.895 0.888
wms30 (2D) 0.214 15 170−240 1.411 0.885 0.875
wms484 (2D) 0.161 15 110−250 1.534 0.911 0.905
wms161 (3D) 0.179 21 160−300 1.498 0.914 0.908
wms292 (5D) 0.268 24 115−285 1.521 0.895 0.889
psp3200 (6D) 0.696 15 110−460 0.627 0.508 0.500
wms295 (7D) 0.214 14 185−290 1.155 0.879 0.867

Genome D 0.270 18.6 − 1.335 0.852 0.845

Mean 0.296 18.3 − 1.327 0.838 0.830

25 SSR markers did not produce any band in 56 genotypes. PIC− polymorphic information content.

The major (most numerate) allele frequencies of 25 SSR loci varied from 0.125 (wmc177,
wms257, and wms375) to 0.732 (wms186), with an average of 0.296 (Table 2). The higher
mean Shannon index of 1.327 emphasizes the genetic richness of the test population. The
highest gene diversity value was recorded for wmc177, with a value of 0.936, followed
by 0.928 for wmc179, and the lowest for wms186, with a value of 0.450 (Table 2). The PIC
values varied from 0.434 (wms184) to 0.932 (wmc177), with a mean PIC of 0.830. A PIC
value greater than 0.80 was found in 21 microsatellites with more than 10 alleles (Table 2).
Although the microsatellite markers wms118, psp3200, and barc108 contained more than
10 alleles, their PIC values ranged from 0.500 to 0.768, since many alleles might be rare.

When comparing various wheat genomes, the SSR markers from the A and D genomes
produced more alleles per locus (18.6) than the SSR markers from the B genome (17.3)
(Table 2). The SSR markers from genome D had the highest mean gene diversity and
PIC (0.852 and 0.845, respectively), followed by genomes B (0.838 and 0.830) and A (0.828
and 0.819). SSR markers from genome B, on the other hand, produced the highest mean
Shannon information index (1.377) than those from genomes D (1.335) and A (1.294).

The dissimilarity matrix revealed that the majority of the 56 wheat genotypes have sig-
nificant genetic dissimilarities with others (Figure 6). Among the genotypes, BARI Gom 20,
BARI Gom 26, BARI Gom 33, Kanchan, BINA wheat 1, BAW-1147, and AS-10632 were
genetically the most distant from the other genotypes.



Sustainability 2022, 14, 9818 10 of 19

Sustainability 2022, 14, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 6. Dissimilarity matrix based on 25 SSR markers showing the genetic distances among the 
genotypes. The highest dissimilarity and the lowest genetic distance are represented by red and 
green colors, respectively. 

3.6. Drought Tolerance Pattern and Diversity of SSR Markers 

The total number of alleles, mean alleles per locus, number of cluster-specific alleles 
(unique alleles), and gene diversity were calculated to test the drought-tolerance pattern 
and genetic diversity of the three clusters (Table 3). Cluster 2 had the highest number of 
alleles (529) and mean alleles per locus (21.2), whereas cluster 1 (13 genotypes) had higher 
mean alleles per genotype (20.3) than clusters 2 (31 genotypes) and 3 (12 genotypes). 
Cluster 3 genotypes showed fewer total alleles (218) and mean alleles per locus (8.7). The 
number of unique alleles varied from 92 in cluster 3 to 215 in cluster 2 and 123 in cluster 
1, accounting for 42, 41, and 47% of the total alleles detected, respectively. Cluster 1 has 
the most gene diversity (0.879), followed by Cluster 2 (0.849) and Cluster 3 (0.807). 

Table 3. Genetic diversity across 25 loci and 56 wheat genotypes divided into three drought-
tolerance clusters using VIs and yield traits. 

Category Cluster 1 Cluster 2 Cluster 3 

Number of genotypes 13 31 12 
Number of alleles 264 529 218 

Mean alleles per loci 10.6 21.2 8.7 
Mean alleles per genotype 20.3 16.5 19.8 
Number of unique alleles  123 215 92 

Figure 6. Dissimilarity matrix based on 25 SSR markers showing the genetic distances among the
genotypes. The highest dissimilarity and the lowest genetic distance are represented by red and
green colors, respectively.

3.6. Drought Tolerance Pattern and Diversity of SSR Markers

The total number of alleles, mean alleles per locus, number of cluster-specific alleles
(unique alleles), and gene diversity were calculated to test the drought-tolerance pattern
and genetic diversity of the three clusters (Table 3). Cluster 2 had the highest number
of alleles (529) and mean alleles per locus (21.2), whereas cluster 1 (13 genotypes) had
higher mean alleles per genotype (20.3) than clusters 2 (31 genotypes) and 3 (12 genotypes).
Cluster 3 genotypes showed fewer total alleles (218) and mean alleles per locus (8.7). The
number of unique alleles varied from 92 in cluster 3 to 215 in cluster 2 and 123 in cluster 1,
accounting for 42, 41, and 47% of the total alleles detected, respectively. Cluster 1 has the
most gene diversity (0.879), followed by Cluster 2 (0.849) and Cluster 3 (0.807).
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Table 3. Genetic diversity across 25 loci and 56 wheat genotypes divided into three drought-tolerance
clusters using VIs and yield traits.

Category Cluster 1 Cluster 2 Cluster 3

Number of genotypes 13 31 12
Number of alleles 264 529 218

Mean alleles per loci 10.6 21.2 8.7
Mean alleles per genotype 20.3 16.5 19.8
Number of unique alleles 123 215 92

% unique alleles 47 41 42
Gene diversity 0.879 0.849 0.807

Wright’s F statistic (FST) was 0.053 (max. 0.174), but FIS, FIT, and Nm were 1.00, 1.00,
and 4.01, respectively, despite the fact that all statistics were significant (Table 4). The
pairwise FST values between the clusters were calculated and used to examine the genetic
differentiation among the clusters (Table S4). The results showed that the pairwise FST
values were statistically significant (p < 0.001) between the clusters. A higher pairwise FST
value was recorded between clusters 1 and 3 (0.082), followed by clusters 1 and 2 (0.050),
and clusters 2 and 3 (0.044). Despite the AMOVA being highly significant (p < 0.001), the
among-variance component for all clusters accounted for just 5% of the overall variation,
while the great majority of variation was allocated to the within-cluster component (95%)
(Table 4). Based on genotyping data from 25 SSR loci, the relationships of individual
genotypes were analyzed using PCoA (Figure S4A). The first two principal coordinates
explained a decent amount of variance (6.2 and 4.7%, respectively). The PCoA revealed that
genotypes did not generally group based on their membership in the clusters created by
VIs and yield attributes, while the majority of cluster-1 genotypes were separated clearly.

Table 4. Analysis of molecular variance (AMOVA) and Wright’s F statistics: effect of phenotypic
clusters. * significant at p < 0.001.

Source of Variation df Est. Variance * % Variation

Among clusters 2 0.580 5
Within clusters 53 10.306 95

Total 55 10.886 100

F-statistics Value P (rand >= data)

FST 0.053 0.001
FIS 1.000 0.001
FIT 1.000 0.001
Nm 4.010

3.7. Population (Pop) Structure and Diversity of SSR Markers

The harvested data from the population structure analysis clearly indicated 2 peaks
(K = 3 and 7) near to each other. The subsequent analysis for K = 3 was presented, as
its Pops showed relatively higher co-linearity (86.7%) with neighbor-joining clusters, and
the analysis for K = 7 was annexed to the Supplementary Materials (Figures S3 and S6).
The analysis of the population structures classified the 56 wheat genotypes into three
subpopulations based on Evanno’s K = 3 [35] (Figure 7A,B). Pop 1 had 20 genotypes, 16 of
which were accessions, a mutant line and three varieties. Pop 2 consisted of 14 varieties,
a mutant line, two accessions, and an advanced line, while 17 accessions were placed in
Pop 3. Among the genotypes, 53 were categorized as pure, while only 3 were regarded
as admixtures.
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The richness of alleles, total number of alleles, gene diversity, and the presence of
unique alleles were the selected parameters to estimate the level of genetic diversity
within and between populations (Table 5). The highest allelic richness (6.88) was found in
population 1 (Pop 1), followed by Pop 3 (6.54) and Pop 2 (6.43). There was a substantial
variation in the unique (population-specific) alleles, with 73 in Pop 2 and 106 in Pop 3, with
the latter population accounting for the highest 39% of the unique alleles. The AMOVA,
which was obtained using the SSR data, revealed significant genetic variations among the
wheat genotypes (Figure 7C). The AMOVA showed that the among-population component
accounted for 7% of the total genetic diversity, while 93% of the genetic differences were
attributed to the within-population component. The within-population variance was
split into 33, 32, and 28% of 3 wheat populations. There were two significant differences
(p < 0.01) in pairwise FST values across the model-based populations (Table S5). A higher
and significant pairwise FST value was recorded between Pop 1 and 2 (0.057), followed
by Pop 1 and 3 (0.055), while the value between Pop 2 and 3 (0.017) was non-significant.
Nonetheless, the PCoA revealed that the 56 genotypes did not actually group according to
their population membership (Figure S4B).

Table 5. Genetic diversity across 25 loci and 56 wheat genotypes divided into 3 model-based populations.

Category Population

1 2 3

Number of Genotypes 20 19 17
Number of alleles 388 351 272

Mean allelic richness 6.88 6.43 6.54
Number of unique alleles 98 73 106

% unique alleles 25.3 20.8 39.0
Gene diversity 0.827 0.798 0.834
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3.8. Cluster Analysis of Marker-Based Allelic Data

The unweighted neighbor-joining cluster dendrogram among the genotypes was
derived from the SSR-marker information (presented in Figure 8). The genotypes were
divided into five primary groups using cluster analysis based on SSR data. The number of
genotypes in the clusters was 8, 14, 13, 9, and 12, respectively (Figure 8). The distribution
of the genotypes in the clusters might be explained by genetic descent and similar ancestry.
The genetic distance between wheat genotypes ranged from 0.32 to 1.00, with an average of
0.853, showing that the genotypes have a high level of genetic diversity. The majority of the
varieties were assigned to clusters I and V, whereas most of the accessions were allocated
to clusters II and IV. The topologies of the phenotypic and SSR-based clusters were not
identical, and genotypes from various drought tolerance groups were dispersed throughout
all SSR-based clusters (Figure 8). Cluster I had the most drought-tolerant genotypes (four),
followed by Cluster II (three), III (three), IV (two), and V (one).
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3.9. Co-Linearity between SSR-Based Clusters and Model-Based Populations

A Venn diagram was used to compare the co-linearity of the model-based analysis
to the unweighted neighbor-joining clusters (Figure S5). Clusters I and V together shared
95% of their genotypes with Pop 2, while cluster II shared 82.4% of its genotypes with Pop
3. Similarly, clusters III and IV shared 82.6% of their genotypes with Pop 1. Overall, the
co-linearity between SSR-based neighbor-joining clusters and model-based populations
was 86.7%.
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4. Discussion

VIs derived from canopy spectral reflectance often indicate a quick and non-destructive
technique to assess phenotypic features such as the biomass accumulation, radiation usage
efficiency, and grain yield of various crops under abiotic stressors [48]. Under water-
limiting conditions, the plant water status was monitored using VIs calculated from the
visible, near-, and far-infrared spectra in numerous crop plants, including wheat [12,49,50].
The use of VIs as markers for phenotypic traits, biochemical properties, and grain yield is
important in the collective use of canopy-reflectance data in target-environment breeding
projects [12]. The current study found that most of the plant VIs declined under drought,
with the exception of NCPI, ARI, and XES, which showed a significant rise across the years.
A decrease in the DTH, PH, NKS, WKS, HKW, BY, and GY under drought stress in this
study (Figure 2) supported the earlier reports [51–53], where a substantial drop in grain
yield and yield-contributing features in rainfed bread-wheat was reported.

In the present study, SPAD values and CTD had a strong positive association with
most of the VIs, suggesting that cooler canopies and higher stomatal conductance were
related to improved plant health. Combining VIs, low canopy temperature, and stay-green
traits such as the SPAD index may result in compounding responses that enhance stress
tolerance in wheat [54], which is corroborated by the findings of the current study. The VIs
evaluate the canopy’s health and water status, biomass capacity, photosynthetic activity,
pigment abundance, and the composition of other protectant molecules under a variety
of stressful environments [12,55]. In the present investigation, the stronger associations
between the VIs and the biological and grain yield imply that these indices might be
used as indirect phenotypic criteria for selecting drought-tolerant genotypes under water-
stressed environments. Nonetheless, in a target environment, the combination of proximally
sensed VIs and morpho–physiological traits is crucial, and it has been found that VIs are
substantially associated with grain yield, biomass accumulation, and leaf-area index in
response to drought [12,56].

We used a hierarchical cluster analysis to select drought-tolerant genotypes rather
than looking at each phenotypic trait independently. By analyzing the contribution of
the phenotypic traits, the cluster analysis produced three distinct clusters from 56 wheat
genotypes (Figure 4). Genotypes of cluster 1 are the best at coping with drought stress,
as evidenced by the smaller changes in phenotypic traits and higher yield stability under
drought, followed by clusters 2 and 3 (Figures 5 and 6). Recently, Mohi-Ud-Din et al. [28],
Grzesiak et al. [57] and Islam et al. [58] employed cluster analysis to determine genotypic
dissimilarity and categorization for drought tolerance in wheat.

The mean number of alleles per locus in this study was much higher in comparison
with the 3.10 to 10.06 alleles reported by Arora et al. [10], Ateş Sönmezoğlu and Terzi [19],
and Belete et al. [7] who evaluated the genetic diversity of bread-wheat genotypes with
SSR markers. The allelic diversity in a population is influenced by the genetic composition,
which in turn determines the number of alleles identified per locus [7]. The mean number of
effective alleles per locus in the current study was 18.32, indicating that the SSR marker set
are robust, and the diversity of the test genotypes is notable. The degree of gene diversity
identified in this study was greater, correlating with the findings of Henkrar et al. [59],
Ateş Sönmezoğlu and Terzi [19], and Belete et al. [7] regarding wheat genotypes. The PIC
value is a reliable indicator to evaluate the genetic diversity in a plant. A PIC value higher
than 0.5 denotes a higher diversity, whereas a PIC value less than 0.25 denotes a lower
diversity [60,61].

A higher mean PIC value (0.830) and higher-than-0.800 PIC in 21 SSR markers (out
of 25) implies the primers used in this study were highly informative and effective. In
this study, the higher mean values for Shannon index, gene diversity, and PIC suggested
that the genotypes demonstrated significant variability in drought tolerance. The results
obtained using these SSRs are prospective markers that may be utilized to aid in selection
for drought tolerance through molecular plant breeding. Furthermore, the findings are
consistent with the effectiveness of SSR markers related to diversity in drought tolerance
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in wheat reported by Honore et al. [62], Ateş Sönmezoğlu and Terzi [19], Slim et al. [23],
Belete et al. [7], and El-Rawy and Hassan [11]. In the present study, the A and D genomes
contains the highest mean numbers of alleles per locus compared to the B genome. The D
genome has the highest mean gene diversity and PIC, followed by the B and A genomes,
whereas the B genome has the highest Shannon index. Overall, the B and D genomes have
more diversity in drought tolerance than the A genome. This finding agrees in part with
recent findings by Jaiswal et al. [63], El-Rawy [64], and El-Rawy and Hassan [11], who
reported substantial genetic diversity among wheat genotypes in the B genome.

The present research employed the high level of genetic information generated us-
ing SSR markers to differentiate genotypes, as presented by neighbor-joining clustering,
AMOVA, PCoA, and the Bayesian-model-based population structure. The modest and con-
siderable FST value, along with a high FIS and Nm values, suggests moderate differentiation
and a considerable degree of inbreeding across the clusters [65]; nonetheless, there were
actual variations in genetic diversity and genotypic dissimilarity among the clusters, which
might have been caused by genetic drift and/or gene flow [66]. The drought-tolerance
pattern of the phenotypic clusters revealed that the pairwise FST values among the clusters
were statistically significant (p < 0.001). In the case of the model-based populations, there
were two significant differences (p < 0.01) in the pairwise FST values among the subpop-
ulations. The results suggest that there was a substantial difference in genetic diversity
between the phenotypic clusters as well as among most of the model-based subpopulations.
This is in line with the findings of Dodig et al. [9], who reported similar results in wheat.
Variance among-phenotypic clusters and among-subpopulations accounted for just 5% and
7% of overall variation, respectively. As a result, selection techniques that make use of
between-population variance would only produce a limited response to selection [7]. This
research, on the other hand, found greater and highly significant variability within clusters
and within subpopulations. Similar findings were also reported in the genetic diversity
studies of wheat by Dodig et al. [9], Arora et al. [10], Henkrar et al. [59], and Belete et al. [7].
In general, higher percentages of unique alleles were found in all phenotypic clusters (41 to
47%) and model-based populations (21 to 39%), with the drought-tolerant cluster 1 and
subpopulation 3 having the largest percentage of unique alleles. It would be crucial to
incorporate genotype groups with a larger percentage of unique alleles in future breeding
programs in drought-prone areas in order to maximize genetic diversity [9].

The SSR-based cluster analysis indicated that genotypes from all phenotypic clusters
were dispersed throughout all SSR-based clusters, implying that genetically diverse geno-
types were assigned to various drought-tolerant groups. As a result, there were no marked
correlations between phenotypic and SSR-based clustering, which was consistent with the
findings of Dodig et al. [9] and Belete et al. [7] in wheat and Verma et al. [18] in rice. This
sort of relationship is obvious, since the SSR markers employed in the current study were
random SSR markers, and the phenotypic trait diversity is controlled by genotype and
environmental factors [67]. Nonetheless, SSR-based clusters and model-based population
groupings showed significant co-linearity (86.7%) in the present study. Singh et al. [68]
and Verma et al. [18] reported similar findings in rice. The modest differences in genotype
categorization in both techniques might be ascribed to differences in methodology. The
findings of this study clearly demonstrate that the use of microsatellite markers is an
effective approach for the differentiation of diverse wheat genotypes.

The genetic diversity of a gene pool of bread-wheat had previously been assessed
by utilizing both traditional morphological and SSR-marker datasets extensively [7,9,11,23–25].
However, the application of high-throughput origin-indirect phenotypic data along with
SSR markers for the genetic diversity analysis of wheat is limited. In this study, we
successfully integrated canopy-reflectance-based phenotypic (VIs and yield) data with
SSR-marker-based genotypic data for the evaluation of the genetic diversity of 56 wheat
genotypes. The findings of the study corroborate the outcomes of prior studies that used
traditional phenotypic data with SSR-marker-based genotypic data to estimate the genetic
diversity of bread-wheat genotypes. Based on the findings of this study, it is plausible
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to infer that the genetic bases of these genotypes revealed by canopy-reflectance-based
indirect phenotypic and SSR-marker-based molecular data differ significantly, allowing
wheat breeders to integrate these genetic variabilities into their breeding programs to
increase the drought tolerance of wheat.

5. Conclusions

A high level of genetic diversity has been accounted for in a genotypic collection of
bread-wheat by using both phenotypic and molecular data where morphological dataset
alone cannot explain total variation. However, combining canopy-reflectance-based indirect
phenotypic and SSR-marker-based molecular data was a strong technique for identifying
divergent parents. The genetic diversity discovered among the investigated genotypes
using phenotypic and genotypic data can widen the genetic basis of drought tolerance
and can be used in breeding efforts to develop drought-tolerant bread-wheat varieties.
Despite the phenotypic and molecular-marker data showing smaller associations, their use
in breeding programs is still credible, because the information generated by the markers
was complementary rather than an alternative to phenotyping. Further research with a
higher number of markers is warranted to precisely infer the genetic bases and drought
tolerances of the genotypes using canopy-reflectance-based phenotyping blended with
marker-based genotyping.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/su14169818/s1, Figure S1: Measurement of canopy re-
flectance using a multispectral radiometer; Figure S2: The SSR marker profiles of bread-wheat
genotypes using wmc177 (A), wms292 (B), wms260 (C) and wms186 (D) SSR primers. M indicates
molecular weight. A list of 56 wheat genotypes is present in the supplementary Table S1; Figure S3:
A. The peak of K = 7 determines the number of populations in our study, B. Estimated population
structure of 56 bread-wheat genotypes with 25 SSR markers for K = 7, and C. The population obtained
by the STRUCTURE-based method was used to analyse the molecular variance (AMOVA) of 56 wheat
genotypes. Figure S4: Principal coordinate analysis (PCoA) of SSR marker allelic data for 56 wheat
genotypes with respect to phenotypic clusters (A), and model-based subpopulations (B). Individuals,
clusters, and populations differences are visualized in the figure. Individuals from different clusters
and populations are intermixed across the coordinates; Figure S5: Venn diagram showing co-linearity
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co-linearity between SSR-based NJ clusters and model-based populations. Overall, 80.6% co-linearity
exists between NJ clusters and extracted wheat populations when ∆K = 7; Table S1: List of wheat
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Table S3: Combined analysis of variance (mean square values) across years for mean VIs, and yield
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subpopulations. FST values in the below diagonal and p values in the upper diagonal.
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