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Abstract
Background: The majority of patients undergoing peritone-
al dialysis (PD) suffer from volume overload and this overhy-
dration is associated with increased mortality. Thus, optimal 
assessment of volume status in PD is an issue of paramount 
importance. Patient symptoms and physical signs are often 
unreliable indexes of true hydration status. Summary: Over 
the past decades, a quest for a valid, reproducible, and eas-
ily applicable technique to assess hydration status is taking 
place. Among existing techniques, inferior vena cava diam-
eter measurements with echocardiography and natriuretic 
peptides such as brain natriuretic peptide and N-terminal 
pro-B-type natriuretic peptide were not extensively exam-
ined in PD populations; while having certain advantages, 
their interpretation are complicated by the underlying car-
diac status and are not widely available. Bioelectrical imped-
ance analysis (BIA) techniques are the most studied tool as-
sessing volume overload in PD. Volume overload assessed 
with BIA has been associated with technique failure and in-

creased mortality in observational studies, but the results of 
randomized trials on the value of BIA-based strategies to im-
prove volume-related outcomes are contradictory. Lung ul-
trasound (US) is a recent technique with the ability to iden-
tify volume excess in the critical lung area. Preliminary evi-
dence in PD showed that B-lines from lung US correlate with 
echocardiographic parameters but not with BIA measure-
ments. This review presents the methods currently used to 
assess fluid status in PD patients and discusses existing data 
on their validity, applicability, limitations, and associations 
with intermediate and hard outcomes in this population. 
Key Message: No method has proved its value as an inter-
vening tool affecting cardiovascular events, technique, and 
overall survival in PD patients. As BIA and lung US estimate 
fluid overload in different compartments of the body, they 
can be complementary tools for volume status assessment.

© 2020 S. Karger AG, Basel

Introduction

Fluid overload is a common complication in CKD, 
particularly in CKD stage 5 before and after the initiation 
of renal replacement therapy. Fluid overload increases 
blood pressure (BP) and cardiac preload and has been as-
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sociated with heart failure, left ventricular hypertrophy, 
and mortality both in hemodialysis (HD) [1, 2] and peri-
toneal dialysis (PD) populations [3–5]. Thus, one of the 
main goals of adequate renal replacement therapy in pa-
tients with ESRD is to avoid fluid overload and maintain 
euvolemia.

Assessment of fluid status (i.e., overhydration [OH], 
normohydration, and dehydration) was traditionally 
based on clinical examination including assessment of 
BP, peripheral edema, lung auscultation, and simple di-
agnostic tools, for example, chest X-ray. The Internation-
al Society of Peritoneal Dialysis suggest that “hydration 
status should be assessed clinically on a regular basis dur-
ing every follow-up visit and more often if clinically indi-
cated” in PD patients [6]. However, these parameters can 
rather not reliably guide treatment decisions. A previous 
cross-sectional study in a HD population showed that 
pedal edema did not reliably reflect the volume status of 
the patients [7]. A study in PD patients [8] suggested a 
strong correlation between pedal edema and hyperten-
sion, but there is currently no study showing a direct as-
sociation between signs of volume overload in clinical ex-
amination and body volume status assessed with an ob-
jective method.

The clinical need of defining the ideal fluid status is 
perhaps more urgent in PD as some studies have sug-
gested that PD patients could be more overhydrated than 
individuals undergoing HD [9]. This review presents the 
currently used methods to assess fluid status in PD pa-
tients and discusses the existing evidence on their validi-
ty, applicability, limitations, and associations with inter-
mediate and hard outcomes.

General Principles of Fluid Status Assessment

The gold-standard methods for fluid status assessment 
are isotope dilution analysis techniques. Deuterium and 
tritium dilution are preferred ways to measure total body 
water (TBW), while bromide chloride and sucrose dilu-
tion are used for extracellular volume (ECV) [10]. How-
ever, these methods are invasive, expensive, and largely 
unfeasible in clinical routine. DEXA dual-energy X-ray 
absorptiometry can provide data about fat, lean soft, and 
bone tissue mass [11]. DEXA is considered to be superior 
to other methods for determining body composition in 
dialysis patients, although hydration can affect the esti-
mation of lean soft tissue mass, and ideally, it should be 
combined with a trace dilution method [10, 12, 13]. Fur-
thermore, estimation of bone tissue mass by DEXA in 

ESRD patients is also problematic, since as a bi-dimen-
sional measurement of “areal” and not “true volumetric” 
density, it is confounded by the presence of extra-osseous 
calcium and fails to recognize the histological type of re-
nal osteodystrophy and to predict bone turnover type [14, 
15].

Over the years, several bedside methods (ultrasound 
[US] assessment of inferior vena cava [IVC] diameter, 
bioimpedance analysis, and lung US) and biomarkers 
were increasingly used in an effort toward objective fluid 
status assessment both in HD and PD patients. These 
techniques have been tested in numerous studies with dif-
ferent aims: (i) as methods to estimate ideal dry weight 
either cross-sectionally or during longitudinal follow-up, 
(ii) as predictors of cardiovascular or all-cause mortality, 
and (iii) less frequently, in intervention studies with soft 
(achievement of normohydration) or harder end points 
(change of echocardiac parameters).

It is important to note that the above methods do not 
assess all body compartments. Fluid can accumulate in 
different body compartments, that is, intracellular water 
and extracellular water (ICW and ECW, respectively); the 
latter can be divided in intravascular and interstitial com-
partments [16]. Fluid overload in the intravascular com-
partment of ECW is mostly associated with cardiovascu-
lar mortality, while fluid in ICW is directly associated 
with muscle mass [17]. Bioimpedance techniques can 
provide estimations of ECV, intracellular volume, and 
TBW, whereas IVC diameter measurements, biochemi-
cal markers (such as brain natriuretic peptide, BNP), and 
lung US provide information that corresponds to the 
amount of fluid in the intravascular compartment (Ta-
ble 1).

IVC Diameter

Measurement of the diameter of IVC and its decrease 
on deep inspiration (collapsibility index-CI) by echocar-
diography is good estimation of right atrium pressure; as 
pressure increases in the right atrium, this is transmitted 
to the IVC, resulting in reduced collapse with inspiration 
and IVC dilatation. IVC diameter <2.1 cm that collapses 
>50% with a sniff or inspiration suggests normal RA pres-
sure of 3 mm Hg (range, 0–5 mm Hg) [18]. The diameter 
of the IVC was previously used to assess volume overload 
in HD patients [19]. In PD populations, the IVC diame-
ter, especially maximal diameter in quiet expiration 
(IVCe), was previously shown to correlate significantly 
with cardiothoracic ratio (r = 0.53, p < 0.001) and plasma 
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atrial natriuretic peptide (ANP) concentration (r = 0.59, 
p < 0.05) [20]. IVC was a useful tool for assessing the flu-
id status in PD patients and correlated – when compared 
with bioelectrical impedance analysis (BIA) measure-
ments – moderately with ECW/TBW (r = 0.42; p < 0.05) 
and ICW/ECW (r = −0.47; p < 0.025) [21]. It also corre-
lates with left ventricular geometric stratification [22]. 
However, as of this writing, no study has assessed the va-
lidity of IVC diameter for fluid overload assessment, in 
relation to gold-standard techniques.

Despite the obvious advantages of assessing volume 
status with IVC, some caveats should kept in mind that 
(i) there is a wide variation of IVC diameters in healthy 
individuals, and single measurements are not helpful, (ii) 
there is a significant, inverse correlation between IVC di-
ameters and heart rate, and the precision of intravascular 
volume assessment is improved by correcting for the 
heart rate, and(iii) the presence of tricuspid insufficiency 
and right-sided cardiac failure leads to unreliable results 
[23]. Based on these remarks, IVC diameters should be 
performed and interpreted by an experienced cardiolo-
gist. Finally, as discussed above, one should keep in mind 
that IVC estimates only intravascular (preload) volume 
and has a rather low reproducibility [24].

Natriuretic Peptides

Natriuretic peptides, that is, BNP, N-terminal pro-B-
type natriuretic peptide (NT-pro-BNP), and ANP are 
hormones that are released by ventricular or atrial myo-
cytes in response to the myocyte stretch, such as increased 
preload or afterload [25]. Both are well-studied biomark-
ers in heart failure and CKD patients [26], where they 
mainly increase due to ECV expansion. Apart from the 
volume overload, BNP is increased with reduced GFR. 
Although the clearance of both peptides, especially NT-
pro-BNP, is mainly renal (filtered by the glomerulus and 
degraded in the proximal tubule [27]), it seems that the 
severity of structural heart disease defines the levels of the 
peptides in advanced CKD disease more than renal clear-
ance itself [28, 29].

Plasma BNP levels are known to decrease significantly 
after an HD session, implying that volume overload is re-
lated to BNP increase; however, removal during HD is 
also part of the equation [30]. In HD [31] and PD popula-
tions [32], elevated levels of natriuretic peptides are re-
lated with increased cardiovascular and overall mortality. 
Specifically in PD populations, plasma BNP and NT-pro-
BNP levels are elevated [33] and correlate with volume 

overload [34], while not all peptides are predictive of 
mortality. A sub-analysis of the ADEquacy of peritoneal 
dialysis in MEXico study, including 965 PD patients, 
showed that plasma levels of cardiac natriuretic peptides 
(NT-pro-BNP, pro-ANP[1–30], pro-ANP[31–67], and 
pro-ANP[1–98]) are elevated in patients on PD and cor-
relate with the level of residual renal function (RRF) and 
systolic BP; however, only NT-pro-BNP was associated 
with cardiovascular and overall mortality [35, 36]. A 
study with PD patients from Korea compared 3 biomark-
ers (NT-pro-BNP, hsCRP, and cTnT) regarding the prog-
nosis of mortality. The study concluded that NT-pro-
BNP is a more significant prognostic factor for cardiovas-
cular mortality than cTnT and hsCRP, whereas hsCRP is 
associated more closely than NT-pro-BNP and cTnT for 
all-cause mortality [37]. Currently, there are no studies 
specifically assessing the validity of natriuretic peptides 
for assessing fluid status in PD patients against gold-stan-
dard techniques. Overall, existing evidence suggests that 
the above peptides are elevated in PD patients and cor-
relate with echocardiographic parameters of the left ven-
tricle (LV) and, in some cases, mortality. Their elevated 
levels independently identify a subset of patients at great-
er risk for death, but they cannot be used to assess volume 
status [38]. Further, the levels of these peptides may be 
affected by underlying heart function and are not univer-
sally available [24].

BIA Techniques

Typology
Bioimpedance analysis is a simple, noninvasive, and 

by-the-bed method to estimate fluid distribution in body 
compartments. Table 2 presents the basic assumptions, 
estimated parameters, advantages, and limitations of the 
various types of BIA techniques. The basic principle of 
bioimpedance techniques is that when a low-strength al-
ternating current (usually 50 kHz) passes through the 
body, biological tissues react accordingly to the current 
frequency and the properties of the tissue (called imped-
ance) [39, 40]. The two basic properties of impedance are 
resistance and capacitance and the former measures the 
flow of the electrons through the tissue, the latest refers 
to how much energy is stored and released in each current 
alternating cycle. Resistance is proportional to the amount 
of fluid, while capacitance is proportional to the cell mass. 
There are mainly four methods of body fluid volume as-
sessment: (a) prediction of TBW with function of single-
frequency (50 kHz), (b) use of low (1–5 kHz) and high 
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(100–500 kHz) frequencies and (c) bioimpedance spec-
troscopy (BIS) where a broad band of frequencies (1–
1,000 kHz) is used (Low-frequency currents (<5 kHz) 
pass through the ECV (they cannot pass the cell mem-
brane), while high-frequency currents pass though both 
ECV and intracellular volume compartments [41]. A 
variable amount of very low-frequency current, regard-
less at which frequency the current is introduced, can 
penetrate the membranes of muscle cells, particularly 
when the current is parallel to the muscle fiber [42]) and 
(d) bioimpedance vector measurement (BIVA), where 
continuous bivariate vector of impedance (resistance and 
reactance) is evaluated, compared with the deviation 
from a reference healthy population [43]. These methods 
can be applied segmentally or as a whole body measure-
ment [44], while the results can be presented as absolute 
volumes or vector distribution [45, 46].

All of the bioimpedance techniques are highly repro-
ducible and validated with gold-standard dilution meth-
ods in healthy populations [47]. However, errors in the 
prediction of volumes may occur mainly due to different 
devices, lack of standardization and various assumptions,  
mathematical models and equations used. Thus, a study 
in athletes which compared a BIS and a single-frequency 
device showed lack of measurement agreement [48], 
while even the use of different commercial electrodes 
could affect the vector estimations due to variability of 
intrinsic resistance and reactance values [49]. In general, 
BIS prediction equations could involve 5 different errors: 
impedance measurement error, regression error (stan-
dard error against the reference method), intrinsic error 
of the reference method, electric-volume model error 
(e.g., anisotropy of tissues), and biological variability of 
healthy and diseased subjects. On the contrary, vector 
analysis (BIVA) seems to engage only mainly measure-
ment error and biological variability, as there is no need 
for body weight measurement and use of regression equa-
tions [43].

In HD populations, single and multifrequency BIA 
methods have been used [50]; these were either segmental 
(they measure the change of the resistance in arm, trunk, 
or calf) or whole body (Table 2). Specifically, continuous 
intradialytic calf BIS seems a practical method to deter-
mine dry weight in HD, based on the relationship be-
tween change in fluid volume and change in calf-normal-
ized resistivity or flattening of the curve of change in calf 
extracellular resistance using a nonlinear model, not in-
fluenced by body composition [51, 52]. The segmental 
BIA cannot be used in PD populations since the method 
presumes rapid volume reduction (as in a HD session) in 

order to monitor the resistance [53, 54]. Whole body BIS 
devices (BCM, Hydra, and InBody) have been used wide-
ly in both HD and PD patients for years and offer the abil-
ity to perform frequent, rapid, noninvasive assessment of 
the fluid status [55]. The devices can estimate TBW and 
ECW, lean tissue mass, and adipose tissue mass based on 
mathematical models and healthy population data. This 
is of great interest since there is convincing evidence for 
an association between volume status, inflammation, and 
nutritional status [56]. They can also estimate OH ex-
pressed in liters or kilograms, with the index OH/ECW  
>15% being previously proposed as an index of hyperhy-
dration in PD populations [57].

Validation Studies in PD Patients
In HD patients, BIS measurements seem to perform 

the best low detection limit when compared with other 
techniques for volume assessment [58]. However, limited 
data are available on validation of bioimpedance tech-
niques for assessment of fluid status in PD populations. 
In a cross-sectional study of 40 PD patients, Bland-Alt-
man analysis showed wide limits of agreement between 
the gold-standard method of deuterium dilution and 
multifrequency BIA for TBW (mean difference 2.0 ± 3.9 
L, range −9.2 to +10.7 L) and between bromide dilution 
and multifrequency BIA for ECV (mean difference −2.7 
± 3.9 L, range −9.0 to +10.1 L) [54]. In contrast to the 
above, in a small study in pediatric PD patients, TBW 
measured with single-frequency BIA provided a good es-
timate of TBW assessed with the tracer dilution technique 
with small divergence of reported values (mean differ-
ence: 0.33 ± 1.44 L, 95% CI from −0.93 to +0.26, root-
mean-square-error: 1.45 L) [59]. With regard to the defi-
nition of OH, a cutoff point of relative OH ([OH/ECW] 
× 100) > 15% and more recently of >17.4% has been rec-
ommended by extrapolation of data from HD popula-
tions, where hydration status above this value was associ-
ated with worse survival in multivariate Cox regression 
analysis (HR 2.72, 95% CI 1.6–4.0) [60].

Technical Limitations of BIA Use in PD Patients
BIA methods may have some particular limitations 

when used in PD populations. An observational study in 
34 PD patients that were evaluated by whole body multi-
frequency BIS with full and empty abdomen suggested 
that presence or absence of the dialysate fluid in the peri-
toneal cavity can have a major influence on volume status 
assessment. Significant differences were found before and 
after draining the cavity with regard to the OH volume 
(1.82 ± 1.73 L vs. 1.64 ± 1.68 L, p = 0.043) and relative OH 
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(8.29 ± 6.96% vs. 7.14 ± 6.79%, p = 0.017) [61]. Based on 
these findings, it is likely that the ideal BIA measurements 
should be performed with empty abdomen. However, 
this is clinically impractical, and most clinicians suggest 
that the differences in measurements are probably not 
clinically significant. Measurements with full abdomen 
made in a standardized way and performed serially can 
document changes of volume status, which is most im-
portant [62].

Hypoalbuminaemia is another issue that can compro-
mise proper BIA use in PD; it is more common and seri-
ous in PD patients who have large protein losses though 
the membrane, especially those that are high transporters 
or inflamed [63]. The ratio ECW/TBW is affected (in-
creased, due to a decrease in TBW estimation) both by 
muscle wasting and abnormal tissue hydration. Clini-
cians should keep in mind that absolute values of BIS 
measurements are based on algorithms derived from 
healthy Caucasian populations, whose body composition 
and fluid distribution is quite different from dialysis pa-
tients. For example, TBW estimates from BIA measure-
ments assume a fixed hydration of lean body mass [64], 
whereas in hypoalbuminemic PD patients, tissue hydra-
tion is increased and TBW is underestimated. In a cohort 
of HD patients, followed over 12 months, BIA measure-
ments were combined with absolute measurement of 
TBW using dilution tracers. ECW/TBW ratio was signif-
icantly related to comorbidity due to reduced TBW, 
which reflected the muscle wasting associated with dis-
ease burden, age, and inflammation as mortality risk in-
creases. The same study found an increasing discrepancy 
between BIA-derived and isotope-measured TBW as co-
morbid burden increased [65]. In a cohort of PD patients 
[66], hypoalbuminemia was an important determinant of 
tissue OH, which was not associated with an increased 
plasma volume (measured by dilution methods). Finally, 
BIA fails to distinguish between intravascular and inter-
stitial ECW excess [67]. For all these reasons, some au-
thors suggested that there is not yet clear evidence that 
BIA methods have clinical benefits in fluid assessment in 
PD patients [68].

Observational Studies on the Prevalence of Volume 
Overload and Its Association with BP Levels in PD 
Patients
In PD populations, the majority of studies using bio-

impendance techniques are observational. The largest 
observational trial was performed in 135 European cen-
ters and included 1,054 patients (IPOD-PD study) [69]. 
The study revealed that the majority (56.4%) of patients 

were moderately and severely overhydrated based on a 
cutoff level of >1.1 L. At initiation of PD, the mean OH 
volume was 1.9 ± 2.4 L; however, 1 year later, OH had de-
creased at 1.2 ± 1.8 L and remained relatively stable be-
tween the 2nd and 3rd year of follow-up (1.4 ± 1.8 L and 
1.4 ± 1.7 L, respectively). According to a linear-mixed 
model analysis, age, male gender, and presence of diabe-
tes were associated with fluid overload at 1st month (ad-
justed difference in relative OH at 1st month for age: 0.1, 
95% CI 0.0–0.1 per 1 year of increase; for male gender: 3.4, 
95% CI 2.1–4.7; for presence of diabetes: 4.8, 95% CI 3.3–
6.2) [70]. Of note, BIA techniques showed that PD pa-
tients presented with higher ECW content compared 
with HD patients, while studies with serum biomarkers 
indicated no differences in their levels between PD and 
HD [9, 71].

Volume overload assessed with BIA techniques has 
been associated to high BP levels in PD patients. In a 
cross-sectional study [72], 100 stable CAPD patients were 
divided into 3 groups according to the BP levels (1st 
group: normotensive, 2nd group: medically controlled 
hypertensive, and 3rd group: uncontrolled hypertensive) 
and studied comparatively, as well as with 60 healthy con-
trols with BIS. ECV normalized for height was found to 
be significantly higher in patients with uncontrolled hy-
pertension than in normotensives and was positively cor-
related with SBP and DBP levels (r = 0.42, p < 0.01 and  
r = 0.39, p < 0.01 respectively). However, incongruent 
findings have been reported by a recent observational 
study from Hong Kong, where 96 patients with an OH 
volume of ≥2 L (a cutoff value selected based on their in-
house data) were divided in 2 groups of volume overload 
(symptomatic and asymptomatic) and followed for 12 
weeks according to a standardized protocol for volume 
reduction. Despite significant changes in weight and OH 
volume in both groups, a significant decrease in SBP lev-
els by 10 mm Hg was detected only in the asymptomatic 
group (from 146.9 ± 20.7 to 136.9 ± 19.5 mm Hg, p = 
0.037 vs. baseline) and not in symptomatic, while no sig-
nificant correlation between OH volume and SBP was re-
ported (r = 0.160, p = 0.15) [73].

Observational Studies on the Association of BIA-
Estimated Volume Overload with Mortality and Other 
Clinical Outcomes in PD Patients
As shown in Table  3, various observational studies 

have associated OH assessed with bioimpendance tech-
niques in PD patients with mortality and other clinical 
outcomes, such as technique failure, which is hypothe-
sized to be related to a harmful effect of chronic volume 
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excess on peritoneal membrane characteristics. A study 
in 59 PD patients with a 3-year follow-up showed that 
increased ECW/TBW is a predictor of worse technique 
survival (β0 = −1.813, p = 0.009 for patients with ECW/
TBW values above the median) [74]. Similarly, results of 
a retrospective study with 529 PD patients from a single 
UK unit showed that presence of severe OH, defined as 
values of ECW/TBW being in the upper 30%, but not the 
value of ECW/TBW itself is predictive of death (ECW/
TBW as a categorical value HR 2.09, 95% CI 1.36–3.2 for 
those in the upper 30%; ECW/TBW as a continuous vari-
able: HR 1.21, 95% CI 0.95–1.54 per 0.1 increase) [75]. In 
a Chinese cohort of 307 patients undergoing CAPD, fluid 
overload (defined as ECW/TBW ≥ 0.4) independently 
predicted all-cause mortality and technique failure but 
not cardiovascular deaths (all-cause mortality: HR 12.98, 
95% CI 1.06–168.23; technique failure: HR 13.56, 95% CI 
2.53–78 [76]). In a Korean cohort with 129 PD patients 
using a similar definition for fluid overload, OH was a 
marginally significant predictor of worse survival and 
technique failure compared to euvolemia (HR 1.001, 95% 
CI 1.001–1.086 and HR 1.024, 95% CI 1.001–1.048, re-
spectively), while hydration status was not correlated 
with changes in RRF (r = −0.066, p = 0.463) [77]. Results 
from a cohort from UK with 183 PD patients without RRF 
showed that patients who were found to be overhydrated 
at baseline, defined as an ECW value > median, had worse 
overall and technique survival (HR 2.98, 95% CI 1.4–7.3 
and HR 2.98, 95% CI 1.9–4.6, respectively [78]). In an-
other Korean cohort with 631 incident PD patients, anal-
ysis of data undertaken according to gender showed that 
fluid overload was associated with higher mortality in 
men than women (HR 2.703, 95% CI 1.807–4.042 and HR 
1.755, 95% CI 1.152–2.675, respectively [4]). The ECW/
ICW index has also been shown to be an independent 
predictor of mortality in a prospective study with incident 
PD patients where mortality risk was increased by 37% 
for every increment in the ECW/ICW value by 0.1 (RR 
1.368, 95% CI 1.1–1.702) [79]. Two more prospective 
studies showed the association of OH with cardiac deaths 
(2.95 vs. 1.35 L, p < 0.05) [80] and all-cause mortality (HR 
7.82, 95% CI 1.10–29.7, p = 0.002 for overhydrated pa-
tients) [81].

In the study with the longest to-date follow-up (7 
years) [82], mortality risk increased by 50% for every liter 
of increase of the ECW normalized for body surface area 
(RR 1.5, p = 0.03). In IPOD-PD, the largest to-date cohort 
with 1,054 incident PD patients and a 3-year follow-up 
[70], fluid overload defined as a relative OH > 17.3% (val-
ue of the 75th percentile at 1st month) was independent-

ly associated with a 1.59-fold higher risk of death (HR 
1.59, 95% CI 1.08–2.33). In a study that examined longi-
tudinal changes in fluid status and their association with 
long-term outcomes, 284 prevalent PD patients were 
evaluated with a BIS device at baseline and at 12 months 
and were followed-up for another 15 months. Fluid over-
load was defined as a relative OH ≥ 15%, and patients 
were divided into 4 categories according to these 2 test 
results: (a) chronically overhydrated, (b) initially overhy-
drated but later euvolemic, (c) initially euvolemic but lat-
er overhydrated, and (d) chronically euvolemic. Persis-
tently overhydrated patients had higher mortality rates 
than all other types (11.5 vs. 3.4%, p = 0.014), were more 
likely to progress to high transporter status (12.2 vs. 3.7%, 
p = 0.028), and to be transferred to HD (36.5 vs. 11.2%,  
p < 0.001). Chronic exposure to fluid overload indepen-
dently predicted death (HR 3.68, 95% CI 1.05–12.76) and 
technique failure (HR 2.55, 95% CI 1.22–5.35), while sub-
group analysis revealed that no deaths were reported in 
those having become euvolemic [83]. A meta-analysis 
where data from 5 of the aforementioned studies were 
analyzed [84] showed a significant association between 
relative OH and all-cause mortality. More specifically, a 
relative OH > 10% was associated with a 2.1-fold increase 
(RR 2.09, 95% CI 1.36–3.20) and a relative OH > 15% with 
a 7.8-fold increase (RR 7.82, 95% CI 1.1–29.7) in mortal-
ity. Notably, the ECW/TBW ratio was not found to be 
associated with a higher risk of death (pooled RR 1.08, 
95% CI 0.96–3.36). Concerning other clinically impor-
tant outcomes, hydration status assessed with multifre-
quency BIS could not predict decline in RRF in a cohort 
of 237 patients with baseline and serial measurements 
during 12 months where no correlation was detected be-
tween changes in ECW/TBW and loss of RRF (r = 0.02,  
p = 0.72) [85].

Interventional Studies Using BIA Techniques for 
Volume Estimation in PD Patients
As of this writing, very few interventional studies have 

been undertaken in PD patients aiming to optimize vol-
ume control and adjust dry weight using bioimpendance 
techniques (Table 4). In an open-label randomized con-
trolled trial (RCT) with 160 participants under CAPD, 
use of BIS period resulted in better volume control and a 
significant decrease in mean SBP/DBP during 12 weeks 
compared to conventional assessment based on clinical 
examination (OH volume: 1.72 ± 1.51 L vs. 2.52 ± 1.83; 
SBP: 132.99 ± 19.47 vs. 139.07 ± 22.4, p < 0.05 for both 
comparisons) [86]. In a secondary analysis of a multi-
center RCT with data from repeated BIS measurements 
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origin (UK or China) and status of RRF (anuric or non-
anuric) to account for different therapeutic options avail-
able and anthropometric characteristics, as well as the effect 
of remaining kidney function. Patients in all groups were 
randomized to undergo BIA-guided assessment every 3 
months and additionally at clinician’s discretion (interven-
tional arm), through 2-dimensional plotting of resistance 
and reactance data using vector analysis, or clinical assess-
ment (control arm) for a total 12 months. There was a sig-
nificant effect of BIA-guided interventions in UK non-
anuric patients leading to a significant decrease in weight 
by −1.3 kg (95% CI −0.09 to −2.69); in Chinese anuric pa-
tients, body composition remained stable in the interven-
tion arm, whereas in the control arm, a significant increase 
in ECW and a parallel decrease of TBW were noted, leading 
to an increase of ECW/TBW ratio by 0.04 (09% CI 0.01–
0.06). However, an increase in the ECW/TBW ratio was 
noted in all anuric patients at 12 months, regardless of the 
randomization, probably reflecting loss in lean tissue. In ad-
dition to the above, no significant effect of BIA-guided deci-
sions was noted on BP levels [90]. Overall, results of inter-
vention studies in PD patients using BIA are rather less 
promising than similar studies in HD populations, where 
strict volume control guided by BIS was associated in some 
cases with improved left ventricular mass index, BP control 
PWV, and even mortality [91–93]. It is not yet known if this 
is a chance effect that can be attributed to small number of 

in 151 PD patients, chronic fluid overload, expressed as 
time-averaged relative OH ≥ 15%, independently predict-
ed LV dysfunction (OR 4.02, 95% CI 1.285–12.573) at 12 
months. Echocardiographic parameters, including left 
atrial diameter, end-systolic volume, and end-diastolic 
volume significantly decreased only in patients with time-
averaged euvolemia (p = 0.014, p < 0.001 and p < 0.001, 
respectively) [87].

In contrast to the above, in the COMPASS study, a mul-
ticenter RCT with 137 Korean PD patients with urine out-
put >500 mL, BIS-guided fluid management did not result 
in longer RRF preservation (ΔGFR: −1.5 ± 2.4 vs. −1.3 ± 2.6 
mL/min/1.73 m2, p = 0.593), the study’s primary outcome, 
nor in better volume control (relative OH > 15%: 21.9 vs. 
21.5% p = 0.165) or significant differences in SBP levels 
(130.8 ± 19.7 vs. 137.1 ± 23.7 mm Hg, p = 0.104), in LV mass 
index (103 ± 29 vs. 105 ± 28 g/m2, p = 0.609) or in heart-
femoral PWV (1,017 ± 286 vs. 989 ± 274 cm/s, p = 0.63) 
compared to conventional clinical assessment after 12 
months. Moreover, no added benefit was demonstrated 
with regard to cardiovascular event-free or anuria event-
free survival between the 2 methods (log-rank p 0.161 and 
0.933, respectively) [88]. Similarly, results of another Ko-
rean RCT showed that BIS-guided fluid management had 
no effect on RRF, BP levels, echocardiographic parameters, 
and CV event rates [89]. In another RCT, 308 PD patients 
were recruited in 4 groups, according to their country of 

Transducer 

Skin 

Pleural line

Normal Thickened

Sub-pleural 
interlobular septa

US beam

Fig. 1. Principle of lung US technique and 
ultrasonographic appearance of B lines in a 
patient with normal (left) and increased 
(right) LW content. LW, lung water; US, 
ultrasound.
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studies or small samples or a real difference between PD 
and HD patients, which could be attributed to reasons such 
as less frequent adjustment of dry weight in PD or strictly 
calculated ultrafiltration prescription in HD.

Lung US

Lung US is an easy and low-cost technique which can be 
easily applied by nephrologists at the bedside by using a 
simple US machine [94]. The technique is based on the fact 
that when lung congestion is present, the US beam is re-
flected by thickened interlobular septa, generating hyper-
echoic artifacts between edematous septa and the overlying 
pleura (the so-called lung comets, considered as a US equiv-
alent of B-lines detected in chest X-rays) (Fig. 1) [95]. The 
sum number of these lung comets is associated with left 
ventricular filling pressure, left atrial volume, pulmonary 
artery pressure, E/é ratio (an index of diastolic function) 
and the ejection fraction in patients [96]. The power of the 

method lies in its capacity detecting clinically asymptom-
atic pulmonary congestion, which is the most early and im-
portant determinator of volume overload [97]. It should be 
mentioned that lung comets do not have specificity only for 
detecting sole fluid overload, as they also exist in other types 
of lung disease such as interstitial pulmonary fibrosis or 
acute respiratory distress syndrome [98].

The feasibility of this technique has been examined in 
a study including 75 HD patients [99], where lung US re-
vealed moderate to severe lung congestion in 63% of pa-
tients before the dialysis session, most of which were ful-
ly asymptomatic. The number of US B lines was not as-
sociated with the hydration status evaluated with 
bioimpedance analysis, but it was significantly associated 
with LV mass, left ventricular ejection fraction, left atrial 
volume and pulmonary pressure, and New York Heart 
Association (NYHA) functional class. In a cross-section-
al analysis of baseline data from the ongoing Lung Water 
by Ultra-Sound Guided Treatment to Prevent Death and 
Cardiovascular Complications in High Risk ESRD Pa-

Table 5. Observational studies on PD patients using lung US to assess volume-related outcomes

Author N Study design Type of device used Measured 
parameter

Main outcome and results

Panuccio et al. 
[106]

88 PD patients  
(61 patients 
underwent 
echocardiography)

Cross-
sectional

3.0-MHz Toshiba 
NemioXG 
echocardiography 
probe & BIA 101 
BIVA, whole-body 
single-frequency BIA

B lines
LVEF
LA volume
SBP
NYHA class
Edema
Urine output

Multiple regression analysis for score 
of lung comets

For the total population
NYHA class: β = 0.31, p = 0.006
Residual diuresis: β = 0.3, p = 0.006
SBP: β = −0.16, p = 0.12
Edema: NYHA class: β = −0.11, p = 0.31

For patients that underwent 
echocardiography
EF: β = −0.36, p = 0.007
LA volume: β = 0.29, p = 0.05
NYHA class: β = 0.07, p = 0.64
Residual diuresis: β = 0.23, p = 0.09
SBP: β = −0.16, p = 0.22
Edema: β = −0.23, p = 0.06
NYHA class: β = −0.11, p = 0.31

Paudel et al. 
[107]

27 PD patients Cross-
sectional

3.0 MHz 
echocardiography 
probe & BCM whole-
body multifrequency 
BIS

B lines
OH volume
BP
NT-pro-BNP

Spearman’s correlation
r (B lines ∼ NT-pro-BNP) = 0.65, 
p < 0.0005
r (OH volume ∼ NT-pro-BNP) = 0.47,  
p < 0.02 
r (OH volume ∼ B lines) = 0.31, p = 0.12

BIA, bioelectrical impedance analysis; BIS, bioimpedance spectroscopy; BP, blood pressure; LA, left atrial; NT-pro-BNP, N-terminal 
pro-B-type natriuretic peptide; NYHA, New York Heart Association; OH, overhydration; PD, peritoneal dialysis; SBP, systolic blood 
pressure; US, ultrasound.
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tients with Cardiomyopathy Trial, lung B lines were com-
pared with the presence of crackles and edema in clinical 
examination as markers of lung congestion [100]. Crack-
les and edema proved to poorly reflect the presence of 
lung water as detected by the lung US. Studies that exam-
ined the association between the number of B-lines and 
BIS parameters showed contradictory results; some 
showed no association, whereas others showed modest 
correlations [99, 101, 102]. Of note, in prospective cohort 
study of Zoccali et al. [103], they showed that the number 
of lung comets can be a strong, independent predictor of 
mortality and cardiac events in HD patients. Moreover, a 
recent randomized sub-study of the ongoing Lung Water 
by Ultra Sound Guided Treatment to Prevent Death and 
Cardiovascular Complications in High Risk ESRD Pa-
tients with Cardiomyopathy Trial compared the effect of 
gradual dry-weight reduction with a lung US-guided 
strategy and standard-of-care approach on ambulatory 
BP in 71 hypertensive HD patients and showed signifi-
cant reductions of 6.6/3.8 mm Hg in 48-h SBP [104], 
along with decreases in left and right atria dimensions 
and LV filling pressures [105].

Observational Studies on the Association of Lung US-
Estimated Volume Overload with Clinical Outcomes 
in PD Patients
As of this writing, studies using lung US in PD popula-

tions are sparse. As shown in Table 5, a cross-sectional 
study from Italy [106] studied the presence of extravascu-
lar lung water, clinical, and BIA parameters in 88 PD pa-
tients, of whom 61 underwent echocardiography. Moder-
ate to severe lung congestion, defined as the presence in 
lung US of a score of B lines between 15 and 30 and >30, 
respectively, was evident in 46% of patients. No associa-
tion was found between edema and B lines on univariate 
and multivariate analyses. In contrast, NYHA class and 
residual diuresis were found to be associated with the B 
lines score (β0 = 0.31, p = 0.006 and β0 = 0.3, p = 0.006 re-
spectively). In the subset of patients who underwent echo-
cardiography, only LV ejection fraction and left atrial vol-
ume were found to be strong and independent predictors 
of the B-lines score (β0 = −0.36, p = 0.007 and β0 = 0.29,  
p = 0.05 respectively), while no association was found with 
NYHA classification and presence of peripheral edema in 
multiple regression analysis. Notably, among patients 
with moderate and severe lung congestion documented 
with lung US, volume excess was revealed only in 15 and 
11%, respectively, with the bioimpendance technique, and 
the majority of them (60 and 57%) were classified as 
NYHA Class I due to the absence of symptoms; these re-

sults exemplify the disagreement between BIA and lung 
US estimations of volume overload. In a smaller cross-
sectional study from the UK [107] with 27 PD patients, 
concordance between BIS measurements, lung US evalu-
ations, and NT-pro-BNP levels was assessed. In contrast 
to the previous study, the number of patients with lung 
congestion, defined as a B lines score >5 was lower (14.8%); 
there was a statistically significant correlation between the 
lung score and the NT-pro-BNP values (r = 0.65, p < 
0.0005), but such a correlation was not evident between 
the B lines score and BIS parameters (r = 0.31, p = 0.12). 
The authors concluded that as lung echocardiography and 
biomarkers detect intravascular and pulmonary volume 
excess, while BIS methods estimate overall hydration sta-
tus, thus the methods can be complementary.

Conclusions

The optimal assessment of volume status in patients 
undergoing PD is an ongoing clinical problem. The infor-
mation obtained from patient symptoms and physical ex-
amination is often unreliable, and there are currently no 
data supporting associations between symptoms and 
physical signs and volume overload assessed with an ob-
jective method. Thus, the search for a valid, reproducible, 
easily applicable, and inexpensive by-the-bed method to 
assess hydration status is ongoing for several years. Mea-
surement of IVC diameter has been associated with ad-
verse echocardiography indexes in pilot studies in PD pa-
tients, but there are no studies on its associations with 
mortality and the need for experienced operators and high 
costs make its wide application in clinical practice rather 
difficult in many countries. Among natriuretic peptides, 
only NT-pro-BNP has been associated with mortality in 
some studies; however, their interpretation is complicated 
by the presence of cardiac disease, and they are not uni-
versally available. BIA techniques are the most studied 
tool to assess volume overload in PD patients. Volume 
overload assessed with BIA techniques has been associat-
ed with technique failure and increased mortality in a 
number of studies, but the results of randomized trials on 
the value of BIA-based strategies to improve volume-re-
lated outcomes are largely contradictory. Lung US is a rel-
atively recent technique, with the ability to identify vol-
ume excess in a critical area, that is, the lungs; the number 
of B lines was shown in pilot PD studies to correlate with 
NT-pro-BNP levels and echocardiographic parameters 
but not with clinical signs of volume overload and BIA 
measurements. Overall, current knowledge suggests that 
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none of the above methods have so far proved its value as 
an intervening tool for modifying cardiac parameters, car-
diovascular events, technique, and overall survival in PD 
patients. As these techniques estimate fluid overload in 
different compartments of the body, the information pro-
vided by combining them could be complementary and 
more effective in the assessment of volume status. Future 
research should elucidate whether strategies to assess vol-
ume overload using combinations of the above techniques 
(i.e., BIA and lung US) may prove useful in reduction of 
volume-related outcomes in PD patients.
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