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Groundwater plays an important role in global climate change and satisfying human needs. In the study, RS (remote sensing) and
GIS (geographic information system) were utilized to generate �ve thematic layers, lithology, lineament density, topology, slope,
and river density considered as factors in	uencing the groundwater potential.�en, themulticriteria decisionmodel (MCDM)was
integrated with C5.0 and CART, respectively, to generate the decision tree with 80 surveyed tube wells divided into four classes on
the basis of the yield. To test the precision of the decision tree algorithms, the 10-fold cross validation and kappa coe�cient were
adopted and the average kappa coe�cient for C5.0 and CART was 90.45% and 85.09%, respectively. A�er applying the decision
tree to the whole study area, four classes of groundwater potential zones were demarcated. According to the classi�cation result,
the four grades of groundwater potential zones, “very good,” “good,” “moderate,” and “poor,” occupy 4.61%, 8.58%, 26.59%, and
60.23%, respectively, with C5.0 algorithm, while occupying the percentages of 4.68%, 10.09%, 26.10%, and 59.13%, respectively, with
CART algorithm.�erefore, we can draw the conclusion that C5.0 algorithm is more appropriate than CART for the groundwater
potential zone prediction.

1. Introduction

Increasing population and water scarcity have raised the
importance of groundwater zones, as they are a major
source of freshwater. Integrated remote sensing and GIS are
widely used in groundwater mapping. Locating potential
groundwater targets is becoming more convenient and cost-
e�ective with the advent of a number of satellite imageries.
Remotely sensed based groundwater exploration has made it
feasible to explore the areas with limited human access, for
the wide visual range, short time cycle, and increasing spatial
resolution.

A lot of work has been done on the delineation of ground-
water potential zones, including in tropical humid regions,
such as Tirnavos area, Greece [1], Timor Leste, Indonesia
[2], SW, Nigeria [3], and New Delhi [4], and in mid-latitude
semiarid areas, such as Boryeong and Pohang, Korea [5, 6],
Sultan Mountains (Konya, Turkey) [7, 8], Udaipur, India [9],
Beheshtabad watershed, and Chaharmahal-and-Bakhtiari
Province, Iran [10].�rough the analysis of the characteristics

and factors within the typical regions, we found out basic
principles and methods for factor selection, which provided
reference and basis for the study area.

Various researchers have e�ectively implemented multi-
criteria decision model (MCDM) for accurately identifying
the groundwater potential zones [1–4].�emajor factors that
in	uence the groundwater potential are lithology, rainfall,
slope, drainage density, lineament density, and so forth. �e
factors’ values are mostly continuous; however, the prede-
cessors mostly divided the continuous factors into several
discrete levels according to the relationshipwith groundwater
potential, causing a great loss of the original information. In
the previous research, we have established the fuzzymember-
ship functions to analyze each factor’s impact on groundwater
enrichment from the perspective of continuity [11].

�e MCDM is based on either manual decision method
like analytic hierarchy process (AHP) [1–4, 9] or machine
learning method, such as arti�cial neural network �tting [5],
frequency ratio, weights of evidence and logistic regression
[7, 8], boosted regression tree, classi�cation and regression
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Figure 1: Location map of the study area (Landsat 8 OLI 7/5/3).

tree (CART), random forest [10], chi-squared automatic
interaction detector, or the quick, unbiased, and e�cient
statistical tree algorithms [12, 13]. �e 	exibility of the AHP
method allows the revision of the weights and rating of
parameters in order to be suitable for other regions accord-
ing to their speci�c characteristics [1]. However, regarding
assigning weights to the di�erent thematic layers, personal
judgment reduced the objectivity of the model [9]. Decision
tree techniques provide a multivariate method, which is
known as a successful automatic classi�cation scheme [14, 15].
CART algorithm [16] showed more application than other
decision tree algorithms. C5.0 algorithm [16–19], as one of
the decision tree techniques, serves as an enhancement of
C4.5 and shows relatively better classi�cation result, for it can
simultaneously handle continuous and categorical variables,
with the unbiased processing. �e �-fold cross validation
method [20] is an e�ective way to improve the precision
of the decision tree model, with the basic idea randomly
dividing the samples into the training set and validation set,
and circling for � times to ensure the robustness of themodel.

In the current study, considering the groundwater poten-
tial relating factors, lithology, lineament density, topology,
slope, and river density, decision tree algorithms, C5.0 and
CART, respectively, with the 10-fold cross validation were
applied to generate and test the decision tree models, for
predicting the groundwater potential grade in the whole
study area.

2. Materials and Methods

2.1. Study Area and Materials. �e study area (shown in
Figure 1) is located in the southwestern part of Ritu county,
Ali city, with the extent of 79∘30�–80∘20�E and 33∘–33∘30�N
and surrounded by Kailash mountain in the south and
Karakoram mountain in the north. �e county is in the
southeast of BanGong Lake Basin across the BanGong Lake-
Nu Jiang fault zone.�e area belongs to the wide valley in the
plateau and mountain lake basin and provides runo� to Ban
Gong Lake in the southeast direction.�e study area is domi-
nated by subfrigid monsoon climate.�e temperature ranges
from −22.1 to 13.6 Celsius degrees, with the annual average
temperature of 0.5 Celsius degrees. �e annual sunshine
period is 3370.9 hours, with the frost-free period of 95 days.
�e annual rainfall is quite low being only 75mm and having
high evaporation of 2456.3mm. �e Ban Gong Lake has a
maximumdepth of 41.3m and lies in east-west direction, hav-
ing salt water in the midwest and freshwater in the east. �e
original plant Ban Gong willow growing along the lake valley
helps in soil and water conservation. �e lowest depression
for catchment travels along the BanGong Lake-Nu Jiang fault
and the beaded lake basin depression exists between the sur-
rounding mountains. �e elevation ranges between 4196 and

6240m in the study zone, having an area of about 2240 km2.
�e available data sources include geology map with the

scale of 1 : 250000 purchased from the National Geological
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Figure 2: Flow chart for mapping groundwater potential.

Table 1: Groundwater potential grade criteria on the tube well yield.

Grade Very good Good Moderate Poor

Yield (�/�) >800 300–800 100–300 <100
Number 21 25 18 16

Library, DEM from ASTER satellite with the horizon distri-
bution of 30m and Landsat 8 OLI image with the acquisition
date 5/22/2013 downloaded from https://www.usgs.gov/ and
cloud cover, 2.43%, sun elevation, 68.06, sun azimuth, 119.95,
and tube wells yield data with �eld survey. 80 investigated
tubewells were divided into four grades according to the yield
(Table 1) [21].

2.2. Methodological Framework. �e study on the ground-
water potential zone delineation is carried out from the
perspective of hydrogeology, considering the occurrence
space and supply condition. Lithology and lineament density
are chosen as the occurrence space factor; topology, slope,
and river density are related to the groundwater supply
condition. Lithology is the categorical variable, and the rest
of the variables are continuous. A�er the analysis between
the factors and groundwater potential grade, C5.0 and CART
algorithmswere, respectively, applied to generate the decision
tree, and the 10-fold cross validation was adopted to test the
classi�cation accuracy. �e speci�c technical route is shown
in Figure 2.

2.3. Factors Related to Groundwater Potential. Lithology [22]
in	uences the water-holding capacity of aquifer and directly
a�ects the occurrence and distribution of groundwater. �e
lithology thematic map was derived through digitizing the
1 : 250,000 scale geology map from the National Geological
Library as shown in Figure 3. �e Quaternary (Q) including
three kinds of sedimentary type, alluvial, diluvia, and lacus-
trine, with the distribution in low-lying area belongs to the
loose sediment for themelting snowwater that 	ows from the
high mountains. �e Jurassic (J) layers are distributed widely
along the east-west direction, with the modern (J3), middle
(J2), and early age (J1), respectively, lying in the middle,
south, and mid-north. �e Modern Cretaceous (K2) spreads
along the north-south direction. �e Early Cretaceous (K1)
is mostly distributed in the north along the east-west. �e
Paleogene (E) lies mostly in the west, with the scatter
distribution in the central and eastern part.

�e linear faults, accompanied by the cranny, provide
space for the occurrence of groundwater [23]. In the stratum
with the same lithology, the intersection of the faults leads
to development of the cranny, which tends to be the ground-
water enrichment zone with the connectivity enhancement.
�e linear structures are extracted from the satellite image
based on the discontinuity of the color from the surrounding
areas. Orthographical correction is applied to Landsat 8 OLI
image with DEM to eliminate the shadow’s in	uence on the
visual interpretation in the study area. Combination of bands
7/5/3 (SWIR 2/near infrared/green) proved to be the most
suitable for the extraction with the geology map in ENVI 5.1.
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Figure 3: Lithology map of the study area.
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Figure 4: Lineament density map of the study area.

�e lineament density shown in Figure 4 was calculated in
ArcGIS 10.1 with “line density” command.

Topography controls the groundwater supply conditions.
�e mountainous region provides better runo� conditions
and most of the precipitation is accounted for in the surface
runo� withminimum in�ltration to the groundwater. On the
other hand, precipitation in plains provides slower runo� and
facilitates groundwater recharge. Topography map is shown
in Figure 5.�e topography map with 30m spatial resolution
was extracted from DEM data in ArcGIS 10.1.

Groundwater 	ow is usually driven by surface force, and
the boundary of the terrain is mostly the boundary of the
shallow aquifer. Slope [24] is important in analyzing the
terrain, as it can a�ect the groundwater in terms of its storage,
	ow, and discharge, especially in mountainous areas. Slope
was extracted from the DEM in ArcGIS 10.1 and is shown in
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Figure 5: Topography map of the study area.

0 5 10 20

N

79
∘
50


0
E 80

∘
0

0
E 80

∘
10


0
E 80

∘
20


0
E

3
3
∘
0

0


N
3
3
∘
1
0

0


N

(km)

High: 75

Low: 0

79
∘
40


0
E79

∘
30


0
E

3
3
∘
2
0

0


N

(∘
)

Figure 6: Slope map of the study area.

Figure 6. In general, slopes control the in�ltration and 	ow
ability of the surface water. Usually, the steep slope indicates
greater water velocity. �erefore, it is observed that in the
areas of steeper relief the runo� increases while minimizing
the groundwater recharge. On the contrary, on the relatively
gentle sloping terrain, the groundwater potentiality increases
due to greater in�ltration.�us, lower slope results in greater
recharge.

Flow accumulation re	ects the upstream 	ow quantity. In
the study area, the supply source is mainly the melting snow.
Flow accumulation was derived from DEM for generating a
stream network. It can be seen from Figure 7 that the study
area has a dendritic pattern for drainage. �e dendritic net-
work is usually found in region underlain with homogeneous
surface without abrupt changes in geological conditions.

�e river density [25] represents the recharge conditions
to quantify the in	uence caused by surface water, where
higher density provides better recharge conditions. Based on
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Figure 7: Flow accumulation map of the study area.
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Figure 8: River density map of the study area.

the 	ow accumulation, the river density was calculated using
the “line density” command in ArcGIS 10.1, as shown in
Figure 8.

2.4. Research Method. �e decision tree algorithms [16]
are suitable for the multifactor classi�cation problem. For
the mixture of the continuous and discrete factors in the
groundwater potential evaluation model, C5.0 and CART
decision tree algorithms were adopted together with the 10-
fold cross validation method to improve the classi�cation
accuracy and unbiasedness.

2.4.1. C5.0. �e C5.0 decision tree algorithm is rooted in
ID3 and C4.5. �e ID3 algorithm [26] with the maximum
gain as the division standard aims to achieve the maximum
of the information gain in every node, which o�en gives
priority to the variables with more classes. To make up
for the defect of ID3, C4.5 adopts the gain-ratio criterion
[19, 27, 28]. With the gain-ratio criterion, the binary nodes

divide the continuous variable. �e processing method for
categorical variables is �rstly to refer each of the categories
as a branch and then merge each two branches iteratively
until the two branches remain. However, the heuristic search
may not �nd the best point for the categorical variables
division. For continuous variables, C5.0 algorithm can easily
�nd the division point [29]. To get rid of the biasedness on
the continuous variables, the algorithm improves the gain
of the continuous variables. Besides, C5.0 algorithm can
simplify the originally complex decision tree to the equivalent
tree, for the easy understanding. With more splitting layers
than other algorithms, it can ensure the high purity of the
result nodes. C5.0 algorithm achieves the self-correction a�er
several iterations with boosting technology [30].�e arti�cial
methods lay emphasis on the sole impact of various factors;
however, C5.0 algorithm can consider all the factors to
analyze the comprehensive in	uence based on data statistics.
C5.0 algorithm has been widely applied to the multivariate
classi�cation, for its unbiasedness and precision towards the
continuous and categorical variables compared to other deci-
sion tree algorithms [17, 31–37]. To improve the classi�cation
accuracy, boosting technology was applied in C5.0 decision
tree algorithm and could adjust the decision tree according to
the fault samples until reaching a high precision [38]. Besides,
C5.0 algorithm is more applicable to the large data samples.

Assume the splitting node� is expected to separate the |�|
samples into� target categories [27].�e symbol��(�) stands
for the percentage of category � at node �, � = 1, 2, . . . , �. �e
inclusive information at node � can be expressed as

Info (�) = − �∑
�=1
�� (�) × log2 [�� (�)] . (1)

For the decision tree branch, the samples are divided into�1, �2, . . . , �� by the node �, with the subsamples of |�1|, |�2|,
and |��|, respectively.�en, the information can be expressed
as

Info (�, �) = �∑
�=1

��|�| × Info (��) . (2)

A�er combining the above information formulas, the
information gain can be expressed as

Gain (�, �) = Info (�) − Info (�, �) . (3)

To improve the application of the information gain
concept, information gain ratio was put forward:

GainRatio (�, �) = Gain (�, �)
SplitInfo (�, �) , (4)

where

SplitInfo (�, �) = − �∑
�=1

��|�| × log2 (
��|�| ) . (5)

�e practice showed that the information gain ratio was
more preferred to the continuous variable; therefore, the
information gain ratio for the continuous variable with �
distinct values should be expressed as [16]

Gain (�, �) = Info (�) − Info (�, �) − log2 (� − 1)|�| . (6)
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Table 2: �e precision of each loop based on the 10-fold cross validation (%).

1 2 3 4 5 6 7 8 9 10
Average
accuracy

C5.0 83.33 100.00 81.25 89.86 90.25 87.29 94.50 94.21 87.50 96.28 90.45

CART 80.57 89.21 92.23 85.34 81.23 100 80.12 78.24 81.57 82.34 85.09

Table 3: �e importance of each factor based on C5.0 and CART algorithm.

Lithology Topology River density Slope Lineament density

C5.0 0.363 0.331 0.159 0.117 0.031

CART 0.355 0.308 0.024 0.010 0.312

2.4.2. CART. CART decision tree algorithm [39] can divide
the sample set into two subsample sets, making the root and
intermediate nodes with two branches based on the recur-
sively binary segmentation technology. CART can handle
both continuous and discrete variables, with the impurity
level-Gini coe�cient as the discriminant basis, considering
the probability distribution under the division node.

Assume a total of � classes, variable �, and node for �;
then the Gini index is de�ned as [16]

Gini (�) = �∑
�=1
�� (�) (1 − �� (�)) = 1 −

�∑
�=1
�2� (�) . (7)

When the classes show the equal probability in the node�, the Gini index achieves the maximum 1 − 1/�; with only
one kind in node �, the Gini index achieves the minimum.
�e Gini index increases with the impurity; therefore, the
subnodes should be added to lower the impurity. When
taking the misclassi�cation cost matrix into consideration,
the Gini index formula becomes

Gini (�) = ∑
� ̸=�
� (� | �) �� (�) �� (�) , (8)

where �(� | �) represents the cost for misclassifying the case
category � as �. Assuming that the subnode � added to node�, the Gini index can be expressed as

Gini (�, �) = Gini (�) − �
Gini (�
) − ��Gini (��) , (9)

where �
, �� stand for the proportion of cases in node �
classi�ed into �
 and ��.
2.4.3. 10-Fold Cross Validation. �e basic idea for the �-fold
cross validation [40, 41] is to equally divide the surveyed
samples into � parts, of which � − 1 parts served as the
training samples with the remaining one part for validation
with � circulations. �e method can guarantee every sample
acted as the training sample and the veri�cation sample for
one time in the circulations. For the �-fold cross validation,
the commonly used value for � is 10, called 10-fold cross
validation [42].

3. Results and Discussion

In this study, �ve groundwater relating factors were used in
the analysis and the factors except lithology were continuous.

80 tube wells were utilized for training with C5.0 and
CART, respectively, in the statistical analysis so�ware SPSS
Clementine 12.0 and MATLAB. According to the confusion
matrix [43] constructed by the veri�cation result, the kappa
coe�cient [44, 45] is used to evaluate the accuracy. Based on
the 10-fold cross validation with C5.0 and CART algorithm,
respectively, the precision of each loop is shown in Table 2.
�e importance of each factor was calculated �rstly to deter-
mine the selection order of the factors for classi�cation as
shown in Table 3. For the C5.0 algorithm, the importance was
0.363, 0.331, 0.159, 0.117, and 0.031, respectively, for lithology,
topology, river density, slope, and lineament density. For the
CART algorithm, the importance was 0.355, 0.308, 0.024,
0.010, and 0.312, respectively. A�er the ten loops, the decision
tree with the higher classi�cation accuracy was chosen as
optimal. Figure 9 shows the optimal decision tree generated
by C5.0 algorithm, with 6 layers, 21 nodes, 10 internal nodes,
and 11 terminal nodes. Table 4 shows the rules for the optimal
decision tree by C5.0. �e optimal decision tree generated by
CARTalgorithm is shown in Figure 10, with 8 layers, 21 nodes,
11 internal nodes, and 10 terminal nodes, and the rules are
shown in Table 5.

Kappa = �∑��=1 ��� − ∑��=1 ��+�+��2 − ∑��=1 ��+�+� , (10)

where � is the number of the total categories; � is the total
number for veri�cation; ��� is the number of the correct
classi�cations; ��+ is the number of samples mistaken from
the category � for others; �+� is the number of samples
mistaken from other categories for �.

According to the classi�cation rules, we can see that not
every rule takes all the variables into account; therefore, for
the area lack of the detailed information, the typical factors
can help to predict the groundwater potential classi�cation
grade. �e decision trees show that both the two algorithms
can determine the dividing point of the variables, especially
for the continuous variables based on the training data, which
makes the division of the interval more scienti�c and reduces
the segmentation error, compared with the arti�cial division.

According to the decision tree result generated by C5.0
algorithm, we did deep analysis. Topology was divided
by six nodes: 4196–4301–4316.5–4357–4400.5–6240; and the
groundwater was distributed in the low-lying areas. Slope
contained two ranges: 0–2.43–75; and the 	at areas were
bene�cial to the surface water in�ltration. River density was
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Table 4: Rules for groundwater potential grade based on C5.0.

Grade Rule

Very good

Lithology, Q; 4196 < topology ≤ 4301; lineament density ≤ 0.558
Lithology, Q; 4196 < topology ≤ 4316.5; lineament density > 0.558
Lithology, Q; 4316.5 < topology ≤ 4400.5; river density > 0.784; slope ≤ 2.43

Good

Lithology, Q; 4301 < topology ≤ 4316.5; lineament density ≤ 0.558
Lithology, Q; 4316.5 < topology ≤ 4357; river density ≤ 0.784
Lithology, Q; 4357 < topology ≤ 4400.5; river density > 0.784; slope > 2.43
Lithology, Q; 4400.5 < topology; river density > 0.650

Moderate

Lithology, others except Q; river density > 0.506
Lithology, Q; 4400.5 < topology; river density ≤ 0.650
Lithology, Q; 4357 < topology ≤ 4400.5; river density ≤ 0.784

Poor Lithology, others except Q; river density ≤ 0.5

RD

L

T

Others

T

Q

P M

RD RD

M GT S

VG G

LD

T VG

VG G

G M

≤0.506 >0.506 ≤4316.5 >4316.5
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≤4301 >4301

≤4357 >4357

>0.784

≤4400.5 >4400.5

≤0.650 >0.650

≤2.43 >2.43

≤0.784

Factor: Grade:

L: lithology

LD: lineament density

T: topology

S: slope

RD: river density

VG: very good

G: good

M: moderate

P: poor

Figure 9: �e optimal decision tree generated by C5.0 algorithm.

classi�ed into four intervals: 0–0.506–0.650–0.784–1.14 and
re	ected the 	ow capacity in the region, and the higher,
the better for groundwater enrichment. Lineament density
was divided into two intervals: 0–0.558–1, and the more
occurrence space for groundwater existed with the higher
lineament density. However, for the CART algorithm, topol-
ogy was divided into three intervals: 4196–4304–4400–6240;
slope contained two ranges: 0–2.386–75; river density was

classi�ed into three intervals: 0–0.685–0.703–1.14; lineament
densitywas divided into four intervals: 0–0.296–0.335–0.713–
1. A�er applying the optimal decision trees, respectively, to
the whole study area [6, 41], the groundwater potential zone
maps were derived and shown in Figures 11 and 12.

According to the results generated by the decision trees,
the “very good” area is mostly located in the broad plain

zone with a patchy distribution, covering 103.25 km2 about
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Table 5: Rules for groundwater potential grade based on CART.

Grade Rule

Very good

River density > 0.703; 4304 < topology ≤ 4400; lineament density > 0.713
Lineament density > 0.296; topology ≤ 4304
Lineament density > 0.335; 4304 < topology ≤ 4400; river density > 0.703; slope ≤ 2.386

Good

River density < 0.703; 4304 < topology ≤ 4400; lineament density > 0.335
0.335 < lineament density ≤ 0.713; 4304 < topology ≤ 4400; river density > 0.703; slope > 2.386
Lineament density > 0.296; topology > 4400; river density > 0.685

Moderate

Lineament density ≤ 0.296; lithology, Q
0.296 < lineament density ≤ 0.335; 4304 < topology ≤ 4400
Lineament density > 0.296; topology > 4400; river density ≤ 0.685

Poor Lineament density ≤ 0.296; lithology, others except Q

LD

L T

RDP M

Others Q

M G

T

VG LD

M RD

G LD

S VG

VG G

≤0.296 >0.296

≤4400 >4400

≤4304 >4304 ≤0.685 >0.685

≤0.335 >0.335

≤0.703 >0.703

≤0.713 >0.713

>2.386

Factor: Grade:

L: lithology

LD: lineament density

T: topology

S: slope

RD: river density

VG: very good

G: good

M: moderate

P: poor

≤2.386

Figure 10: �e optimal decision tree generated by CART algorithm.
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Figure 11: Groundwater potential map of the study area based on
C5.0.
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Figure 12: Groundwater potential map of the study area based on
CART.

4.61% of the study area for C5.0 algorithm and 105.05 km2

about 4.68% of the study area for CART algorithm, for the
water in�ltration into the underground with su�cient time
and space. �e study shows that low-lying areas with good
	ow condition, well-developed stratigraphic gap, and strong
connectivity like the southwest beaches of Ban Gong Lake
can be the �rst target for groundwater resources. �e “good”

area was distributed along the river with 192.10 km2, covering
8.58% for C5.0 algorithm, and 226.02 km2, about 10.09% of
the study area for CART algorithm, just like a long strip.
�e zones mainly had a planar distribution on the bottom
of the diluvia fan on the low mountain and hilly terrain
and a banded distribution on the mountain watershed of
pluvial valleys, situated upstream and on the periphery
of “very good” area, which can serve as the candidate

target for groundwater exploration. �e “moderate” zone

with 595.51 km2, occupying 26.59% for C5.0 algorithm,

and 584.53 km2, about 26.10% of the study area for CART
algorithm, spreads around the upstream tributaries. �e
zone is located on both sides of the river valleys and the top
of the diluvia fan. �e “poor” area occupies 60.23%, with
the area of 1349.14 km2 for C5.0 algorithm, and 1324.40 km2,
about 59.13% of the study area for CART algorithm, which is
mostly a mountainous region with a high altitude.

4. Conclusions

In this study, C5.0 and CART algorithms were applied for the
decision tree generation to predict the groundwater potential
zone with the �ve relating factors and the 10-fold cross
validation method was adopted to verify the classi�cation
result with the kappa coe�cient. From this paper, we can
draw some conclusions as follows.(1) In the study area, the �ve groundwater relating fac-
tors, lithology, topology, slope, river density, and lineament
density were appropriate for the groundwater potential grade
prediction and the importance based on C5.0 algorithm was
0.363, 0.331, 0.159, 0.117, and 0.03, respectively; for CART
algorithm, the importance was 0.355, 0.308, 0.024, 0.010, and
0.312, respectively.(2) Based on the 10-fold cross validation, both C5.0 and
CART could be applied for MCDM with the categorical
and continuous variables simultaneously, with the average
accuracy of 90.45% and 85.09%, respectively; however, C5.0
algorithm showed higher classi�cation accuracy than CART
algorithm.(3) A�er applying the optimal decision trees to the whole
study area, respectively, the groundwater potential zone map
was delineated and the four grades of groundwater poten-
tial zones, “very good,” “good,” “moderate,” and “poor,”

occupied the area of 103.25 km2, 192.10 km2, 595.51 km2, and
1349.14 km2, with the percentages of 4.61%, 8.58%, 26.59%,
and 60.23%, respectively, for C5.0, and for CART the area

of 105.05 km2, 226.02 km2, 584.53 km2, and 1324.40 km2,
with the percentages of 4.68%, 10.09%, 26.10%, and 59.13%,
respectively.

�e study result can provide reference for groundwater
exploration and in the future work we will consider more
relating factors and survey more wells to enrich the model.
�e integration of decision tree algorithms and MCDM in
our study applies only to the qualitative assessment for the
lack of the prior knowledge in the large area; therefore, the
extra analysis is needed for the speci�c point investigation.
�e accuracy demonstrates that the 10-fold cross validation is
suitable for training and verifying the decision tree; however,
the tested dataset is limited and more tube wells should be
investigated to validate the stability of the model.
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