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Assessment of human expertise
and movement kinematics in
first-person shooter games

Ian Donovan*, Marcia A. Saul, Kevin DeSimone,

Jennifer B. Listman, Wayne E. Mackey and David J. Heeger*

Statespace Labs, Inc., New York, NY, United States

In contrast to traditional professional sports, there are few standardizedmetrics

in professional esports (competitive multiplayer video games) for assessing

a player’s skill and ability. We assessed the performance of professional-

level players in Aim LabTM, a first-person shooter training and assessment

game, with two target-shooting tasks. These tasks di�ered primarily in

target size: the task with large targets provided an incentive to be fast but

imprecise and the task with large targets provided an incentive to be precise

but slow. Each player’s motor acuity was measured by characterizing the

speed-accuracy trade-o� in shot behavior: shot time (elapsed time for a

player to shoot at a target) and shot spatial error (distance from center

of a target). We also characterized the fine-grained kinematics of players’

mouse movements. Our findings demonstrate that: 1) movement kinematics

depended on task demands; 2) individual di�erences in motor acuity were

significantly correlated with kinematics; and 3) performance, combined across

the two target sizes, was poorly characterized by Fitts Law. Our approach

to measuring motor acuity has widespread applications not only in esports

assessment and training, but also in basic (motor psychophysics) and clinical

(gamified rehabilitation) research.

KEYWORDS

visuomotor psychophysics, speed-accuracy tradeo�, motor acuity, movement

kinematics, esports

1. Introduction

The principled study of digital game performance is in its infancy (Huang et al.,

2017; Campbell et al., 2018; Listman et al., 2021), even though video games have been

popular for decades (Gee, 2003; Kent, 2010; Egenfeldt-Nielsen et al., 2013; Ivory, 2015;

Wolf, 2015). Performance in first-person shooter (FPS) video games relies on acquired

perceptual andmotor skills (Green and Bavelier, 2003) and evidence suggests that playing

these games enhances visuomotor and cognitive skills (Green and Bavelier, 2008; Bavelier

et al., 2012) in a variety of visual and cognitive tasks (Green and Bavelier, 2003, 2007;

Dye et al., 2009; Colzato et al., 2013) in children and adolescents (Funk and Buchman,

1996; Adachi and Willoughby, 2013a,b,c; Chaarani et al., 2022) as well as adults (Green

and Bavelier, 2006, 2007; Kowal et al., 2018). There is, consequently, much interest in
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research on this topic, including the potential applications in

digital therapeutics (Hong et al., 2021), but there is a paucity of

studies on gaming performance, itself.

Despite the rapidly growing popularity of competitive

esports and the years spent by competitive and professional

players to advance their skills (Popper, 2013), the field continues

to lack established and objective benchmarks for individual skill.

Many of the commonly used performance metrics in esports

are unreliable measures of individual skill (Pedraza-Ramirez

et al., 2020). Particularly in team games, key benchmarks (e.g.,

kill-death ratio, damage dealt, win-rate) confound the skill of

an individual player with that of either their teammates, the

opposing team, or the coordination of the team as a whole

(Voida et al., 2010). For instance, a player with mediocre skill

is still capable of obtaining a high rank simply by playing with

individuals of a much higher skill level. The opposite is true for

a great player with lesser-skilled teammates. Reliable, repeatable,

and objective individual skill assessments with both intra- and

inter-individual comparisons, on both short and longitudinal

timescales, are needed to characterize true player rankings,

efficacy of training, and to evaluate the impact of hardware,

software, and player health (e.g., posture, exercise, sleep, diet,

and dietary supplements) on performance.

Visuomotor psychophysics offers experimental approaches

that are well-suited to assess individual players’ FPS

performance. Successful FPS play requires efficient identification

and localization of relevant visual stimuli, and dynamic

movements followed by well-timed shot responses (Pluss et al.,

2020). One fundamental facet of FPS play is “flicking”—the

action of rapidly moving the cross-hair to an object or enemy

and firing a shot to damage or destroy the target. When playing

with a computer mouse and keyboard, which is typical for expert

players, flicking can be achieved by reach movements when

targets are far away, or wrist and finger movements when targets

are nearby. Protocols for measuring such ballistic kinematics

are well established, and have been applied in a broad range of

cognitive and visuomotor tasks (Desmurget and Grafton, 2000).

As of yet, specific knowledge regarding FPS performance, based

on rigorous visuomotor psychophysics models, remains scarce.

Visuomotor skills are specialized, and are often constrained to

the contexts and modalities in which they are learned (Fahle,

2005; Heuer and Hegele, 2008; Maniglia and Seitz, 2018). Thus,

current laboratory-based visuomotor psychophysics research is

not directly applicable to FPS performance.

Fitts Law has been shown to characterize visuomotor

performance for a wide range of tasks (Fitts, 1954; Boritz

et al., 1991; Soukoreff and MacKenzie, 2004; Zhai et al., 2004),

including an FPS task (Looser et al., 2005). The law predicts that

the time required to rapidly move to a target is a function of the

ratio between the distance to the target and either the size of the

target or the spatial error of the movement.

Motor acuity, complementary to Fitts Law, is defined as the

ability to execute actions more precisely and within a shorter

amount of time (Müller and Sternad, 2004; Shmuelof et al., 2012,

2014; McDougle and Taylor, 2019; Wilterson, 2021). There is a

paucity of studies examining motor acuity, a gap likely linked

to the tight resource constraints on laboratory-based studies.

The handful of lab studies that examine motor acuity have

used relatively simple motor tasks (Flatters et al., 2014), like

drawing circles as fast as possible within a predefined boundary

(Shmuelof et al., 2012), throwing darts (Martin et al., 1996),

or center-out reaching and grasping (Jordan and Rumelhart,

1992; Shadmehr and Mussa-Ivaldi, 1994). Our group previously

used a large sample of Aim LabTM performance data (over

7,000 players and over 60,000 repeats of the 60 s Gridshot task)

over a period of months to examine motor learning (Listman

et al., 2021), using hits per second as a proxy for motor acuity.

Here, we propose a new approach for measuring motor acuity

and calculating flicking skill by characterizing an individual

player’s speed-accuracy tradeoff, which we call the Flicking Skill

Assessment (FSA).

It is both well established in the literature and widely

discussed in the competitive gaming community that human

performance exhibits a speed-accuracy tradeoff (SAT) (Heitz,

2014; Pluss et al., 2020): the speed of a response or action

is negatively correlated with the accuracy or precision of that

action. Players can be very fast and less accurate, very accurate

and slow, or somewhere in between. This effect can be evident

for different aspects of speed (e.g., reaction time, movement

speed) and different aspects of accuracy (e.g., percent of correct

responses/decisions, movement accuracy and variability). A

hallmark of skillful SAT performance is the ability to adapt to

current demands and prioritize speed and accuracy relative to

each other. If a task requires very fast responses or movements,

a player may sacrifice accuracy to maximize speed. If there is a

high cost to incorrect responses, a person may take longer to

respond or move more slowly to maximize accuracy. In FPS

performance, one way to characterize SAT is in terms of shot

behavior, with the spatial error of shots representing accuracy

and shot time (elapsed time for a player to shoot at a target)

representing speed. Performance on a single task with a single

incentive for speed vs. accuracy is insufficient to estimate a

player’s motor acuity, as two players with the same skill may

choose a different strategy in managing the SAT. Thus, skill

cannot be characterized from a single data point, since skill and

strategy would be confounded. The FSA assesses performance

in a plurality of conditions in which priorities or incentives

for speed and accuracy differ, to isolate an individual player’s

skill from their chosen trade-off between speed and accuracy.

The result of this assessment is a measure of motor acuity for

quantifying skill in FPS flicking tasks, which is independent of

bias or strategy.

We used Aim LabTM, an FPS video game that assesses and

trains players to optimize their performance, i.e., an automated

personal trainer, to collect data. Aim LabTM comprises a wide

range of tasks that replicate gaming scenarios, each matched
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with a particular data analysis procedure and inspired by

visuomotor psychophysics. We recruited professional esports

athletes (specializing in several different game titles and roles

within a team) to play two tasks, one of which incentivized

speed and the other of which incentivized precision. In addition

to assessing SAT and motor acuity via shot behavior, we also

characterized kinematics of players’ mouse movements. Players

often aim for and destroy a target by initiating a movement

toward the target, increasing and subsequently decreasing

movement speed, then firing a shot after slowing down or

coming to a full stop. We characterized these movements by

fitting a sigmoid to the time-series of mouse positions, with the

best-fit parameter values indicating a movement’s kinematics

(i.e., reaction time to initiate a movement, movement speed,

movement accuracy, variability or precision of a plurality

of movements). In addition to these typical flick-and-land

movements, players may choose to maximize speed by shooting

“on the fly" instead of slowing down before firing. FPS players

refer to this type of movement behavior as a “swipe" movement,

and we developed an approach to characterize the extent to

which movements resembled a swipe vs. a typical flick-and-land

movement.

The aim of this study was to determine if movement

kinematics depends on task demands, individual differences

in motor acuity are correlated with individual differences

in movement kinematics, and if FPS performance is well

characterized by Fitts Law. We found that: 1) movement

kinematics depended on task demands (reaction times were

shorter, movement speed was faster, and movements were more

“swipey" for the task that incentivized speed over precision);

2) individual differences in motor acuity were significantly

correlated with kinematics; and 3) performance, combined

across the two target sizes, was poorly characterized by Fitts Law.

The FSA, our method for measuring motor acuity, may be

used to assess and compare skill between and within players,

training to improve skill, and tracking change in performance

over time. The flexibility, accessibility, and engaging nature of

FPS games also makes the FSA a promising tool for other

applications, such as motor rehabilitation and monitoring and

training cognitive health and fitness.

2. Methods

2.1. Participants

Performance data from 32 professional and semi-

professional male esports players (mean age = 22.47 ± 3.62)

were collected, specializing in different FPS game titles: 4

Valorant players (Riot Games, 2020), 10 PUBG: Battlegrounds

players (PUBG Studios, 2017), and 18 Rainbow Six Siege players

(Ubisoft, 2015). Data were acquired initially for commercial

purposes, stored separately from player account data and

without personal identifiers. For this study, the data were

reanalyzed post-hoc, thus informed consent was not required

(Advarra Institutional Review Board).

2.2. Apparatus

Aim LabTM is a commercial software product written in the

C# programming language using Unity game engine (Helgason

et al., 2005). Unity is a cross-platform video game engine used

for developing digital games for computers, mobile devices, and

gaming consoles (Brookes et al., 2020). Players download Aim

LabTM directly to their desktop or laptop PC. Players control

their virtual weapon in Aim LabTM tasks using a mouse and

keyboard, while viewing the game on a computer screen.

The participants each completed the tasks remotely using

their own gaming set-up. This included their own hardware

such as the PC, monitor, mouse and mouse pad. In addition,

there were other individual settings such as display size, viewing

distance, chair height, and mouse counts per inch (CPI). We

assumed that there was a wide range of equipment combinations

amongst the participants, and we did not control for any

differences in gaming set-ups between players other than CPI

and mouse sensitivity (see Data Analysis, below); however,

mouse acceleration was disabled. The orientation of the player’s

view of the environment (controlled by the player’s mouse) was

recorded in Euler angles and sampled at 120 Hz, then were

uploaded to our secure servers. The crosshair, marked with a dot,

was placed always at the center of the screen and corresponded

to the direction in which a shot would be fired. When the player

clicked the left mouse button to shoot, the projectile wouldmove

in a straight line pointing away from the player’s virtual avatar.

2.3. Task descriptions

Aim LabTM includes a variety of different task scenarios for

skill assessment and training, each tailored to a facet of FPS play.

These task scenarios assess and train a number of psychophysical

processes, including: visual detection, motor control, tracking

moving targets, auditory spatial-localization, change detection,

working memory capacity, cognitive control, divided attention,

and decision making. Each task can be customized to prioritize

accuracy, speed, or any basic component of performance over

others. During every round, players are granted points for

each target that they successfully track or shoot and destroy.

Additional points are rewarded for targets destroyed more

quickly or tracked for a longer period. Players attempt to

maximize their score on each round by destroying or tracking

as many targets as possible.

In this study, we used task scenarios that assessed the players’

flicking skill, a combination of visual detection, motor planning,

and motor execution. Specifically, we used two tasks, Gridshot
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and Sixshot, that were very similar but differed in target size to

characterize each player’s SAT and estimate their motor acuity.

The tasks were designed to incentivize players to maximize their

score by either prioritizing accuracy over speed when targets

were smaller, or prioritizing speed over accuracy when targets

were larger. Each of the 32 professional-level esports athletes

played 6 runs of each of the two tasks, after previous sessions

to familiarize themselves with the tasks.

2.3.1. Gridshot

In Gridshot (Figure 1A) there are 3 targets presented

simultaneously at any given time, with a new target appearing

(spawning) once an existing target is destroyed. There is neither

a ceiling nor floor effect, due to this self-paced design of the

task. All targets are the same size, ranging between 1.3◦ and

1.7◦ (degree of visual angle), assuming a range of viewing

distances and a range of values for the field of view in the

virtual environment of the game (set by the player). Spawn

locations are randomized to 1 of 25 positions in a 5 × 5 grid,

ranging between 4.8◦ and 9.1◦ wide and 5.1◦ and 7.8◦ high

and similarly depending on viewing distance and field of view.

The player destroys a target by moving their mouse to aim

then clicking the left mouse button to shoot. Due to multiple

targets being present at once, and combined with the unlimited

target duration and no explicit incentive to destroy any specific

target, the players, themselves, must decide the order in which

to destroy the targets. Players receive immediate feedback upon

target destruction; the game emits an explosion sound and

the orb-shaped target splinters into multiple pieces which then

disappear. Players receive a summary of performance feedback

after each 60 s run of Gridshot. These summary metrics include

score, hits per second (number of targets successfully destroyed

per second), and hit rate (percentage of shot attempts that

successfully hit a target). Points are added to the score when the

targets are hit and, in contrast, points are subtracted for shots

that missed the target. The player’s score is displayed at the top

of the screen throughout the run, automatically calculated in

the game’s software, and sent to a secure server. The number

of points added for each target destroyed is scaled by the time

since the previously destroyed target. In other words, the shorter

the time it takes to destroy the next target relative to when the

previous target was destroyed, the more points are added to the

player’s score. Thus, players are incentivized to quickly plan their

next movement and shoot targets rapidly. Even though players

are shownmultiple metrics at the end of each run, it is likely that

they are consciously optimizing for increased score during the

actual runtime of the task.

2.3.2. Sixshot

Sixshot (Figure 1B) is very similar to Gridshot, whereby they

share identical possible target locations. However, the Sixshot

task bears the following differences to Gridshot: 6 targets are

present at a time rather than 3, and the targets are approximately

14% the size of Gridshot targets. If optimizing for score, the

smaller target size demandsmuch greater shot accuracy from the

player than the targets in Gridshot.

3. Data analysis

3.1. Flicking skill assessment and fitts law

The Flicking Skill Assessment (FSA) was based onmeasuring

shot time (time interval between target appearance and the

subsequent shot) and shot spatial error (distance from center

of a target). Specifically, we characterized the SAT between the

two tasks by plotting shot speed (1/median shot time) vs. shot

precision (1/median shot spatial error). The same two measures

(shot time and shot spatial error) were used to assess Fitts Law.

3.1.1. Mouse calibration

To measure the player’s physical mouse movements, we

converted the player’s orientation in the virtual environment to

the corresponding movements of the mouse on the mouse pad,

which has units of centimeters (cm). This required additional

information about the relationship between physical mouse

movements and changes in player orientation, which varied

across players due to their settings in Aim LabTM, and their

own hardware and software. For each player, we recorded

their in-game settings that governed the field of view and

their mouse sensitivity—the magnitude of a change in camera

rotation (in degrees,◦) derived from a single increment or count

of the mouse hardware. The individual mouse sensitivities were

constant across x and y for each player. Each player’s mouse

(either hardware, software, or both) had a unique setting that

determined the number of counts that resulted for one inch of

distance traveled (counts per inch, CPI).

Player camera orientation was converted to physical mouse

movements as detailed below:

1. Mouse sensitivity × 0.05 = angle increment (degrees turned

per count)

2. Total degrees turned/angle increment = counts

3. (Counts/CPI)× 2.54 = physical distance traveled (cm)

The value of 0.05 is an arbitrary constant used in the Unity

software code to scale mouse counts to degree increments.

After this conversion, across all players and tasks the maximum

target distance was 5.60 cm. Thus, all targets were proximal

enough that players could have landed on every target

using a combination of only wrist rotations and bending or

straightening the fingers, i.e., forearm or elbow movement were

not strictly necessary.
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FIGURE 1

Screenshots from Aim LabTM, displaying a single frame from the: (A) Gridshot and (B) Sixshot tasks.

3.1.2. Movement parsing

To assess movement kinematics, we first parsed the time-

series of each player’s orientation in the virtual environment of

the game, as controlled by their mouse movements. Each time-

point (or sample) was labeled as either in-motion or stationary.

Epochs were labeled as in-motion after several consecutive

samples exceeded a velocity threshold. Conversely, epochs were

labeled as stationary after several consecutive samples fell below

a velocity threshold. The number of consecutive samples used

and the values of the thresholds were determined using a

proprietary algorithm, procured from a large dataset of Aim

LabTM players.

The primary movement for each target was identified as

the largest amplitude movement in the direction of the target.

During each 60-s run of the tasks, these primary movements

were often followed by a corrective movement, i.e., an action

in response to not having destroyed the target with the primary

movement. For instance, the primary movement could be

hypermetric, indicating that the player’s crosshair passes beyond

the target and they must initiate a corrective movement in

the opposite direction back toward the target. Alternatively,

the primary movement could instead be hypometric, falling

short of the target and requiring a corrective movement in the

same direction as the primary movement. At times, multiple

corrective movements were needed to destroy the target. These

component movement were distinguished from one another

by the movement parsing procedure outlined above. Each

component movement was fit separately, whether it was a

primary or corrective movement.

3.1.3. Movement kinematics

By fitting parametric functions to themousemovement data,

we quantified the features of an individual’s motor behavior. This

resulted in measurements of speed, precision, accuracy, reaction

time (henceforth shortened to SPAR), as well as swipiness (see

Section 3.5). Specifically, player orientation during each period

labeled as in-motion was fit with a sigmoidal function:

f (t; a, b, c) =
a

1+ eb(t − c)
(1)

x(t) = f (t; p1, p3, p4) (2)

y(t) = f (t; p2, p3, p4) (3)

where Equation (1) defines the sigmoid. The values of x(t) in

Equation (2) represent a model of the horizontal component

(rotation about the y-axis) of the movement trajectory for each

time-point sample. The values of y(t) in Equation (3) represent

a model of the vertical component (rotation about the x-

axis) of the movement trajectory for each time-point sample.

Example illustrations of the model components x(t) and y(t)

are shown in Figure 2. The top row of Figure 2 shows two

example movements in units of centimeters, transformed using

the mouse calibration. The bottom row of Figure 2 shows the

same two example movements, scaled to normalized units so

that 1 corresponds to the target location. The left column of

Figure 2 shows an example of a flick-and-land. In these panels,

the shot (vertical dashed line) occurs after the movement ends

and themovement lands at the target location (horizontal dotted

line). The right column of Figure 2 shows an example of a swipe.

The shot (vertical dashed line) is made during the middle of

the movement, and the movement lands well past the target

location (horizontal dotted line). The values of the parameters

(p1, p2, p3, p4) were fit to each individual movement trajectory

using the Levenberg-Marquardt algorithm (Levenberg, 1944). In

Equations (2) and (3), the x- and y- movement components were

fit with shared parameters p3 and p4.

SPAR metrics were then calculated from the best-fit

parameter values:
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FIGURE 2

Examples of the movement trajectories and model fits. (A,C) Example flick-and-land. (B,D) Example swipe. (A,B) Physical movements in units of

centimeters. (C,D) Normalized units - so that 1 corresponds to target location. Circles illustrate the samples of the player’s movement trajectory.

Curves illustrate the models of the movement trajectories, as expressed by Equations (1–3), with best-fit values for the parameters.

1. Speed (cm/second): peak speed at the midpoint of the

movement.

2. Precision (1/median absolute % distance to the target):

variability in the accuracy across trials/targets.

3. Accuracy (% distance to the target): distance between the

landing location of themovement and the center of the target.

4. Reaction time (s): time interval between when the target

appeared and the initiation of the movement, i.e., when the

movement reached 5% of its endpoint.

Specifically, the movement speed and accuracy of each

parsed movement were quantified as:

Speed =
am

f ′(p4; am, p3, p4)
(4)

Accuracy =
e
T
u

at
(5)

f ′(t; a, b, c) = bc[f (t; 1, b, c][1− f (t, 1, b, c)] (6)

am =

√

(p1)2 + (p2)2 (7)

at =

√

(xt)2 + (yt)2 (8)

e = (p1 − xt , p2 − yt) (9)

u =
(xt , yt)

‖ (xt , yt) ‖
(10)

The function f ’(t) is the derivative of the sigmoidal function

(Equation 6). The value of am represents the amplitude of

the movement (Equation 7) and the value of at represents

the distance to the target location (Equation 8). The vector e

represents the movement error (Equation 9) and the vector u

represents a unit vector in the direction of the target location

(Equation 10). Movement speed was re-scaled using the mouse

calibration protocol (to have units of: cm/second, see Section

2.4.1). Precision was calculated as the variability in accuracy,

using a robust measure of variability (the median of the absolute

difference from the target center, rather than the standard

deviation) to minimize the impact of outliers.

3.1.4. Swipiness

To characterize the degree to which each ballistic movement

resembled a swipe (the action of shooting on the fly) vs. a flick-

and-land (slowing down and stopping before firing) movement,

we compared the time of each shot that a player made with the

time of the midpoint from the associated ballistic movement.

An ideal swipe corresponds to firing a shot at the midpoint of
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a movement, i.e., the time point with maximum speed. On the

other hand, an ideal flick-and-land corresponds firing a shot

only after the movement has ended, long after the midpoint of

the movement. Thus, swipiness was calculated from dividing the

time of the shot by the time of the midpoint of the movement

(p4), divided by 2. This resulted in a swipiness value of 0.5

(arbitrary units) for an ideal swipe, and a swipiness value≥ 1 for

an ideal flick-and-land. There was no swipiness value computed

for a movement that had no associated shot, i.e., if there was no

shot between the initiation of one movement and the initiation

of the next movement.

Swipiness itself is a granular measure of shot speed as

it relates to the movement trajectory, with lower swipiness

indicating that the firing of a shot occured earlier in the

trajectory. Additionally, the absence of a swipiness value

indicates that a movement was not associated with a shot. Across

trials within a certain context or task, the number of movements

with no swipiness value reflects the need for players to make

multiple movements to destroy targets.

3.2. Data post-processing

For each player, we computed SPAR for every movement in

Gridshot and Sixshot and swipiness for every movement that

had a corresponding shot fired. We then applied several steps

of post-processing.

Firstly, upper and lower band thresholds were applied to

remove outliers (presumed to be failures in the trial parsing

or SPAR fits). For all of the metrics, the 95th percentile was

used for the upper band value and 0 was used for the lower

band value. Sigmoid fits with an r-squared value of less than

0.5 were pruned. Each accuracy value was multiplied by 100,

to convert from proportion to percent of the distance to the

target. We then subtracted 100 from each value such that

hypometric movements had negative values and hypermetric

had positive values, i.e., accuracy values of 0 indicate that the

player fired a shot directly at the center of the target to destroy

it. We computed the median of each metric, separately for each

individual player, and separately for each task and movement-

type condition. This yielded a total of 20 variables per player: 5

metrics (median speed, precision, accuracy, reaction time, and

swipiness) × 2 movement types (primary vs. corrective) × 2

tasks (Gridshot vs. Sixshot).

A z-score was calculated for each metric across players,

combining both Gridshot and Sixshot (for each metric and

movement type) to permit statistical comparisons between the

tasks. The distributions of these data are shown in Figure 3.

Once z-scored, data was tested for normality using Kolmogorov-

Smirnov; the resulting p-values indicated that the majority of

metric distributions were non-normal (8 out of 10 variables

where ps < 0.05) and therefore non-parametric approaches

to statistical analysis were taken. To mitigate the confounding

effects of mouse sensitivity, this vector was converted into

a diagonal matrix and regressed out of both the movement

kinematics and motor acuity. To do so, we expressed the z-

scored movement kinematic metrics Y (a 32 × 20 matrix: 32

players and 20 kinematic variables, as stated above) as a linear

prediction of the z-scored mouse sensitivities A (a 32 × 32

diagonal matrix) multiplied by regression coefficients X:

Y = AX (11)

First, the inverse of the mouse sensitivity diagonal matrix

A
# was calculated and multiplied by the movement kinematics

matrix Y to estimate the regression coefficients X̂:

X̂ = A
#
Y (12)

Second, we computed the components of the movement

kinematics that could be predicted by the mouse sensitivities Ŷ

by multiplying X̂ with the mouse sensitivity diagonal matrix A:

Ŷ = AX̂ (13)

Third, the residual movement kinematics matrix, R, was

computed by subtracting Ŷ from Y:

R = Y− Ŷ (14)

Mouse sensitivity was correlated with motor acuity and with

movement kinematics, but this correlation was removed by the

regression procedure (Supplementary Figures S8–S10).

4. Results

4.1. Motor acuity

We predicted that pro and semi-pro players’ would exhibit a

SAT as a function of the target size. In particular, we predicted

that players would exhibit systematic differences in movement

behavior between Gridshot and Sixshot. Gridshot’s large target

size incentivizes players to maximize score by moving as quickly

as possible with relatively low shot precision (1/median shot

error, as measured by the distance to the center of the nearest

target in cm). In comparison, Sixshot targets are much smaller

and require high precision, which consequently means that

players are motivated to slow down in order to maximum their

score.

Figure 4 illustrates the SAT and the Flicking Skill Assessment

(FSA). The left panel of Figure 4 shows shot speed (1/median

shot time) as a function of the median shot error for Gridshot

and Sixshot. Each line connects the Gridshot and Sixshot data

for a single player. Our findings indicate that each player
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FIGURE 3

Distribution plots for each metric by task (see Legend). (A–E) Gridshot. (F–J) Sixshot. Statistical results from Kolmogorov-Smirnov test for

normality displayed in annotation boxes; where D, KS-statistic and P, p-value. Pink annotation boxes indicate a p < 0.05.

FIGURE 4

(A) Shot speed vs. shot error. Solid lines illustrate the line of best fit for each player by task (see Legend). (B) SAT curves. Dashed line spans from

(0, 0) to three-times the standard deviation, plus the mean of the distribution of shot precision (x-axis) and shots speed (y-axis). The intersection

of individual curves with the diagonal, marked with “×,” indicates motor acuity (arbitrary units).

followed the expected pattern in behavior: faster and more

variable in Gridshot compared to Sixshot. This demonstrates

that players responded strategically and appropriately to the

different demands of the two tasks. The right panel of Figure 4

re-plots these results in terms of shot precision (1/median shot

error). The curves represent the transformed lines from the left

panel.

The dashed diagonal line spans from (0, 0) to three-times

the standard deviation, plus the mean of the shot precision

distribution (x-axis) and shots per second distribution (y-axis).

This line represents the axis of motor acuity; SAT curves

placed toward the upper right indicate better performance, i.e.,

higher precision combined with faster speed. We obtained a

flicking skill value for each player, by identifying the point along

the diagonal line that intersects with that player’s SAT curve.

Notably, these flicking skill values are related to certain aspects of

movement kinematics, as detailed in the following subsections.

4.2. Fitts law

Performance, combined across the two target sizes, was

poorly characterized by Fitts Law (Figure 5). For each target we

measured the shot time (elapsed time between the destruction
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FIGURE 5

Fitts Law. Shot time as a function of target distance. Index of

di�culty: log2(2d/e) where d is target distance and e is shot

error. Blue line, regression line fit to Sixshot data. Red line,

regression line fit to Gridshot data. Black line, failure to fit data

from both tasks combined.

of a target and the first shot at the subsequent target), target

distance (angular distance to the target when it first appeared)

and shot error (angular distance between the shot and the center

of the target). The logarithm of the ratio of target distance

and shot error was computed, separately for each target, and

then binned by decile. For each bin, we computed: 1) the

median shot time; and 2) the median logarithm of the ratio

of target distance and shot error. Fitts Law provided a good

characterization of behavioral performance when fit separately

to the data from each task (Figure 5, red and blue lines), but a

very poor characterization of the data when combined across the

two tasks (Figure 5, black line). In other words, shot times were

well predicted by Fitts Law as a function of target distance and

target error for each target size separately, but not for both target

sizes together.

4.3. Task-dependence of movement
kinematics

Movement kinematics differed between the two tasks;

Figure 6 illustrates each player’s pattern of strategy change for

each movement kinematic metric (after regressing out mouse

sensitivity), with Gridshot on the x-axis and Sixshot on the y-

axis. The results indicate that players were more hypometric

in Sixshot compared to Gridshot (Accuracy; p < 1e-4). Players

were faster to react (Reaction time; p < 1e-4), they moved their

mouse at a faster pace (Speed; p < 1e-4), and fired earlier in

their movement trajectory (Swipiness; p < 1e-4) in Gridshot

compared to Sixshot. There was no statistical evidence of a

significant difference in the variability of accuracy between tasks

(Precision; p = 0.88), indicating that players were similarly

consistent in their landing positions for Gridshot and Sixshot.

4.4. Individual di�erences in motor acuity
and kinematics

Motor acuity, as measured with the FSA, was predictive

of individual differences in movement kinematics. Figure 7

shows the relationship between individual differences in motor

acuity and movement kinematics (after regressing out mouse

sensitivity). For Gridshot, motor acuity was negatively correlated

with reaction time (p < 1e-4) and swipiness (p < 1e-4), while

positively correlating with accuracy (p = 0.019), speed (p = 1e-

04), and precision (p = 1e-04). For Sixshot, motor acuity was

also negatively correlated with reaction time (p < 1e-4) and

swipiness (p = 2e-4), and positively with precision (p = 8e-

4). For both tasks, the interpretation of these results is that

players with greater motor acuity initiated movements more

quickly, landed with lower variability, and fired shots earlier in

the movement trajectory. Moreover, in Gridshot only, players

with greater motor acuity exhibited faster movement speed and

better (less hypometric) accuracy.

5. Discussion and conclusion

In this study, we developed and validated the flicking

skill assessment (FSA), a novel approach to objectively assess

individual player skill in FPS games. Furthermore, we elucidated

the systematic relationship between motor acuity (measured

by characterizing speed-accuracy tradeoff, SAT) and movement

kinematics. Our results reveal the individual differences in

motor acuity and movement kinematics between professional-

level FPS players, as well as differences in kinematics across tasks

with different target sizes. The proposed FSA is an elegant and

efficient approach which requires only an adjustment of target

size between similar tasks.

The players’ performance were found to differ between tasks,

whereby players used a more conservative strategy in Sixshot

compared to Gridshot. The movement kinematics provided

detailed information about the nature of this shift in strategy

between tasks: players take longer to plan their movements,

move slower, fire later in the trajectory, and are more likely to

land hypometrically in Sixshot compared to Gridshot. Given

that the targets in Sixshot are small and require less error

compared to large targets in Gridshot, this adaption in shot

and movement behavior is a rational and efficient approach.

Players sacrifice speed for accuracy and display more of a

bias toward conservative (hypometric) landing positions during

Sixshot compared to Gridshot.

Our analysis characterized individual differences in motor

acuity and movement kinematics across professional-level
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FIGURE 6

Di�erences in movement kinematics for Sixshot vs. Gridshot: (A) Accuracy. (B) Reaction time. (C) Speed. (D) Swipiness. (E) Precision. Each data

point within each panel corresponds to a di�erent player. Statistical results from the paired Wilcoxon signed-rank test displayed in annotation

boxes; where w is sum of ranks, and p is p-value. Pink annotation boxes indicate a p < 0.05. The dashed diagonal represents the values at which

the kinematic z-scores for Gridshot is equal to Sixshot.

esports athletes. Players differ in the degree to which they can

be both fast and accurate. Players with a higher motor acuity

value, i.e., their SAT curves are further upwards and rightwards,

were both faster and more accurate overall than players with

a lower motor acuity value, and are thus considered to have a

higher skill level. Critically, motor acuity significantly correlated

with a subset of movement kinematics. This demonstrates that

individual differences in flicking skill are predictive of individual

differences in kinematics. Greater motor acuity accompanied

faster reaction times, greater precision and a tendency to shoot

earlier in the trajectory (swipiness) for both Gridshot and

Sixshot (Figure 7).

Perhaps surprisingly, Fitts Law provided a poor

characterization of performance when combined across

the two tasks (i.e., across the two target sizes). Fitts Law

provided a good characterization of behavioral performance

when fit separately to the data from each task, but a very poor

characterization of the data when combined across the two

tasks. We speculate that this failure of Fitts Law reflects a

difference in strategy between the two tasks, specifically, that

players tended to be more swipey for Gridshot than for Sixshot.

A previous study found excellent agreement between Fitts

Law and behavior in an FPS task (Looser et al., 2005), but the

participants in that study were either amateur gamers or did not

report playing FPS games at all. Swiping is an advanced skill

that is commonly used by highly competitive and professional

players when speed is of paramount importance.

One crucial design element of the FSA is the inclusion of

more than one task, each with distinct incentives regarding

speed and precision. The placement of an individual’s entire

SAT curve is the key to quantifying motor acuity, rather than the

placement of a single data point. The SAT curve itself represents

the possible combinations of shot speed and shot precision given

the player’s skill, with the player’s current strategy determining

where along the curve their current speed and precision is drawn

from. Two players with identical SAT curves could have different

strategies within the same task, such that their performance

would sample different values for speed and precision on

the same curve. Including multiple tasks, each with distinct

incentives for speed and precision, enables the characterization

of SAT across possible incentives, and thus isolates

motor acuity.

Indeed, we have now implemented a version of the FSA with

3 different target sizes (Supplementary Figure S11). In this task,

called Adaptive Reflexshot, one target at a time appears in a

randomized location, confined to an imaginary ellipse in front of

the player’s virtual avatar. Players have a limited time to destroy

each target before it “times-out” and disappears. To provide

a visual cue of time remaining, each target gradually becomes

more transparent and then disappears. The target presentation

duration is titrated according to performance: the duration is

decreased (it becomes transparent more quickly) on the next

trial after a target is destroyed and the duration is increased (it

becomes transparent more slowly) on the next trial after a target

time-out, separately for each target size.

A second crucial design element is the measurement of both

speed and precision. It is not possible to use a single performance

metric as a proxy for motor acuity, considering it is defined by

both speed and accuracy (Shmuelof et al., 2012). For instance,

retrieving only shot speed from both tasks can be confounded by

players simply shooting sooner with no ramifications for being

inaccurate—a behavior that does not reflect high skill.

Our measure of motor acuity and the movement kinematics

were derived from different behavioral sources: shot behavior

and mouse movements, respectively. By identifying a systematic

relationship between the two sources, our findings demonstrate

that individual differences in player skill correspond to

individual differences in underlying movement kinematics. We

propose that the FSA, a measure of motor acuity, represents a

powerful tool for quantifying skill in FPS flicking tasks. One of

the major benefits of the FSA is the capability to isolate player

skill from context-dependent strategy regarding SAT. Indeed, a
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FIGURE 7

Correlation between player kinematics and motor acuity for each metric in each task (see Legend): (A–E) Gridshot. (F–J) Sixshot. Statistical

results from Spearman’s Rank Correlation displayed in annotation boxes; where rho, Spearman’s Correlation Coe�cient and P, p-value. Pink

annotation boxes indicate a p < 0.05.
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player can achieve their best possible skill ranking by matching

shot behavior with task incentives. However, their underlying

ability will determine the upper limit of their measured motor

acuity, i.e., when they adopt the optimal strategy across tasks

in the FSA. Faced with different target sizes, players who are

experienced and skilled are predicted to flexibly adjust their

behavior to maximize performance. Shot speed and precision

reveal their flicking skill, and the relative skill of individual

players can be objectively compared by using this motor acuity

metric.

Gamers are highly invested in optimizing their performance,

including factors distinct from improving FPS skill per se.

To that end, it is of great value for this community to

establish objective benchmarks for how any given influence

on performance can be altered or shaped to maximize gaming

outcomes. Using the FSA, the industry could readily assess

within-participant differences in motor acuity to reveal the

influence or relative efficacy of particular hardware (e.g., mouse,

mouse pad, monitor rendering latency), software (e.g., mouse

settings, axes inversion), and various other factors related to

the health and physical attributes of players (e.g., posture,

exercise, sleep, diet, and dietary supplements). As the scientific

study of gaming performance is in its infancy, the FSA is an

unprecedented and broadly applicable tool to efficiently establish

foundational knowledge in the field.

The FSA not only allows for comparisons to the population,

but additionally provides feedback on an individual level. That

is, each individual user may measure their own baseline during

an initial session of the FSA so that repeated gameplay can

monitor changes relative to this baseline. This is particularly

salient for esports professionals, given that currently available

metrics are unsubstantiated and team performance often clouds

the details of individual performance (Voida et al., 2010).

Elucidating the comparable strengths and weaknesses of each

member of any given esports team would not only provide a

basis for coaching, but for team composition as well.

This flexible tool is also a promising training regimen for

improving FPS skill. As esports professionals, the participants

involved in this study were able to recognize and adapt to

the incentives for SAT in both tasks as expected. Players of

a lower skill or experience level would be more likely to fail

at adjusting their shot behavior according to task demands,

causing performance to suffer. The FSA can readily identify

such faulty or insufficient adjustments in strategy. To be specific,

if the slope of the line fitted to a player’s shot speed by shot

error is either negative, near zero, or near vertical, this indicates

that the player did not make the trade-off between accuracy

and speed to maximize performance between scenarios. An

assessment or training protocol based on the FSA would be

able to automatically provide actionable feedback: explaining the

difference in incentives between the tasks based on SAT, and,

for example, instructing the player to slow down or speed up

depending on target size. Ultimately, repeated participation in

the FSA could facilitate the improvement of flicking through

experience and practice in conjunction with explicit instruction

on the optimal strategies a player should use during play.

The capacity of the FSA to provide, over a short period

of time with no ceiling or floor effect, a measure of motor

acuity independent of strategy and SAT makes it a promising

tool for a wide range of both basic and applied research; for

example, visuomotor psychophysics and rehabilitation. As noted

above (see Introduction), there is a paucity of academic studies

examining motor acuity. The FSA has the potential to fill

this critical gap in the study of human motor behavior and

visuomotor psychopysics. As with any other instance of motor

skill learning that is characterized by reinforcement learning

[1], physical rehabilitation aims to improve motor acuity. At

the same time, rehabilitation must also assess performance

to provide motivating feedback for the patient and clinically

relevant data for the therapist to guide rehabilitation.

Neuroplasticity drives motor learning, which itself depends

on movement repetition and intensity (Nudo and Milliken,

1996; Nudo et al., 1996a,b). Neuroplasticity is also facilitated

by active task engagement and enjoyment (Maclean et al.,

2000, 2002; Plautz et al., 2000; Burdea, 2003; Burke et al.,

2009a,b; Putrino et al., 2015;Winstein et al., 2016). Furthermore,

calibrating task difficulty to an individual’s skill level is critical

for rehabilitation (Wolf et al., 2006), because competency

is an intrinsic motivator (Przybylski et al., 2010). The FSA

satisfies all of these criteria: a challenging, adaptive, and

engaging task based on repetitive movement behavior. Thus,

incorporating the FSA into gamified rehabilitation therapy

would enable objective quantification of behavioral or motor

performance (e.g., kinematics, dynamics), and could be rapidly

and inexpensively deployed at scale and remotely provided to

large populations.

The participants in the current study were all experienced,

highly-skilled FPS players. Further investigation is required

to establish the degree to which our findings generalize to

the broader population of FPS players (which spans a range

of skill and ability levels), the general population, or the

clinical populations. Additionally, it will be crucial to establish

how lower-skilled players gradually improve through training

and experience, and the corresponding changes in movement

kinematics (e.g., shot behavior, SAT, etc.) as well as how to

optimize training.
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