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Abstract

Background: Lentil is a self-pollinated annual diploid (2n = 2× = 14) crop with a restricted history of genetic
improvement through breeding, particularly when compared to cereal crops. This limited breeding has probably
contributed to the narrow genetic base of local cultivars, and a corresponding potential to continue yield increases
and stability. Therefore, knowledge of genetic variation and relationships between populations is important for
understanding of available genetic variability and its potential for use in breeding programs. Single nucleotide
polymorphism (SNP) markers provide a method for rapid automated genotyping and subsequent data analysis over
large numbers of samples, allowing assessment of genetic relationships between genotypes.

Results: In order to investigate levels of genetic diversity within lentil germplasm, 505 cultivars and landraces were
genotyped with 384 genome-wide distributed SNP markers, of which 266 (69.2%) obtained successful amplification
and detected polymorphisms. Gene diversity and PIC values varied between 0.108-0.5 and 0.102-0.375, with averages
of 0.419 and 0.328, respectively. On the basis of clarity and interest to lentil breeders, the genetic structure of the
germplasm collection was analysed separately for cultivars and landraces. A neighbour-joining (NJ) dendrogram was
constructed for commercial cultivars, in which lentil cultivars were sorted into three major groups (G-I, G-II and G-III).
These results were further supported by principal coordinate analysis (PCoA) and STRUCTURE, from which three clear
clusters were defined based on differences in geographical location. In the case of landraces, a weak correlation
between geographical origin and genetic relationships was observed. The landraces from the Mediterranean region,
predominantly Greece and Turkey, revealed very high levels of genetic diversity.

Conclusions: Lentil cultivars revealed clear clustering based on geographical origin, but much more limited correlation
between geographic origin and genetic diversity was observed for landraces. These results suggest that selection of
divergent parental genotypes for breeding should be made actively on the basis of systematic assessment of genetic
distance between genotypes, rather than passively based on geographical distance.
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Background
Lentil (Lens culinaris Medik.) is a self-pollinating, diploid

(2n = 2× = 14) grain legume crop with a large genome size

(c. 4 Gbp) [1]. It is an important source of protein and

fibre in the human diet, as well as being highly valuable as

feed and fodder for livestock. Moreover, lentil plays an im-

portant role in crop rotations due to its capacity to fix at-

mospheric nitrogen [2,3]. Contemporary lentil has been

inferred to be the product of a single domestication event

[4], associated with the Neolithic Agricultural Revolution

which is thought to have taken place around 7000 BC in

the Eastern Mediterranean [5]. Cultivation then spread

rapidly to the Nile Valley, Europe and Central Asia [6,7],

followed by Pakistan, India and South America. Subse-

quently, introductions were made to cultivation zones in

the New World (Mexico, Canada, USA and Australia) [8].

Lentil is currently grown widely throughout the Indian

sub-continent, the Middle East, northern Africa, southern

Europe, North and South America, Australia and western

Asia [9-11]. World production of lentil is estimated at 4.4

million metric tonnes from an estimated 4.2 million hect-

ares, with an average yield of 950 kg/ha [12].

Numerous landraces of lentil have been sampled from

different geographical regions world-wide, and are now

preserved within the Australian Grains Genebank (AGG),

Horsham, Victoria, Australia. Many of these landraces are

yet to be exploited for breeding activities. The key to in-

creases in lentil yield is the conservation and surveillance of

existing genetic diversity for broadening the use of available

genetics [13]. One primary objective of germplasm conser-

vation is to assess, maintain and catalogue available genetic

variation within and between landraces in order to support

their use in breeding programs. Genetic diversity between

parental genotypes in crossing programs has been demon-

strated to be important for effective genetic gain [14].

Genetic diversity in both cultivated and wild lentil has

been explored using several approaches, including mor-

phological and physiological markers, isoenzymes, DNA-

based markers such as randomly amplified polymorphic

DNAs (RAPDs), inter-simple sequence repeats (ISSRs)

and amplified fragment length polymorphisms (AFLPs)

[3,7,11,15-17]. Morphophysiological markers have been

commonly used as a first step in germplasm characteri-

sation, but the time required for processing of candidate

accessions is significant. Analysis of quantitative trait vari-

ation can also provide an indication of genetic diversity

present within a population, and such methods have been

successfully used to measure phenotypic diversity in germ-

plasm collections for a variety of crops including lentil

[18,19]. However, DNA-based markers provide the most

versatile systems for diversity studies. Genetic variation

within southern Asian lentil germplasm was studied using

RAPD markers, and the lowest diversity was detected

in germplasm obtained from Pakistan, Afghanistan and

Nepal [7]. Both RAPD and ISSR markers were used to

explore genetic diversity in a collection of Italian land-

races, and the authors demonstrated the advantages of the

latter over the former for discrimination of closely related

genotypes [20]. Characterisation of genetic diversity and

population structure of Ethiopian lentil landraces was also

performed using ISSRs, and recommendations were made

for germplasm conservation and breeding programs [11].

A number of studies have reported the use of SSR

markers for germplasm characterisation in a multiplicity

of crop species [21,22], but due to limited availability, the

use of such systems has been restricted for lentil cultivars.

As a consequence of recent advances in sequencing and

genotyping technologies, it has become possible to de-

velop genomic resources for relatively understudied crop

species such as lentil at an acceptable cost. Recently, a

number of transcriptome studies for lentil have generated

expressed sequence tag (EST) databases, and a large num-

ber of EST-derived SSRs and SNPs have been made avail-

able [23,24]. Both SSR and SNP markers are reliable and

co-dominant in nature. However, operational challenges

in the use of SSRs have arisen due to a number of prob-

lems. Accurate allele sizing is difficult, because of PCR

and electrophoresis artefacts; PCR competition effects can

cause unequal allele amplification, which results in an in-

ability to observe heterozygotes; amplification based on

secondary priming sites may occur; and null alleles may

arise from mutations in the primer region flanking the

SSR [25,26]. As a consequence, SNPs offer an attractive al-

ternative, due to their high abundance within the genome,

suitability for use in high-multiplex ratio for high-

throughput genotyping, and capacity for automated ana-

lysis. In addition, SNP discovery from transcribed regions

of the genome provides the basis for establishment of a

direct link between sequence polymorphism and putative

functional variation [27].

Assessment of genetic diversity in lentil is desirable for

prospective future breeding activities, in terms of broad-

ening and maintaining the diversity of the genetic base,

improving opportunities for selection of improved genet-

ics and cultivar identification. In the present study, the

genetic diversity of 505 lentil cultivars and landraces ob-

tained from different geographical regions and preserved

within the AGG has been determined through the use of

a genotyping tool based on 384 SNP markers.

Methods

Plant materials and DNA extraction

A total of 505 accessions of lentil (Lens culinaris Medik.),

including cultivars (111) and landraces (394), were ob-

tained from the AGG, Horsham, Victoria, Australia. All

available passport data from these accessions is sum-

marised in Additional file 1. Young leaf tissue from one

field-grown plant per accession was harvested and stored
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immediately in 96-well microtube plates. Total genomic

DNA was isolated after grinding (MM 300 Mixer Mill sys-

tem, Retsch., Germany) using the DNeasy 96 plant mini

kit (QIAGEN, Germany). DNA was suspended in 1 × TE

buffer and further diluted to approximately 50 ng/μl prior

to SNP genotyping.

SNP genotyping

A sub-set of 384 SNP markers was assayed across all plant

samples (Additional file 2). These SNPs were chosen on

the basis of informative data from previous SNP discovery

and linkage mapping experiments (data not shown). All of

these SNPs met the assay design criteria of possessing

sufficient 5’- and 3’- flanking sequence information and

absence of other known SNPs in their vicinity. A designa-

bility score, as calculated for each SNP by Illumina (San

Diego, CA, USA), that was higher than 0.6 predicted high

rates of assay conversion. A total of 250 ng of genomic

DNA from each genotype was used for locus-specific

amplification, after which PCR products were hybridised

to bead chips via the address sequence for GoldenGate

assay detection on an Illumina iSCAN Reader. On the

basis of obtained fluorescence, allele call data were viewed

graphically as a scatter plot for each marker assayed using

GenomeStudio software v2011.1 with a GeneCall thresh-

old of 0.20.

Genetic diversity and population structure analysis

The genetic structure of the germplasm collection was

first analysed by performing PCoA implemented in the

program GenAlex 6.41. Basic statistics were calculated

using the genetic analysis package PowerMarker (ver. 3.23;

[28]) for diversity metrics at each locus, including the total

number of alleles (NA), allele frequency, minor allele fre-

quency, heterozygosity, gene diversity (GD), and poly-

morphism information content (PIC). Genetic similarities

between each pair of accessions were measured by using

an in-house customised program Genomic Relationship

Matrix (genomicRelMatp). A heat map was generated

using the R package. The NJ dendrogram from cultivar

data was generated using the DARwin package based on

genetic distance calculated using NTSYS v2.1.

For analysis of population structure, a Bayesian model-

based analysis was performed with STRUCTURE v2.3.4

[29]. The posterior probabilities were estimated using

the Markov Chain Monte Carlo (MCMC) method. The

MCMC chains were run with a 20,000 burn-in period,

followed by 20,000 iterations using a model allowing for

admixture and correlated allele frequencies. At least 20

runs of STRUCTURE were performed by setting K from

1 to 15, and an average likelihood value, L (K), across all

runs was calculated for each K (L(K) = an average of 20

values of LnP(D)). The admixture model was applied

and no prior population information was used. The log-

probability of the data, given for each value of K, was

calculated and compared across the range of K [30].

Results
SNP polymorphism

A sub-set of 384 genome-wide distributed SNPs was

used to assess genetic diversity within lentil germplasm,

of which 192 were assigned to locations on the lentil

genetic map (Table 1). Of the 384 SNPs, 274 (71.3%) ob-

tained successful amplification and detected polymorph-

ism, while of the remaining 110 SNPs, 90 either failed to

amplify or produced inconsistent results and 20 were

monomorphic in majority of the genotypes (>99%). This

sub-set of 274 SNPs was further filtered for percentage

of missing data, and any SNP loci with more than 40%

of missing data were excluded from further analysis in

order to generate a final set of 266 loci (of which 147

were assigned to the lentil genetic map). All of the 505

genotypes included in this analysis exhibited < 40% missing

data individually. SNP loci were categorised in terms of the

numbers of alleles, gene diversity, and PIC value. Gene di-

versity and PIC values varied from 0.108 (SNP_20002225)

to 0.500 (SNP_20000915) and from 0.102 (SNP_20002225)

to 0.375 (SNP_20000915), with averages of 0.419 and

0.328, respectively. The minor allele frequencies (MAF)

per locus varied from 0.501 (SNP_20000915) to 0.943

(SNP_20002225) with an average of 0.673, with only 5

SNPs showing MAF > 0.90. Heterozygosity was lowest at

loci SNP_20002225 and SNP_20001463 (both at 0.036),

followed by SNP_20001223 (0.043) and SNP 20005402

(0.046) (Additional file 3).

Genetic diversity analysis

In the first instance, the genetic similarity between stud-

ied genotypes was quantified using a genomic relation-

ship matrix (Additional file 4) and a heat map was

generated after sorting of data on the basis of country-

of-origin. Approximately 10 clusters of significant size

were obtained, in most cases leading to grouping of ge-

notypes from the same country-of-origin (unpublished

Table 1 Number of SNP markers used from different

linkage groups of lentil

Linkage group No of SNPs used

Lc1 47

Lc2 24

Lc3 20

Lc4 44

Lc5 30

Lc6 26

Lc7 1

Unmapped 192
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data). However, the heat map data was not sufficient to

provide conclusions on the genetic relationships between

different accessions, due to the large number used in the

study, as well as the low level of diversity that is present

in general within lentil gene pool. Therefore, in order to

further understand the genetic relationships between

lentil genotypes for breeding purposes, data from com-

mercial cultivars and landraces were analysed separately.

Based on the calculation of genetic distance between 111

cultivars, the most divergent pair were Indianhead and

Northfield (Nei’s coefficient value 0.210937; Additional

file 5, sheet 1) while the landraces, ILL0166 and ILL5062

exhibited maximum genetic distance (Nei’s coefficient

value 0.23148, Additional file 5, sheet 2). Two USA lentil

cultivars LC05600043T and Palouse were genetically most

similar (Nei’s coefficient value 0.0027715; Additional file 5,

sheet 1) and similarly the genetic distance between two

landraces ILL0369 and ILL0373, both originated from

Chile, was the smallest (Nei’s coefficient value 0.003244;

Additional file 5, sheet 2).

A NJ dendrogram of commercial cultivars was gener-

ated (Figure 1). All lentil cultivars were assigned to three

major groups (G-I, G-II and G-III) and two small out-

groups (G-A and G-B). Group I mainly consisted of

Australian cultivars, Group II was mainly composed of

cultivars from Australia with some USA cultivars, and

most of the cultivars from USA and Canada were assem-

bled into Group III. The two small outgroups (G-A and G-

B) were composed of Australian lentil cultivars with some

breeding lines from the International Centre for Agricul-

tural Research in the Dry Areas (ICARDA) (ILL4401,

ILL6778, ILL6025, ILL7537 and ILL7220).

Population structure analysis

The genetic structure of the germplasm collection was

analysed separately for both cultivars and landraces using

Figure 1 NJ dendrogram generated based on genetic distance calculation from NTSYS v2.1. Australian cultivars are shown in green
(G-I, G-II), Canadian in red (G-III), USA in purple (G-I and III), breeding lines from ICARDA in orange.
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PCoA and STRUCTURE. The PCoA of genetic distance

between genotypes, based on SNP allele frequencies re-

vealed an obvious differentiation between lentil genotypes.

For cultivars, the first and second axes explained 37.16%

and 18.30% of the total variance, and separated lentil culti-

vars into different clusters mainly based on geographical

origin (Figure 2). Three major clusters were identified;

cluster 1 containing most of the Canadian and USA-

derived cultivars, while cluster 2 contained the majority of

Australian cultivars along with some cultivars from USA,

and cluster 3 was mainly composed of Australian cultivars.

A different pattern was observed for landraces originating

from c. 45 countries (Figure 3). The first and second axes

explained 29.23% and 25.46% of the total variance, and

separated landraces into different clusters. However, a

weak correlation between geographical origin and cluster-

ing was observed. Consequently, landraces from various

countries were grouped according to a larger geographical

zone for interpretation of the data. For example, landraces

from Chile, Peru, Mexico, Argentina, Colombia, Guatemala

and Ecuador were categorised as American accessions,

while landraces from Turkey, Greece, Syria, Tunisia, Spain,

Morocco, Italy, Lebanon, Egypt, Cyprus and Algeria were

classified as Mediterranean in origin. Most of the landraces

from America, Africa, Northern Europe and Middle-East

Asia were incorporated into these general groups. However,

Mediterranean landraces, chiefly from Greece and Turkey,

were dispersed across the PCoA plot (Figure 3).

The SNP datasets were further used for the model-

based Bayesian clustering method as implemented in

STRUCTURE. The log likelihood of each K was calculated

as L(K). The estimation of true value of K was based on

the observation that L(K) reached a plateau (or continued

to increase slightly) and displayed high variance between

runs. This analysis showed an optimum value of K = 3 for

commercial cultivars (Figure 4) and K = 5 for landraces

(Figure 5). The outcomes of the analysis coincided with

the three distinct clusters identified for commercial culti-

vars from the genetic diversity analysis. However, the value

of K = 5 for landraces proved too complicated to allow as-

signment of a population structure to the whole set based

on geographical origin. An attempt was made to categor-

ise the landraces based on climatic data, however, this was

not helpful for further resolution of the results (unpub-

lished data).

Discussion

Suitability of SNP markers for germplasm characterisation

Recent advances in marker technologies have enabled the

routine use of high-throughput, low-cost markers for

Figure 2 Principal coordinate analysis (PCoA) plot generated from genetic distance calculations using the GENALEX package for 111

lentil cultivars.
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Figure 3 Principal coordinate analysis (PCoA) plot generated from genetic distance calculations using the GENALEX package for 394

lentil landraces. Different coloured labels indicate distinct geographical origins.

Figure 4 Estimated number of clusters obtained for lentil cultivars with STRUCTURE for K values from 1 to 15 using SNP data. Graphical
representation of estimated mean L(K) values showing the clustering of different cultivars.
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germplasm characterisation and to select for favourable al-

leles in plant breeding programs. SNP markers offer an

ideal marker system that is highly polymorphic, co-

dominant, accurate, reproducible, high-throughput, low-

cost and highly informative. In the present study, the suit-

ability of a 384-plex SNP GoldenGate assay tool has been

demonstrated for genotyping of a lentil genetic resource

collection. Despite broad diversity within the germplasm

collection due to inclusion of landraces from multiple

countries-of-origin, the majority of SNP markers were effi-

ciently detected. The success rate (69.2%) was slightly

lower than that obtained for other crops such as soybean

(89%; [31]), field pea (91%; [32]) and grape (92%; [33]),

based on the same genotyping technology. This effect may

be due to the lower levels of genetic diversity that are

present within the set of lentil accessions assessed in the

current study, in comparison to the other species. The

average SNP frequency between two genotypes has been

reported to be 0.21 per kb (L. culinaris) and 0.31 per kb

(L. ervoides) [24]. These values are lower than for other re-

lated legume species such as soybean (2.7 SNPs per kb;

[34]), field pea (2.7 SNPs per kb; [35]) and Medicago trun-

catula Gaertn. (1.96 SNPs per kb; [36]), supporting the

view that lentil germplasm is relatively similar in nature.

Information content of markers was assessed on the

basis of a number of different criteria, the most funda-

mental being number of alleles, higher values of which

are likely to lead to higher polymorphisms in any given

germplasm set. However, this criterion is most relevant

to SSR markers, which are capable of displaying multial-

lelic structure. For SNPs, in contrast, for which biallelic

patterns are standard (using Goldengate assays), ex-

pected heterozygosity is a more accurate measure of

polymorphism as this parameter measures distribution

of alleles across the germplasm under examination. In

general, the level of genetic diversity quantified as het-

erozygosity based on SNP markers was approximately

half that estimated through use of SSR markers [33].

This potential disadvantage of SNP-based systems may

be overcome either through use of a large number of

markers, or by considering haplotypic structure for each

locus, instead of individual SNP loci. The differences be-

tween SNPs and SSRs in terms of levels of genetic diver-

sity result from the mutational properties of these two

marker types. Minor allele frequency is a measure often

used to assess information content for SNP loci, and is

related to expected heterozygosity. For all SNPs, an aver-

age expected heterozygosity value of 0.15 was identified,

identical to that obtained from other studies [26,33,37].

Assessment of genetic diversity and population structure

Estimation of the degree of differentiation between acces-

sions that are included in a crossing program is useful for

selection of parental genotypes. The maximum distance

(Figure 1) was calculated between Indianhead, a Canadian

cultivar (G-III), and Northfield, an Australian cultivar bred

in Syria (syn. ILL5588) (G-II), which are derived from

highly separated localities and breeding populations.

Conversely, two cultivars from the USA (Palouse and

LC05600043T) were most genetically similar among all

cultivars studied (Figure 2, G-II). The USA-derived lentil

cultivars were genetically closer to those from Canada

Figure 5 Estimated number of clusters obtained for lentil landraces with STRUCTURE for K values from 1 to 15 using SNP data.

Graphical representation of estimated mean L(K) values showing the clustering of different landraces.
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than Australia, also supporting these observations. Some

counter-examples in which cultivars from different geo-

graphical origins grouped together were also observed.

For example, a single French cultivar (French Green) clus-

tered with cultivars from Canada and USA.

Based on knowledge of the pedigrees of Australian culti-

vars and breeding lines that were included in this study, the

PCoA obtained a number of consistent relationships. For

example, variety Nipper, which was derived from a three-

way cross between Indianhead and (twice-over) Northfield,

is located mid-way between these two lines. Similarly,

CIPAL0715 and CIPAL0714 (released as variety Gram-

pians), lie between the parental lines Nugget and French

Green, while the widely adopted variety PBA Flash is

positioned close to mid-way between its parents, Nugget

and ILL7685. Many of the breeding lines in the largest

cluster of Australian varieties (02-161 L-05H4015, 02-182 L-

05H4005, and 04-190 L-05HG1002-05HSHI2011) were

located at intermediate positions between their parents.

In contrast, some other varieties appear in positions in-

consistent with recorded ancestry. For instance, CIPAL0801

(syn. PBA Bolt) appears close to Aldinga, distant from the

parents, ILL7685, Nugget, and Matador. In the same way,

Boomer and CIPAL0501 are sister progeny of a Digger ×

Palouse cross, but are located in a separate cluster. Anom-

alous placements were also observed for PBA Blitz, PBA

Bounty, CIPAL0803 (syn. PBA Ace), 01-068 L-04H014 and

CIPAL0901, all being elite Australian cultivars or breeding

lines. The explanation of such anomalous results is not

clear, although errors in pedigree record-keeping, or label-

ling of seed samples, are more probable. In general, how-

ever, PCoA confirmed many of the known relationships

between cultivars. Given the relatively short history of

Australian lentil breeding, such affinities may be attribut-

able to the contributions of original source germplasm, pre-

dominately landraces or cultivars obtained from ICARDA.

The analysis of the landraces did not reveal a strong cor-

relation between geographical origin and genetic diversity.

It is generally accepted that landraces may consist of

highly diverse mixtures of different genotypes, and may

hence require substantial within-accession sampling for a

meaningful analysis of genomic diversity [17]. The land-

races originating from Mediterranean regions, especially

those derived from Turkey and Greece, were highly di-

verse from one another, suggesting that a substantial level

of genetic variation is presented within this class of germ-

plasm. This effect could be related to the domestication of

lentil, which is known to have occurred in the eastern

Mediterranean [5], in which non-domesticated Lens spe-

cies are endemic. Following the initial domestication

event, cultivation of lentil spread to Europe, Central Asia,

Pakistan, India and South America [8], and the narrower

genetic base and clustering between accessions from these

regions is consistent with a history of limited

introductions. A number of studies have revealed that len-

til germplasm from the Mediterranean region is charac-

terised by higher genetic diversity than those of the USA

and Asia [17,38-40].

Knowledge of genetic variation and genetic relation-

ships between lentil landraces is important for efficient

germplasm preservation, characterisation and subse-

quent use by lentil breeders. The narrow genetic base of

the cultivars compared to the landraces, as shown by

genetic distance estimates, reveals a relatively untapped

pool of genetic diversity that could be highly valuable for

further advances in yield potential, along with resistance

to biotic and abiotic stresses. In addition to this, infor-

mation on regional differentiation has practical signifi-

cance for the management of germplasm and to assist

selection of parental genotypes for breeding activities.

Selection of genetically diverse landraces as parents

should contribute to genetic gain through identification

of superior progeny combinations from within breeding

populations. This will also lead to cultivars with superior

local adaptation, if the populations are evaluated and

analysed carefully. Furthermore, information on regional

differentiation should provide evidence for identification

of parents with enhanced abiotic stress tolerance or re-

sistance to biotic challenges.

The indicative number of clusters obtained from use

of STRUCTURE was K = 5, but substantial overlaps were

observed between different clusters. The result of the

present study for lentil accessions, revealing limited cor-

respondence between geographical origin and genetic di-

versity, is similar to that obtained in previous studies of

other crops such as field pea [41] and safflower [42].

This phenomenon suggests that selection of parents in

breeding programs should be made on the basis of sys-

tematic assessment of genetic distance between base

populations, rather than geographical difference. Such

divergence between parental genotypes is likely to reflect

accumulated allelic differences [14], including those at

target agronomic loci, allowing maximised potential for

selection of desirable traits or to introgress favourable

gene variants in backcross-based programs. Once again,

this process should lead to the development of superior

locally adapted cultivars.

Applicability of SNP diversity data for genome-wide

association studies

Of the 384 SNPs used in the current study, genetic map po-

sitions were known for 192 (50%). Such information could

contribute to future detailed genome wide-association stud-

ies (GWAS) studies [43] for lentil. The number of SNP

markers required for effective GWAS is a function of aver-

age extent of linkage disequilibrium (LD) within the rele-

vant genome. The limited genetic diversity and inbreeding

reproductive habit of lentil will probably lead to extensive
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LD, and hence a lower marker requirement than for

outbreeding species with high levels of genetic diversity,

such as grasses [44,45] and oilseeds [46]. Despite these

favourable properties, the 384-plex SNP genotyping tool

described here is unlikely to be insufficient for GWAS in

isolation. Nonetheless, an enhanced version of multiplexed

SNP genotypic analysis, in concert with the detailed know-

ledge of population diversity and stratification as described

in the present study, will provide a basis for any future

GWAS studies for lentil.

Conclusions

Assessment of genetic variation among a global collec-

tion of lentil cultivars and landraces was performed

using a set of genome-wide distributed SNP markers.

Genetic diversity analysis revealed clear grouping within

cultivars based on geographical origin, but no such cor-

respondence was observed within landraces collection.

This result indicates that assessment of genetic diversity

is critical for choice of germplasm suitable for breeding

activities, and the data presented in the present study

will highly assist such efforts.
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