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Abstract: The emergence of point-of-care (POC) testing has lately been promoted to deliver rapid,
reliable medical tests in critical life-threatening situations, especially in resource-limited settings. Re-
cently, POC tests have witnessed further advances due to the technological revolution in smartphones.
Smartphones are integrated as reliable readers to the POC results to improve their quantitative de-
tection. This has enabled the use of more complex medical tests by the patient him/herself at home
without the need for professional staff and sophisticated equipment. Cytokines, the important
immune system biomarkers, are still measured today using the time-consuming Enzyme-Linked
Immunosorbent Assay (ELISA), which can only be performed in specially equipped laboratories.
Therefore, in this study, we investigate the current development of POC technologies suitable for
the home testing of cytokines by conducting a PRISMA literature review. Then, we classify the
collected technologies as inexpensive and expensive depending on whether the cytokines can be
measured easily at home or not. Additionally, we propose a machine learning-based solution to
even increase the efficiency of the cytokine measurement by leveraging the cytokines that can be
inexpensively measured to predict the values of the expensive ones. In total, we identify 12 POCs
for cytokine quantification. We find that Interleukin 1β (IL-1β), Interleukin 3 (IL-3), Interleukin
6 (IL-6), Interleukin 8 (IL-8) and Tumor necrosis factor (TNF) can be measured with inexpensive
POC technology, namely at home. We build machine-learning models to predict the values of other
expensive cytokines such as Interferon-gamma (IFN-γ), IL-10, IL-2, IL-17A, IL-17F, IL-4 and IL-5
by relying on the identified inexpensive ones in addition to the age of the individual. We evaluate
to what extent the built machine learning models can use the inexpensive cytokines to predict the
expensive ones on 351 healthy subjects from the public dataset 10k Immunomes. The models for
IFN-γ show high results for the coefficient of determination: R2 = 0.743. The results for IL-5 and IL-4
are also promising, whereas the predictive model of IL-10 achieves only R2 = 0.126. Lastly, the results
demonstrate the vital role of TNF and IL-6 in the immune system due to its high importance in the
predictions of all the other expensive cytokines.

Keywords: point of care; at home; cytokine; regression; decision tree; random forest; PRISMA;
literature review

1. Introduction

Point of care (POC) tests also play a significant role in combating the COVID-19 virus,
as any person can test him or herself at home for the presence of an infection with the
virus within a few minutes. As the above examples show, POC tests are used for various
purposes, including monitoring therapy, managing a disease or maintaining the health of a
patient. Thereby, the patient is given more responsibility but also more control over him
or herself.
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In developing POC tests, researchers have also recognized the potential of recent
technology developments such as smartphones and machine learning (e.g., [1,2]). This is not
surprising, as there are 3.9 billion smartphone users worldwide. In Germany alone, there are
62.6 million users, which corresponds to a proportion of 88.8 percent of the total population
of the country [3]. Furthermore, Smartphones are capable of quite a lot these days. They
have good cameras, many connecting options for peripheral devices, Internet access, various
sensors, GPS, the possibility of downloading special software in the form of apps and, best of
all, we always have them with us. This makes it also interesting to monitor the status of the
immune system in critical health conditions in resource-limited settings or if you are alone
at home without the assistance of a physician or other medical staff. Important biomarkers
of the immune system are the so-called cytokines, which can provide information on the
development and course of diseases and inflammatory processes [4]. The gold standard
method for measuring cytokine levels nowadays is still the enzyme-linked immunosorbent
assay (ELISA); the biggest downside is that it is very time consuming and therefore not
suitable for at-home testing by the patient him/herself or use in critical health conditions
where time is crucial [5–7]. In contrast, POC tests are rapid and there is no need for specially
trained laboratory personnel or facilities [4].

Therefore, it is necessary to identify the state of development of cytokine tests suitable
for home usage by the patient him/herself, especially those that require little or already
at-home existing equipment—such as a smartphone.

Furthermore, machine learning algorithms have been widely used in the medical domain.
A machine learning model is used to predict the levels of inflammatory cytokines in patients
with Parkinson’s disease [8]. Wei et al. train a random forest classifier to predict potential
cytokine–receptor interactions [9]. Subsequently, we believe that machine learning methods
have the potential to enhance the quantification of cytokines even more. In the course of
this study, the following research questions are to be answered (RQ1–RQ3). The distinction
between expensive and inexpensive is made based on how easy it is to acquire the cytokines
with the technologies identified. In other words, the detection of cytokines is categorized as
inexpensive if the technology used to measure the cytokines is mature and uses equipment
that is available in most households, such as a smartphone or a sheet of paper. Otherwise,
the technology is categorized as expensive.

This study aims at answering three research questions:

• RQ1: What recent technologies developed for the rapid determination of cytokines
are suitable for at-home testing?

• RQ2: Which technologies suitable for at-home testing can be used to acquire cytokines in-
expensively and which expensively and which cytokines do these technologies measure?

• RQ3: To what extent can cytokines measured by inexpensive technologies be used to
predict levels of cytokines that can currently be tested only by expensive technologies
based on the public dataset 10k Immunomes?

In this study, our main contributions can be described as follows:

1. We use the PRISMA method to collect POC technologies that can be used for at-home
testing with a focus on methods that leverage smartphones for cytokine quantification
to answer RQ1.

2. To answer RQ2, we group the retrieved POC technologies into expensive and inex-
pensive cytokines based on the equipment and the personnel required to conduct
the test.

3. We answer RQ3 by building machine learning models that take as input the inex-
pensive cytokines and predict each of the expensive ones. Then, we evaluate the
performance of the models to validate the potential of delivering reliable predictions
for each of the expensive cytokines. Thus, the quantification of expensive cytokines
can be carried out without the need for any expensive test.

This work is structured as follows: in Section 2, we discuss related work. We provide
a detailed description of our method to answer the research questions RQ1 and RQ2 in
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Section 3. We evaluate it and discuss the results in Section 4. In Section 5, we describe the
public dataset that we use for evaluation. Section 6 presents the regression analysis of healthy
subjects of a public dataset to answer the research questions RQ3. The regression analysis
results are presented in Section 7. Finally, a summary of the study and an outlook including
achievements is discussed in Section 8.

2. Related Work

In 2021, we published a review [10] on the subject area of the research questions. We
looked into immunoassays that can measure the immune status at home or the point of
care using cytokines in the blood [10]. As a result, the research group found 15 assays for
the rapid detection of cytokines with a maximum assay time of 60 min and sample types
such as unprocessed blood or processed blood samples (e.g., plasma or serum) [10]. Most of
the found assays can measure a single cytokine only and are suitable for application at the
point of care [10]. Very few found technologies “could be with some slight development
mature enough for home-usage” [10] (p. 28). Furthermore, Jamaludeen et al. investigated
health questionnaires that collect additional information (e.g., chronic diseases, psycholog-
ical issues) and thus have the potential to support the quality of the analysis of immune
status by the found assays [10]. We also suggested a machine learning approach to derive
automatically from the literature a definition for “immune fitness” and a suggestion for
characteristics of technologies or assays suitable for at-home usage [10].

Liu et al. summarized on account of the COVID-19 pandemic in their 2021 review [2]
the most recent technologies for cytokine detection at the POC and presented an overview
of diseases resulting in increased or imbalanced levels of cytokines (e.g., sepsis, COVID-19),
including the names of the cytokines, the threshold values of the selected cytokines and
the sample types (e.g., whole blood, plasma, serum) used [2]. Furthermore, the research
group discussed the challenges and perspectives of POC technologies concerning the
ASSURED criteria [2]. The challenges the research group discovered are, for instance,
the low detection sensitivity of POC technologies, as well as the “limited multiplexing
ability (only with the capability of detecting <10 cytokines at the moment) because of
lots of challenges such as limited signal readout, technical variation between different
labs, cross-reactivity effects” [2] (p. 13). Liu et al. pointed out the potential of POC
technologies in combination with smartphones, for example, to read the results of the
measured cytokine levels directly from the display and the benefits of the application of
machine learning [2].

Hernández-Neuta et al. investigated in their 2019 review [1] smartphone-based di-
agnostic and its contributing technologies, as well as areas of application, including cy-
tokines [1]. However, the results were also limited to smartphone biosensors for use at the
POC in general and not suitable for home usage [1]. The research group identified POC
immune biosensors for diseases [1]. For instance, a cellphone-based LFA reader for the
detection of malaria, tuberculosis and the human immunodeficiency virus (HIV) suitable
for both Android smartphones and iPhone [1,11]. Another example is the combination
of a smartphone and microfluidic ELISA chips for the detection of sexually transmitted
diseases [1,12,13]. Furthermore, the research group also identified immune biosensors that
target cytokines directly [1]. They found the HiSOP platform that uses a smartphone and a
3D-printed microprism for the simultaneous screening of 64 samples by using ELISA to
detect IL-6 [1,14]. Another example is the combination of a microplate ELISA assay and
a smartphone-based spectrometer to detect levels of IL-6 and a peanut allergen [1,15,16].
The research group also identified immune biosensors that target conditions, e.g., kidney
damage, heart failure [1]. For example, a microfluidic ELISA assay was used to detect
ovarian cancer and the results were imaged and analyzed via smartphone [1,17].

Hernández-Neuta et al. indicate that the biosensors found are mostly in a proof-of-
concept phase and only a few are in the product development phase. The biosensors must
still be validated and prove their feasibility in the clinical field [1].
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Romeo et al. investigated in their 2016 review [18] the recent advances of multiplexed
biosensors and POC diagnostic with smartphones for the measurement of cytokines and
other biomarkers [18]. The research group stated that “inexpensive, portable and rapid
POC diagnostics for detecting multiple biomarkers [. . . ] is feasible nowadays” [18] (p. 5).
The need for training of the end user regarding sample preparation is the biggest challenge
the research group sees for using the found biosensors [18]. However, once again, the results
they found for the detection of cytokine levels are limited for the POC in general and are
not suitable for home testing [18]. They reported, for example, on the highly sensitive LSPR
biosensor of Chen et al. [19] for the multiplexed detection of six cytokines (IL-2, IL-4, IL-6,
IL-10, IFN-γ, TNF-α) within 40 min from 1 µL blood serum [18].

Already in 2015, Chen et al. discussed in their review [20] the performance, potential
benefits, challenges, as well as further potential for the development of cytokine biosensors
for the rapid determination of the immune status at the POC [20]. Thereby, the research
group pointed out the great potential of label-free biosensors [20]. The advantages of label-
free biosensors are that the real-time detection of cytokines and the selectivity of the assays
can be improved [20]. The “[e]limination of labeling agents [. . . ] enables researchers to
avoid adverse effects on biomolecular binding events, to achieve quantitative measurements
(labeling could be only qualitative due to the inconsistent binding behavior of labels to
analytes) and to save cost and time” [20] (p. 6). Furthermore, Chen et al. differentiated
the biosensors into mechanical cytokine biosensors, electrochemical cytokine biosensors,
optical cytokine biosensors and plasmonic cytokine biosensors [20].

Mechanical cytokine biosensors “detect surface binding events of biological molecules
by means of mechanical deflections or dynamic resonance shifts of the transducer system
resulting from surface stress or mass changes” [20] (p. 9). The most known represen-
tative technique of mechanical cytokine biosensors is the quartz crystal microbalance
(QCM) [20]. “The principle of electrochemical biosensing methods is based on an elec-
trical signal change associated with analyte binding onto electroactive sensing elements
of a circuit [20]. Correlating the signal change with the quantity of analyte enables the
measurement” [20] (p. 11). Representatives of electrochemical cytokine biosensors are,
for instance, technologies based on electrochemical impedance spectroscopy (EIS) and
nanoelectronic field-effect transistor (FET) [20].

Optical biosensors function in such a way that optical signatures are investigated that
arise from the refractive index changes of a solid light-guiding microstructure (e.g., light
reflection, transmission or absorbance) upon the surface binding of analytes [20]. Represen-
tatives of optical biosensors are silicon photonic microring resonators and photonic crystal
resonators [20]. Plasmonic biosensors are about the interaction between electromagnetic ra-
diation on a noble metal in contact with a dielectric medium [20]. More precisely, when the
collective motion of the electrons resonates with the incident light of a certain wavelength,
electromagnetic modes are created that are confined on the surface [20]. These modes are
called “surface plasmons” (SPs) [20]. “SPs emerge under two settings: (1) surface plasmon
resonance (SPR), where propagating SPs are excited on a metallic thin film and (2) localized
surface plasmon resonance (LSPR), where sub-wavelength-sized metal nanoparticles are
excited by an external light source” [20] (p. 18). SPR and LSPR are both representative
sensing techniques of plasmonic biosensors [20]. Chen et al. considered biosensors based
on FET and LSPR to have the greatest potential for the rapid detection of cytokines at
the POC [20]. The research group identified some challenges of the technologies found:
low sensitivity, lack of multiplexed detection of cytokines, sensitivity to background noise
and slow reaction speed [20].

Further reviews focus on giving an overview of the advances of biosensors at the POC
for the detection of cytokines but also other biomarkers (e.g., wearable biosensors [21]) or
the relationship between cytokines and a condition (e.g., depression [22,23]).

In summary, we find that some of the reviews either do not focus on the at-home testing
or address POC technologies for measuring disease-related biomarkers other than cytokines.
In this manuscript, we focus on collecting POC technologies for measuring cytokines at
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home, possibly with the help of a smartphone, then divide them into technologies that can
acquire cytokines inexpensively and those that can acquire them but expensively.

Indeed, cytokines are vital proteins that play a major role in the human body. There-
fore, numerous studies have analyzed the correlations between each other and other disease
and health conditions. Vculic et al. investigate the correlations among cytokines and age
in healthy subjects and among cytokines and age in patients with autoimmune thrombo-
cytopenic [24], whereas the correlations among cytokines, bronchopulmonary dysplasia
and modality of ventilation in preterm newborns are presented by Gitto et al. [25]. Hur et al.
present how 27 inflammatory cytokines correlate to each other after major burn injury [26].

Furthermore, due to the recent popularity of machine-learning methods, especially in
biology and medicine, various studies present machine-learning methods that exploit the
measured cytokines to predict the progression of a disease [8,27] or to identify cytokine–
protein interactions [9]. In the end, we are not aware of any work that studies the correla-
tions among the cytokines that can be measured easily in a cost-effective way and cytokines
that demand highly expensive equipment using machine learning models. The main scope
of this study is to propose a cost-effective quantification of cytokines to enable a reliable
assessment of the fitness of the immune system.

3. Methods I: PRISMA Literature Review

In order to answer the research questions one (RQ1) and two (RQ2), a systematic liter-
ature review is conducted according to PRISMA. PRISMA is the abbreviation for Preferred
Reporting Items for Systematic Reviews and Meta-Analyses [28]. PRISMA was designed in
2009 with the aim of making the process of systematic reviews more transparent by stating
why and how the review was conducted and what was found [28]. This kind of review
method helps readers assess the trustworthiness and applicability of the reviews [28]. Fur-
thermore, it helps readers to replicate the review and update it [28]. PRISMA is a recognized
literature research method that has been “widely endorsed and adopted, as evidenced by
its co-publication in multiple journals, citation in over 60,000 reports (Scopus, August 2020),
endorsement from almost 200 journals and systematic review organizations and adoption
in various disciplines” [29] (p. 179). The original PRISMA statement of 2009 was updated
in 2020 to keep up with technological developments in conducting systematic literature
reviews nowadays [29]. The main component of the PRISMA 2020 statement is a 27-item
checklist and was primarily designed for “systematic reviews of studies that evaluate
the effects of health interventions, irrespective of the design of the included studies” [29]
(p. 180). However, many items of the checklist are applicable for systematic reviews that
pursue different purposes [29].

For this work, the PRISMA items, eligibility criteria (item 5), information sources
(item 6), search strategy (item 7) and study selection (item 16) will be applied. The following
is a brief explanation of what the selected PRISMA items contain. Figure 1 illustrates the
PRISMA literature research process, the eligibility criteria and the search queries intended
for use in this work.

First, the search queries are applied to a total of five databases using the specific search
syntax for each database. Inclusion criteria one (IC1) has to be already applied in this
step, as the syntax for the search in the title and abstract must be adapted accordingly.
The identified reports are then assessed for eligibility according to the inclusion and
exclusion criteria (IC2–IC5, EC1–EC3) presented in Figure 1. Inclusion criteria two (IC2) is
based on the characteristics for home tests found by Jamaludeen et al. in their review [10].
However, the characteristics are not applied quite as strictly. For instance, measuring
multiple cytokines is desirable, but as it is not clear before the PRISMA literature review
how many results for home testing even exist, results measuring only one cytokine are
also included. The characteristics of small-volume samples in the microlitre range and a
rapid assay time will be applied. In case no assay time is specified in the reports, it is also
sufficient if the report mentions that the technology is rapid. Furthermore, smartphone-
based readers are of most interest in the results, but again it is unclear before the PRISMA
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literature review how many results this includes. Therefore, reports from technologies
that measure cytokines at home using other methods are also included in the results.
The fifth characteristic will be applied but extended in inclusion criteria five (IC5) for other
unprocessed samples such as saliva, sweat or urine. Inclusion criteria three (IC3) shows
that the review focuses on cytokines. In addition, the technologies identified have to be
mature in terms that these are either already in place or tested prototypes already exist
(IC4). With exclusion criteria one (EC1), a year limit for scientific publications not older
than 2015 will be applied due to technological developments in recent years (e.g., top-notch
cameras in smartphones). Studies that report on technologies that are limited to specific
conditions (e.g., diabetes) will be excluded because of exclusion criteria two (EC2) as the
review intends to find technologies for a general application. Exclusion criteria three (EC3)
limits the results for German and English languages.

Search query (SQ)
1. immune status device
2. rapid reader AND cytokine
3. cytokine AND smartphone
4. immunoassay at home
5. smartphone diagnostic AND immunosensor
6. biosensor AND cytokine

IC1: Does the title or abstract contain one 
of the search terms (SQ1-SQ6)?

yes

Number of papers per search query and after IC1 

SQ1
SQ2 SQ3 SQn

IC2: Is a self-testing and/or a testing via 
smartphone at home possible?

IC3: Does the study name cytokines that 
can be tested in a rapid test?

IC4: Is the technology mature (e.g. an 
already developed prototype) or already 
in place?

IC5: Are unprocessed samples (e.g. 
whole blood, saliva, urine, sweat) used 
for the determination of cytokines?

EC1: Is the publication date < 2015?

EC2: Is the study limited to specific 
conditions, e.g. cancer, diabetes, HIV, or 
substance, e.g. cortisol?

EC3: Is the condition “study is available in 
German or English” violated?

yes

no

Final number of papers per search query

SQ1 SQ2 SQ3 SQn

Number of all included papers

Figure 1. PRISMA literature review process with eligibility criteria. Six search queries (SQs) are used
to collect relevant literature. The collected literature should satisfy five inclusion criteria (IC). Any
study that violates any of the three exclusion criteria (EC) is filtered out.

The reports that passed the eligibility criteria are then included in the final results
table and the reports that did not pass are dropped.
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To answer research question one (RQ1), the literature review results are listed. In the
overview, all technologies found will be named with the measurable cytokines, the tech-
nique behind it, the sample type and, if possible, the sample quantity and sample time.
Further, the overview is the basis for answering research question two (RQ2), in which the
technologies found are to be grouped according to whether the cytokines can be acquired
expensively or inexpensively. The results are displayed in two tables: one for cytokines
that are expensive to acquire and one table with cytokines that are inexpensive to acquire,
each of which also lists the cytokines that are measured with them. The cytokines found,
which can be acquired inexpensively through the identified technologies, are then used
as independent variables for implementing several regression models for answering the
remaining research questions (RQ3, RQ4).

Figure 2 illustrates the process from PRISMA literature review to the programming
part to answer all research questions (RQ1–RQ4).

Figure 2. Pictorial overview of the approach to addressing the research questions. After performing
the PRISMA literature review, the first research question RQ1 is answered by identifying the POC
technologies with the corresponding cytokines that can be measured at home. Then, the at-home
technologies with the corresponding cytokines are categorized as expensive and inexpensive cy-
tokines/technologies as an answer to the second research RQ2. Finally, we answer the third research
question RQ3 by building machine learning models to predict the expensive cytokines using the
inexpensive ones.

3.1. Information Sources

The following five databases were searched for papers: PubMed, Scopus, ScienceDirect,
IEEE Xplore, and Google Scholar. The IEEE Xplore database had the least hits after IC1 was
applied (n = 6) (see also Figure 3 for the distribution of hits under the PRISMA item, Study
selection in this subsection). This may be due to the fact that this database focuses more on
literature in the area of engineering and technology and less on medical literature. As the
focus of the literature review is on technical devices in the application field of medicine,
it was worth a try to use this database. However, for future literature analyses on this
topic IEEE Xplore could possibly be excluded as it did not produce any findings in the
end. The other databases produced significantly more results. Scopus produced most hits
(n = 86), followed by Google Scholar (n = 66), ScienceDirect (n = 36) and shortly thereafter
PubMed (n = 34). The databases were searched between 12 October 2021 and 16 November
2021. Tables 1–5 show the specific access date per search query and the date restrictions
that were applied for each database.
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Figure 3. PRISMA flow diagram based on [29] consists of three steps: (1) the identification of relevant
literature by the defined search queries (SQs), (2) the screening of all the retrieved literature, namely
we keep only papers that satisfy the five inclusion criteria and eliminate papers that satisfy the three
exclusion criteria), (3) and the inclusion step ends up with 12 studies found. * Note: A full text search
was conducted due to the reasons that a direct abstract search was not possible in Google Scholar
and a title search did not return any hits. For each search query there were several thousand hits
which could not all be evaluated. Therefore, every search query was limited to the first 10 result
pages which equals 100 hits.

Table 1. Search limits and filters for the database PubMed. Six search queries (SQ1–SQ6) are used in
addition to a restriction of the publication year from 2015 to 2021.

PubMed

Website www.pubmed.gov (accessed on 15 November 2021)
SQ1 immune status device [Title/Abstract]
SQ2 rapid reader [Title/Abstract] AND cytokine [Title/Abstract]
SQ3 cytokine [Title/Abstract] AND smartphone [Title/Abstract]
SQ4 immunoassay at home [Title/Abstract]
SQ5 smartphone diagnostic [Title/Abstract] AND immunosensor [Title/Abstract]
SQ6 biosensor [Title/Abstract] AND cytokine [Title/Abstract]
Further restrictions 2015–2021
Access date 15 November 2021 (SQ1–SQ6)

www.pubmed.gov
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Table 2. Search limits and filters for the database IEEE Xplore. Six search queries (SQ1–SQ6) are used
in addition to a restriction of the publication year from 2015 to 2021.

IEEE Xplore

Website https://ieeexplore.ieee.org (accessed on 16 November 2021)

SQ1
(“Publication Title”: immune status device) OR (“Abstract”: immune status device) Filters
Applied: 2015–2021

SQ2
(“Publication Title”: rapid reader) AND (“Publication Title”: cytokine) OR (“Abstract”: rapid
reader) AND (“Abstract”: cytokine) Filters Applied: 2015–2021

SQ3
(“Publication Title”: cytokine) AND (“Publication Title”: smartphone) OR (“Abstract”: cytokine)
AND (“Abstract”: smartphone) Filters Applied: 2015–2021

SQ4
(“Publication Title”: immunoassay at home) OR (“Abstract”: immunoassay at home) Filters
Applied: 2015–2021

SQ5

(“Publication Title”: smartphone diagnostic) AND (“Publication Title”: immunosensor) OR
(“Abstract”: smartphone diagnostic) AND (“Abstract”: immunosensor) Filters Applied:
2015–2021

SQ6
(“Publication Title”: biosensor) AND (“Publication Title”: cytokine) OR (“Abstract”: biosensor)
AND (“Abstract”: cytokine) Filters Applied: 2015–2021

Further restrictions Specify Year Range: From 2015 to 2021
Access date 16 November 2021 (SQ1–SQ6)

Table 3. Search limits and filters for the database Scopus. Six search queries (SQ1–SQ6) are used in
addition to a restriction of the publication year from 2015 to 2021.

Scopus

Website www.scopus.com (accessed on 12–20 October 2021)
SQ1 TITLE-ABS-KEY (immune AND status AND device) AND PUBYEAR > 2014
SQ2 TITLE-ABS-KEY (rapid AND reader AND cytokine) AND PUBYEAR > 2014
SQ3 TITLE-ABS-KEY (cytokine AND smartphone) AND PUBYEAR > 2014
SQ4 TITLE-ABS-KEY (immunoassay AND at AND home) AND PUBYEAR > 2014
SQ5 TITLE-ABS-KEY (smartphone AND diagnostic AND immunosensor AND PUBYEAR > 2014)
SQ6 TITLE-ABS-KEY (biosensor AND cytokine) AND PUBYEAR > 2014
Further restrictions 2015–2021
Access date 12 October 2021 (SQ1), 19 October 2021 (SQ2, SQ3), 20 October 2021 (SQ4–SQ6)

Table 4. Search limits and filters for the database ScienceDirect. Six search queries (SQ1–SQ6) are
used in addition to a restriction of the publication year from 2015 to 2021.

ScienceDirect

Website www.sciencedirect.com (accessed on 16 November 2021)
SQ1 Title, abstract, keywords: immune status device
SQ2 Title, abstract, keywords: rapid readers AND cytokine
SQ3 Title, abstract, keywords: cytokine AND smartphone
SQ4 Title, abstract, keywords: immunoassay at home
SQ5 Title, abstract, keywords: smartphone diagnostic AND immunosensor
SQ6 Title, abstract, keywords: biosensor AND cytokine
Further restrictions 2015–2021
Access date 16 November 2021 (SQ1–SQ6)

Table 5. Search limits and filters for the database Google Scholar. Six search queries (SQ1–SQ6) are
used in addition to a restriction of the publication year from 2015 to 2021.

Google Scholar

Website https://scholar.google.com (accessed on 16 November 2021)
SQ1 immune status device
SQ2 rapid readers AND cytokine

https://ieeexplore.ieee.org
www.scopus.com
www.sciencedirect.com
https://scholar.google.com
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Table 5. Cont.

Google Scholar

SQ3 cytokine AND smartphone
SQ4 immunoassay at home
SQ5 smartphone diagnostic AND immunosensor
SQ6 biosensor AND cytokine
Further 2015–2021, first ten result pages due to several thousand hits
restrictions for every search query
Access date 16 November 2021 (SQ1–SQ6)

3.2. Search Strategy

The search queries (SQ1–SQ6) stated in the introduction were used to conduct the
PRISMA literature review.

Tables 1–5 present the website used, the search filters and limits, as well as the access
date per search query for each database stated. Language restrictions were not applied as
all papers found were in English only. If this had not been the case, a filter for reports in
German and English would have been set analogous to exclusion criteria three (EC3) of the
eligibility criteria.

In the PubMed and IEEE Xplore databases, a search of abstract and title was possible
as intended.

In the Scopus and ScienceDirect databases keywords were searched in addition
to the abstract and the title, due to the given limitations of search parameters by the
databases mentioned.

The search on Google Scholar was slightly different from the other databases as inclusion
criteria 1 (IC1) could not be fully applied by search parameters. It was possible to conduct a
title search but this did not return any hits. An abstract search was not possible. Therefore,
a full-text search was conducted but for each search query, there were several thousand hits
that could not all be evaluated. Google Scholar is a well-known and well-used database
and encompasses all relevant databases, including the other used databases in this research.
Therefore, the database was not excluded; instead, every search query was limited to the first
10 result pages which equal 100 hits per search query. Afterward IC1 was applied manually.
The full-text search seemed to be a good addition to the search in the title and abstract.

3.3. Eligibility Criteria

For the identification of suitable papers, inclusion criteria 1 was applied first (IC1):

• IC1: Does the title or abstract contain one of the search terms (SQ1–SQ6)?

For the realization of IC1, the filters and limits stated under PRISMA item Search
strategy in this subsection were applied. For the screening of the identified papers, the
formulated eligibility criteria were applied.

The papers finally included in the review were then grouped into two categories expensive
and inexpensive. Additionally, a third group was found: non-cytokine biomarker, which
includes immune biomarkers found that could be tested at home but are not cytokines.

3.4. Study Selection

Figure 3 shows a flow diagram of the study selection process. A total of 1698 search
hits could be identified with the search in the five databases. The majority of search hits
had to be removed after applying IC1 (n = 1470). A total of 48 records were duplicates and
therefore removed as well while screening the records. In the end, a total of 180 reports
were assessed for eligibility. Most of them (n = 166) failed the eligibility criteria (IC2–IC5,
EC1–EC3). One remark is that none of the retrieved studies reported their results in German.
Two more reports were excluded because the tests were limited to animals. Finally, 12 reports
remained on technologies that can be used to measure cytokines at home. Not listed among
the included reports in the flow diagram are six reports that mention technologies that do
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not measure cytokines but do measure biomarkers related to the immune system. Therefore,
these reports failed IC3.

4. Results I: Findings of the PRISMA

The findings of the PRISMA literature review make it now possible to answer the
research questions one (RQ1) and two (RQ2):

• RQ1: What recent technologies developed for the rapid determination of cytokines
are suitable for at-home testing?

• RQ2: Which technologies suitable for at-home testing can be used to acquire cy-
tokines inexpensively and which expensively and which cytokines do these tech-
nologies measure?

To address RQ1, Tables 6 and 7 show in total 12 technologies developed for the rapid
determination of cytokines that can be tested at home. Many of these have only been
developed in recent years. For example, most of the technologies are from reports from
the years 2020 and 2021. Only four identified technologies were already published in 2018
and 2019. Two possible reasons for this distribution could be the continuous technical and
medical progress and the COVID-19 pandemic.

Table 6. Findings of the PRISMA literature review for five expensive-to-acquire cytokines.

Year Device(s) Cytokine(s) Technique Sample Sample Time

2021
DGTFET biosensing device +
customized Android App +
cloud connection [30]

IFN-γ, TNF-α,
IL-6 DGTFET serum, saliva,

urine, sweat 7 min

2021 ImmoFET [31] TNF-α ISFET, EIS saliva −

2021 aptamer-based biosensor [32] IFN-γ GFET undiluted human
biofluids, e.g., sweat −

2020 GFET biosensor [33] IFN-γ, TNF-α GFET
40 µL of human
biofluids, e.g., tears,
sweat, saliva

7 min

2020 QCM biosensor [34] IFN-γ, TNF-α QCM, gravimetric
analysis

50 µL of blood, blood
plasma, serum 90 min

Table 7. Findings of the PRISMA literature review for seven inexpensive-to-acquire cytokines.

Year Device(s) Cytokine(s) Technique Sample Sample Time

2021
paper immunosensor
interfaced with a
smartphone [35]

IL-6, IL-8,
TNF-α

paper-based, app for
color quantification

whole blood and
respiratory samples <10 min

2020 electrochemical
biosensor [36] IL-6 SAM of alkanethiols

on gold tears, blood plasma 20 min

2020 plasmonic-based mobile
biosensor [37] IL-6 LSPR 2.5 µL of whole blood 17 min

2019 electrochemical
biosensor [38] TNF-α EIS

blood serum,
cerebrospinal fluid,
tears

90 min

2019 GFET nanosensing
system [39] IL-6 GFET saliva 400 s

2018 MCF device [40] IL-1β MCF whole blood −

2018 magneto-electro-chemical
sensor [41] IL-3 magneto-electro-

chemical
100 µL of whole blood,
plasma, serum <60 min
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4.1. Technologies to Acquire Cytokines Expensively

With their DGTFET platform [30], including a customized Android App and its
cloud connection, Hao et al. developed a device for the detection of multiple cytokines.
The device consists of an aptameric biosensor chip that is integrated on an electrical
device. The biosensor contains one sensing channel on which the target cytokine aptamers
are immobilized and another as reference channel to capture changes in environmental
conditions. The quantification of the the cytokine is the difference between the signals
between the two channels. The cytokines can be detected in several sample types: serum,
saliva, urine and sweat [30]. The limits of detection (LODs) achieved by this device
for IFN-γ, IL-6 and TNF-α are 476 × 10−15, 608 × 10−15 and 611 × 10−15 M, respectively.
The results reported prove the high selectivity of the target cytokines compared to non-
target molecules. The wearable device was initially developed for COVID-19 patients, who
receive an alert if their condition deteriorates or the patient is at risk of suffering a cytokine
storm [30]. At the moment, the device is on the level of a prototype and the acquisition costs
for this extra needed device are not yet entirely clear. Therefore, the device was categorized
as “expensive”.

The ImmunoFET device [31] from Halima et al. takes samples of saliva to measure the
cytokine TNF-α [31]. This device is based on an ion-sensitive field effect transistor (ISFET)
which is functionalized with anti-TNF-α antibodies on the gate surface. The detection limit
for this device is reported to reach 10–100 fg/mL. The selectivity of the biosensor towards
TNF-α is compared to other biomarkers such as N-terminal pro-brain natriuretic peptide
(NT-proBNP), interleukin-10 (IL-10) and cortisol. The sample time is not clearly stated.
Halima et al. just say that with the device the “non-invasive, rapid and accurate assessment
of TNF-α” [31] (p. 1) is possible. The acquisition costs for the extra device to be purchased
are not clearly stated as well.

Also for the aptamer-based biosensor from Wang et al., the sample time is not clearly
stated [32]. They say their wearable device “can enable the sensitive, rapid and label-free
detection of cytokines.” [32] (p. 1). With this device, an additional device is needed to
measure the cytokine IFN-γ for which the acquisition costs are not mentioned [32]. This
device is an aptameric field-effect transistor (GNFET) biosensor device that consists of
Graphene–Nafion composite film. The composite structure of the film promotes high
sensitive detection of IFN-γ where the limit of detection reported is as low as 740 fM.
The high specificity of the biosensors to IFN-γ is proved by analysing the concentration
of other inflammatory cytokines TNF-α, interleukin-002 (IL-002) and inter-leuk-6 (IL-6).
A prototype is available of the device.

Wang et al. developed another GFET biosensor that was manufactured on a bio-
compatible and ultra-thin, polymer-supporting substrate [33] in 2020 to measure IFN-γ
and TNF-α of human biofluids like tears, sweat or saliva in just seven minutes. The limits
of detection achieved for TNF-α and IFN-γ are down to 2.75 and 2.89 pM, respectively.
The biosensor achieves high specificity when the detection of the target cytokines is com-
pared to the detection of other control proteins, EGF and GH. According to the report,
the biosensor has so far only been tested with artificial tears and acquisition costs or extra
equipment needed are not exactly described. However, a prototype is available [33].

The QCM biosensor [34] of Pohanka is fabricated on piezoelectric principles and uses
gold nano-particles. This immunoassay needs a longer sample time (90 mins) compared
to the other expensive technologies to measure IFN-γ and TNF-α from samples of whole
blood, blood plasma or blood serum [34]. The limit of detection is down to 5.7 pg/mL.
Pohanka stated that the device “was constructed as a tool suitable for small laboratories or
home care conditions” [34] (p. 4) and its “major advantage [. . . ] is overall simplicity, low
cost per one assay, suitability for mass production of the biosensor devices, low volume of
sample and no special requirements [. . . ]” [34] (p. 4). The distinction between expensive
and inexpensive cytokines was difficult here, as the device itself seems to be inexpensive,
but the report does not explain how the results are read and whether a separate device
is needed for this. Since it cannot be said with certainty here that no further device is
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needed, Pohanka’s biosensor was assigned to the technologies where cytokines can only be
acquired expensively.

4.2. Technologies to Acquire Cytokines Inexpensively

The paper biosensor [35] of Adrover-Jaume et al. is interfaced with a smartphone and
was initially developed for detecting severe cases of COVID-19 but is also applicable to other
areas. The paper sensor generates “intense colorimetric signals when the sample contains
ultra low concentrations” [35] (p. 1) of the cytokine IL-6. “This is achieved by combining a
paper-based signal amplification mechanism with polymer-filled reservoirs for dispensing
antibody-decorated nanoparticles and a bespoken app for color quantification” [35] (p. 1).
The limit of detection achieved for IL-6 is as low as 1.3 pg/mL. The device has so far only been
tested with IL-6, but according to Adrover-Jaume et al. the device “could be easily adapted to
detect other cytokines such as TNF-α and IL-8” [35] (p. 1). The device uses samples of whole
blood or respiratory samples and the readout of the result via smartphone is available in
under ten minutes [35]. The report does not state the amount of blood used but the pictures
in the report indicate that it might be just a few drops of blood.

Punj et al. developed a self-assembled monolayer (SAM) multiplex electrochemical
biosensor [36] that measures IL-6 on samples of tears and blood plasma in 20 min. The SAM
technique improves the specificity and the sensitivity of the biosensor. The limit of detection
of the IL-6 is estimated to be 22.1 pg/mL. So far, the device has only been tested on artificial
tears [36]. Punj et al. promote their device with the words “[the] biosensor simplifies
the detection procedure, shortens the detection time, implements only simple electronic
interfaces, requires a small sample volume and is cost-effective” [36] (p. 6). A prototype of
the device has already been developed.

Alba-Patiño et al. developed in 2020 a plasmonic-based mobile biosensor [37] made of
filter paper for the detection of IL-6 in whole blood. The cytokine is measured with the help
of a custom app that “makes use of a software-based AR guidance system” [37] (p. 1258)
“in order to stabilize angle and distance parameters” [37] (p. 1258) and an unmodified
smartphone. For this, it is only necessary to hover over the assay with the smartphone
to quantify colorimetric signals [37]. This immunoassay could detect IL-6 with a limit of
detection of 0.1 pg/mL.

Another electrochemical biosensor that is based on an impedance spectroscopy (EIS)
system [38] was developed by Cruz et al. for measuring TNF-α in samples of human blood
serum, cerebrospinal fluid and tears. Cruz et al. state that the device is also applicable “in
the context of personalized medicine” [38] (p. 2676) and could be further developed for
other immune relevant biomarkers. The benefits of the device are “high sensitivity and
reproducibility, its ease of use, low processing and signal acquisition times” [38] (p. 2680).
The estimated limit of detection (LOD) is as low as 0.085 pg/mL. This immunoassay
demonstrates the high selectivity to TNF-α in a solution that contains IL-4 and IFN-γ.
Compared to the other technologies that can measure cytokines inexpensively, with 90 min
the device needs more time to present the result [38]. There is already a prototype available
which has similarities to a glucose meter that will be connected to a computer.

A graphene-based portable nanosensing system [39] was developed by Hao et al. in
2019 to detect levels of IL-6 in saliva in just about 400 s with a limit of detection as low as
12 pM. The biosensor can be used in combination with a smartphone: “The signal can be
wirelessly transmitted to a smartphone or cloud sever through the Wi-Fi connection for
visualizing the trend of the cytokine concentration change” [39] (p. 1). A customized app
was developed specifically for this purpose [39]. A prototype is available of the nanosensing
system and was tested with an Android smartphone [39].

Barbosa et al. developed an MCF device based on enhancing enzymatic amplification [40]
to detect the level of IL-1β in whole blood with the usage of “fluoropolymer microfluidic
MCF strips” [40] (p. 319) and with a detection limit of 6 pg/mL. Barbosa et al. use cost
effective optoelectronic readout systems such as smartphones and a flatbed scanner [40].
The readout time was not clearly stated, the researchers just stated several times that the
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device is for the rapid determination of the cytokine [40]. The device is available at a
prototype level [40].

A hybrid magneto-electrochemical sensor [41] was developed by Min et al. for the de-
tection of levels of IL-3 in whole blood, blood plasma and serum under 60 min. For samples
of whole blood, no pre-processing steps are needed [41]. The achieved detection sensitivity
and specificity are 91.3% and 82.4%, respectively. The sensor is used in combination with a
smartphone that functions “as a touch-screen interface” [41] (p. 3). Additionally, Min et al.
developed a customized iOS app “for system control and data storage” [41] (pp. 3–4). “The
resulting [. . . ] device was a standalone handheld unit, measuring electrical currents and
displaying IL-3 concentrations” [41] (p. 4). The cost of the device is 50 USD [41]. In the
future, the researchers intend to work to extend the device to measure multiple cytokines,
such as IL-3, TNF-α, IL-1β and IL-6 [41].

In order to answer RQ2, Table 6 shows the technologies that can be used to acquire
cytokines expensively and Table 7 presents the technologies with which cytokines can be
acquired inexpensively. Furthermore, in the tables, the cytokines that can be measured are
shown for each technology. Hence, the cytokines that can be measured at home are: IL-1β,
IL-3, IL-6, IL-8, TNF-α and IFN-γ.

Interleukin 1β (IL-1β) is a cytokine that is “critical for B-cell maturation, stimulation of
T-cells, activation of natural killer (NK) cells and activation of macrophages and microglia,
leading to inflammatory responses” [42] (p. 922) and plays a critical role in the severity
of inflammation [42]. Interleukin 3 (IL-3) is “a cytokine that activates proliferation of
hematopoietic stem cells and progenitors, has recently been identified as a key regulator
during sepsis pathogenesis. IL-3 operates upstream of key cytokines including TNF-α, IL-1β
and IL-6; high IL-3 level can trigger a detrimental cytokine storm” [41] (p. 5). Interleukin
6 (IL-6) has two important roles. On the one hand, IL-6 is a pro-inflammatory cytokine
and on the other hand it is an anti-inflammatory cyokine [43]. Furthermore, it is “an
important mediator of fever” [43] (p. 5). Interleukin 8 (IL-8) is a pro-inflammatory cytokine
and is responsible for chemoattraction and neutrophils activation [44]. Tumor necrosis
factor alpha (TNF-α) is a major inflammatory mediator and is responsible for many of the
physical symptoms that occur during the inflammatory process [38]. TNF-α is seen as the
gold-standard biomarker for inflammation [31]. Interferon gamma (IFN-γ) “can be used for
revealing of infectious diseases and especially for distinguishing of viral and some types of
bacterial infections” [34] (p. 1).

Table 8 summarises which of the mentioned cytokines are inexpensive and which
expensive to acquire.

Table 8. The identified inexpensive- and expensive-to-acquire cytokines.

Inexpensive Expensive

IL-1β IFN-γ
IL-3
IL-6
IL-8
TNF-α

4.3. Technologies to Acquire Non-Cytokine Biomarkers

C-Reactive Protein (CRP), Prostate Specific Antigen (PSA) as well as both antibodies
Immunoglobulin G (IgG) and ImmunoglobulinM (IgM) have also been observed during the
literature review and are listed in Table 9. These biomarker are also related to the immune
system but are no cytokines. Gondoh-Noda et al. state that “C-Reactive Protein (CRP) is
highly sensitive to diagnosing infections and its elevation can help diagnose acute infection
in older patients” [45] (p. 1). Normally, the immune status is assessed by a whole blood
count with cell differential but in some cases also the determination of the level of CRP is
carried out in addition to this [46].
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Bouraoui et al. were able to identify an association between elevated proinflammatory
cytokines (TNF-α, IL-6, IL-1) and elevated serum PSA levels with regard to progression
of prostate cancer [47]. The MCFphone in Table 9 measures PSA and “is composed by a
smartphone integrated with a magnifying lens, a simple light source and a miniaturized
immunoassay platform, the Microcapillary Film (MCF)” [48] (p. 1).

Choi et al. developed the Eigen Diagnosis Platform (EDP) as “a portable quantitative
immunoassay platform” [49] and demonstrated the performance of the platform for IgG and
IgM. The IgG antibodies play an important role in fighting both bacterial and virus-related
infections and IgM is usually the first antibody response to an infection [49]. The monitoring
of both antibody levels can help in the diagnosis and treatment of health conditions [49].

Table 9. Findings of the PRISMA literature review for six non-cytokine biomarker.

Year Device(s) Biomarker Technique Sample Sample Time

2020 GLEIA device [45] CRP GLEIA 1.4 µL of whole blood <10 min

2017 PhoneQuant [50] CRP LFIA whole blood −
2017 iQuant™Analyser [51] CRP LFIA whole blood, serum 1 min

2016 EE-µPAD [52] CRP
paper-based,
electronic and
opto-electronic sensors

single drop of whole
blood, sweat, saliva few min

2016 Eigen Diagnosis Platform
and App, smartphone [49] IgG, IgM GMR single drop of

whole blood <15 min

2015 MCFphone PSA MCF whole blood 13 to 22 min

5. Dataset

We use a public dataset of healthy human subjects collected for analyzing the im-
munological mechanisms in the immune system [53] to answer the research question RQ3.
The dataset comprises measurements of 42 immunological proteins of 10,000 healthy sub-
jects. The measurements were performed by using multiplex ELISA. After removing the
missing values and outliers, we end up with 351 healthy subjects where we only focus on
ten cytokines, IL-1β, IL-6, TNF, IFN-γ, IL-10, IL-2, IL-17A, IL-17F, IL-4 and IL-5. According
to the results of the PRISMA in Section 3, {IL-1β, IL-6, IL-3, IL-8 and TNF} are categorized
as inexpensive cytokines and the rest as expensive since they only can be measured with
additional complex equipment. We do not use IL-3 and IL-8 in the regression analysis
because IL-3 is missing for more than 98% of the subjects and IL-8 is not measured in
this dataset. Moreover, we add age to the inexpensive cytokines since this information is
available in the dataset and easy to collect. Figure 4 shows the value distribution of each of
the ten cytokines in addition to the age after the removal of outliers.

6. Method II: Regression Analysis

To answer the third research question, the cytokines summarized in Table 8 are needed
because these cytokines form the basis for the implementation of several regression models.
In order to answer research question three (RQ3), the cytokines that are inexpensive to
acquire are used as independent variables (the features) and the cytokines that are expensive
to acquire are used as dependent variable (the target). Three different types of regression
algorithm will be selected and the results of the regression models will be later compared
with each other. In this process, three regression models per selected regression algorithm
are developed.
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Figure 4. Sample distributions (after the removal of outliers) for all the ten expensive and inexpensive
cytokines, IL-1β, IL-6, TNF, IFN-γ, IL-10, IL-2, IL-17A, IL-17F, IL-4 and IL-5 in addition to the age of
351 healthy subjects in the public dataset 10k Immunomes. Most of the cytokines do not follow a
normal distribution.

6.1. Regression Models

The development of the regression models is implemented with the programming
language Python.

Three regression algorithms with their different advantages and disadvantages were
chosen for the training of regression models based on the public dataset 10k Immunomes:
(multiple) linear regression, decision tree and random forest.

6.1.1. (Multiple) Linear Regression

Multiple linear regression concentrates on the linear relationship between the depen-
dent target variable and more than one independent input variable [54]. Therefore, one
assumption for using multiple linear regression is linearity which means if the relationship
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between any of the input variables and the target variable is non-linear the model perfor-
mance is not as accurate as it could be [55]. Another assumption that has to be kept in mind
is the normal distribution regarding residuals [55].

The (multiple) linear regression algorithm is easy to understand and to implement but
it also has some downsides [56]. Linear regression models tend to overfit and to simplify
complex relationships between variables too much [56]. Furthermore, as the name already
implies, it cannot work on non-linear relationships [56]. Outliers can have a large effect on
the performance of a linear regression model [55].

6.1.2. Decision Tree

In contrast, the second selected regression algorithm is the decision tree algorithm
which is an example of a non-linear method.

The biggest advantage of the decision tree algorithm is that it can handle next to
non-linear data and also linear data and compared to other algorithms a decision tree is
quick to train [57]. Furthermore, it is easy to interpret and to visualise [58]. The biggest
disadvantage is its tendency to overfit [56].

6.1.3. Random Forest

A possibility to avoid overfitting is to use the random forest model. Here, various
decision trees are generated to combine the predictions of them [59].

The random forest algorithm generates randomly several training datasets from the
original dataset by using the bootstrapping method [60]. The method is related to bagging
(bootstrapping aggregation) which is used to aggregate data for making predictions on the
basis of multiple build models on a subset of data [60]. In the end all predictions will be the
mean value of the predictions of all decision trees [60].

All three models presented are very different in their approach. They have different
strengths and weaknesses, with some weaknesses of one algorithm being mitigated by
the approach of another of the selected algorithms (e.g., the tendency of a decision tree to
overfit is prevented by the random forest). It is to be expected that the selected regression
algorithms will perform differently and produce different “good” models. With this in
mind, a comparison of these models seems very interesting.

6.2. Data Preprocessing Steps

It is important to conduct pre-processing of the data before building the regression
models. In [61], Manasa et al. describe the general steps in pre-processing of the data:
the handling of missing values, the splitting of the dataset into a training set and a test
set, the scaling of variables, feature selection and the handling of outliers. In addition,
a Shapiro–Wilk Test for normal distribution is to be carried out and a heatmap for the
identification of multi-collinearity is created to account for the assumptions of (multiple)
linear regression. We decide not to impute the missing values and simply remove them
because the imputation of missing values may introduce bias into the data. For evaluation,
we apply the hold-out validation with random sampling with no replacement over 40 runs.
The dataset is divided into training (80% of the data) and testing sets (20% of the data).
The measurements are also standardized, the features have different scales. This can affect
the predictor and features with bigger scales may get more weight.

6.2.1. Feature Selection

Another essential step in preparing the data for a later model is feature selection.
Since the aim of this work is to find out whether the identified features from the results of
research questions one (RQ1) and two (RQ2) can predict the expensive cytokines, none of
the features are eliminated. However, to identify which inexpensive cytokines contribute
to the prediction of the expensive cytokines, we investigate the performance of various
regression models built on different subsets of the inexpensive cytokines. Since we have
four inexpensive cytokines, IL-6, IL-1β, TNF and age, we create 15 different sets of all
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possible combinations as follows: {IL-6}, {IL-1β}, {TNF}, {age}, {IL-6, IL-1β}, {IL-6, TNF},
{IL-6, age}, {IL-1β, TNF}, {IL-1β, age}, {TNF, age}, {IL-6, IL-1β, TNF}, {IL-6, IL-1β, age}, {IL-1β,
TNF, age}, {IL-6, TNF, age}, {IL-6, IL-1β, TNF, age}. Afterward, for each of the dependent
variables (expensive cytokines), we get the top 10 regression models that perform the best.
Then, we check which of the inexpensive cytokines are used as independent variables by
these top 10 models. We consider the most important inexpensive cytokines to be those
that appear frequently in the lists of the independent variables of the top 10 models.

6.2.2. Shapiro–Wilk Test

Before feature scaling and removing outliers, a Shapiro–Wilk Test is conducted to
check if the data come from a normal distribution which would help to meet the assumption
of normally distributed data for the linear regression.

For all the cytokines, the p-value is less than 0.05, which means it is very likely to reject
the null hypothesis given the available evidence and that the sample data does not stem
from a normal distribution. The absence of a normal distribution can affect the predictor of
Linear Regression. Figure 4 proves that all the features in the 10k Immunomes dataset do
not follow a normal distribution.

6.2.3. Multi-Collinearity

As the Linear Regression has the assumption that there is no multi-collinearity be-
tween the independent variables, a heatmap using the Pearson correlation is plotted to
investigate this.

According to the Pearson correlation coefficients shown in Figure 5, there are very low
correlations among the variables. The four independent variables (the three inexpensive
cytokines (IL-1β, IL-6, TNF) in addition to the ‘age’) are weakly correlated because the
correlation coefficients range from −0.2 to 0.2. Thus, the multi-collinearity poses no threat
to the validity of the linear regression models. Furthermore, the correlation heatmap reveals
some strong correlations between the expensive cytokines. We find that IL-5 is strongly
correlated with the two expensive cytokines IFN-γ and IL-4. Moreover, TNF and IFN-γ are
strongly negatively correlated.

Figure 5. A heatmap of the Pearson correlation coefficients among the inexpensive and the expensive
cytokines, in addition to ‘age’ as an independent variable in the linear and nonLinear regression
models. The heatmap illustrates weak correlations among the four independent variables, IL-1β, IL-6,
TNF and age; IL-5 is strongly positively correlated with both IFN-γ and IL-4 and TNF is strongly
negatively correlated with IFN-γ.
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6.2.4. Outliers

There are several reasons for possible outliers, e.g., mistakes during the data collection,
recording or transcription [62]. With the help of violin plots, possible outliers can be
detected. The dataset used has outliers that may affect the model building as illustrated
in Figure 6. All the subjects in this dataset are healthy subjects. Therefore, we consider
highly elevated cytokine values as outliers. For example, while most of the values of IL-6
are concentrated below 1000 pg/mL, some of them are higher than 4000 pg/mL. Thus,
we consider all values that are higher than 4000 pg/mL for IL-6 as outliers. Similarly,
for the cytokines IL-1β, IFN-γ, TNF, IL-10, IL-2, IL-17A, IL-17F, IL-4 and IL-5, we consider
the values that are higher than 500, 500, 300, 200, 700, 100, 200, 100 and 1500 pg/mL,
respectively, as outliers and hence we remove them. Figure 7 shows the value ranges for all
the cytokines after the removal of the outliers.

Another part of the implementation is the hyperparameter tuning to improve the
models’ performance and accuracy. Especially for random forest models and decision tree
models, different hyperparameters can be tuned (e.g., the minimum number of samples
required to split an internal node, the maximum depth of a tree, the minimum number of
samples required to build a leaf node, the number of trees in a forest) [63]. The hyperpa-
rameters that improve the performance (e.g., the highest possible value for the coefficient
of determination) of the regression models are used in the final implementation. The search
for hyperparameters was carried out manually. For the random forest regressor, we test
several numbers of learned trees (20, 35, 30, 40 and 50). The depth of the learned trees in
the random forest and the decision tree regressors is varied between the number of the
independent variables and the number of the independent variables + 3. Furthermore,
to compare the performance of the several regression models, we must choose the evalu-
ation measure carefully. There are several evaluation metrics that are used in regression
models, such as mean absolute error (MAE), root mean of squared errors (RMSE), the sum
of squared errors (SSE) and the r-squared score of determination (R2). We choose to use
the score of determination because it evaluates how the variance of the dependent variable
can be explained by the model. The value of this measure is between 0 and 1 and it is
independent of the value scale of the variable, unlike all the remaining evaluation measures
that are not scale-free.

Figure 6. Violin plot of all cytokines in the public dataset 10k Immunomes before the removal of
outliers. The graph indicates the existence of outliers for all the cytokines due to the extremely wide
range of values.
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Figure 7. Violin plot of all cytokines in the public dataset 10k Immunomes after the removal of
outliers. The removal of outliers shrinks the range of values.

7. Results and Discussion II: Findings of the Regression Analysis

The aim of the implementation of different regression models was to answer research
question three (RQ3). Therefore, the findings of the implementation are presented below as
well as the discussion of the findings. For the random forest regression model, we find that
the models with a maximum depth of the tree that equals the number of the independent
variables +3 and 30 randomly generated trees give the best performance. Moreover, for the
decision tree regression model, the best results are produced by trees with a maximum
depth equals to the depth chosen for the random forest regression model.

As the results show in Table 10, the random forest regression model dominates in
terms of exhibiting the best performance across all the expensive cytokines. We can say
that among all the expensive cytokines, IFN-γ, IL-5 and IL-4 can be predicted to be the
best with random forest models that achieve R2 = 0.743, 0.69, 0.517, respectively. The best
decision tree regression models that predict IFN-γ, IL-4 and IL-5 score R2 = 0.76, 0.561, 0.336,
respectively, which is higher than the best predictions achieved by the Linear Regression
models (R2 = 0.373, 0.183, 0.195, respectively). This emphasizes the non-linear dependencies
between these expensive cytokines and the inexpensive ones.

The best predictor for IL-10 achieves the lowest R2 (=0.126) among all the expensive
cytokines which implies that it is difficult with the available four inexpensive cytokines to
generate good predictions of IL-10.
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Table 10. Results of the performance indicator (R2) of the three regression models (Linear regression,
random forest regression (RF), decision tree regression (DT)) for all the cytokines in the public dataset
10k Immunomes across 15 different sets of independent variables. The best performance is indicated
in green. The predictors of IFN-γ, IL-5 and IL-4 are the best three predictors, indicating that the
inexpensive cytokine can produce reliable predictions, whereas the predictor of IL-10 achieves poor
performance. TNF and IL-6 appear among the predictors of all the models, indicating their strong
associations with the expensive cytokines.

Independent Variables

R2

IFN-γ IL-10 IL-2

Linear DT RF Linear DT RF Linear DT RF

age 0.024 0.007 −0.202 −0.029 −0.200 −0.409 0.181 0.082 0.032
IL1β −0.017 0.064 0.054 −0.030 −0.110 −0.123 −0.034 −0.127 −0.119
IL6 0.002 0.102 0.016 0.036 −0.016 −0.110 −0.032 0.111 0.094
TNF 0.201 0.454 0.377 −0.028 −0.185 −0.514 0.012 −0.034 −0.089
age + IL1β 0.026 −0.004 −0.055 −0.029 −0.272 −0.299 0.184 −0.077 −0.002
age + IL6 0.050 0.031 0.085 0.051 −0.071 0.013 0.196 0.111 0.230
age + TNF 0.216 0.506 0.566 −0.030 −0.236 −0.231 0.183 0.049 0.158
IL6 + IL1β 0.009 0.054 0.107 0.029 −0.143 −0.010 −0.039 0.177 0.180
TNF + IL1β 0.201 0.511 0.595 −0.037 −0.149 −0.163 −0.012 −0.176 −0.123
TNF + IL6 0.289 0.627 0.689 0.042 0.049 0.085 −0.035 0.060 0.081
age + IL6 + IL1β 0.072 −0.177 0.069 0.003 −0.361 0.005 0.161 −0.116 0.185
age + TNF + IL1β 0.258 0.575 0.710 −0.049 −0.377 −0.107 0.181 0.097 0.298
age + TNF + IL6 0.365 0.560 0.689 0.017 −0.189 0.089 0.207 0.141 0.357
TNF + IL6 + IL1β 0.335 0.670 0.743 0.028 −0.284 0.086 −0.027 −0.026 0.159
age + TNF + IL6 + IL1β 0.373 0.538 0.669 0.004 −0.356 0.126 0.185 0.076 0.347

Independent Variables

R2

IL-17A IL-17F

Linear DT RF Linear DT RF

age −0.011 0.005 −0.155 0.065 −0.168 −0.268
IL1β −0.015 0.015 0.010 −0.019 −0.153 −0.135
IL6 0.037 0.096 −0.036 −0.035 0.157 0.113
TNF −0.021 0.002 −0.066 0.007 −0.041 −0.159
age + IL1β −0.013 −0.043 −0.050 0.038 −0.306 −0.236
age + IL6 0.056 −0.028 0.098 0.074 −0.365 −0.315
age + TNF 0.024 −0.130 −0.044 0.104 −0.588 −0.093
IL6 + IL1β 0.016 0.104 0.149 −0.024 −0.031 −0.014
TNF + IL1β 0.029 0.071 −0.019 0.015 −0.126 −0.131
TNF + IL6 0.104 0.153 0.145 0.031 −1.003 −0.399
age + IL6 + IL1β 0.032 −0.023 0.206 0.012 −0.907 −0.347
age + TNF + IL1β 0.036 −0.072 0.115 0.117 0.020 0.244
age + TNF + IL6 0.134 −0.028 0.229 0.073 −0.027 0.263
TNF + IL6 + IL1β 0.111 0.059 0.227 0.055 −0.931 −0.152
age + TNF + IL6 + IL1β 0.110 0.045 0.299 0.122 −0.048 0.284

Independent Variables

R2

IL-4 IL-5

Linear DT RF Linear DT RF

age 0.004 −0.038 −0.143 0.107 0.101 −0.087
IL1β 0.000 0.043 0.022 −0.026 −0.050 −0.056
IL6 0.034 −0.020 −0.137 −0.031 0.088 0.072
TNF 0.157 0.148 0.061 0.000 0.174 0.086
age + IL1β 0.015 0.002 0.022 0.078 −0.051 0.017
age + IL6 0.025 −0.164 −0.078 0.072 −0.031 0.176
age + TNF 0.122 0.117 0.208 0.131 0.358 0.473
IL6 + IL1β 0.047 −0.097 −0.066 −0.022 0.042 0.045
TNF + IL1β 0.108 0.155 0.247 0.087 0.244 0.374
TNF + IL6 0.124 0.287 0.463 0.037 0.607 0.648
age + IL6 + IL1β 0.116 −0.197 0.089 0.093 −0.074 0.181
age + TNF + IL1β 0.195 0.211 0.432 0.183 0.443 0.605
age + TNF + IL6 0.150 0.286 0.476 0.131 0.561 0.690
TNF + IL6 + IL1β 0.187 0.336 0.517 −0.017 0.540 0.658
age + TNF + IL6 + IL1β 0.193 0.313 0.517 0.122 0.559 0.688
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Furthermore, not all the four inexpensive cytokines are needed to achieve the best
predictions. The best predictors of IFN-γ and IL-4 use only TNF, IL-6 and IL-1β as indepen-
dent variables whereas age, TNF and IL-6 are the independent variables used by the best
predictor of IL-5. Similarly, the best predictor of IL-2 uses the same independent variables
used be the best predictor of IL-5. The best regression models that predict the expensive
cytokines, IL-10, IL-17A and IL17F, need all the four inexpensive cytokines. As a result,
we note that TNF appears among the inexpensive cytokines that predict all the expensive
cytokines. This indicates the high importance of the cytokine TNF in the immune system.
These findings are supported with the estimated feature importance on the top 10 prediction
models for each of the expensive cytokines, as shown in Table 11. We find that TNF appears
as an independent variable in all the top 10 models for predicting three cytokines, IFN-γ,
IL-4 and IL-5. IL-6 appears in all of the top 10 prediction models of the cytokine IL-10 and in
9 out of 10 of the top 10 models for predicting IL-17A. Age is also significantly important as
it is among the independent variables for all the top 10 prediction models for IL-2 and in
8 out of 10 of the top 10 prediction models for IL-17F.

Moreover, we observe that selecting the independent variables plays a major role in
producing reliable predictions. For example, the random forest model that uses the age,
IL-6 and IL-1β for predicting IFN-γ scores an R2 equals to 0.069, which is improved to
0.743 by using the same random forest model that replaces age with TNF. It is evident
that the strong correlation between IFN-γ and TNF, shown in Figure 5, leads to more
precise predictions. In most cases, the linear and the decision regression models perform
poorly. We do not observe any consistent pattern in their performance. This could be due
to the complex dependencies among the cytokines or because the data are not normally
distributed, as we discussed earlier in Section 6.2.

Table 11. The number of occurrences of each of the input (inexpensive) cytokines, IL-6, TNF, IL-β

and age in the top 10 ranked predictors for each of the expensive cytokines. Age is the most important
feature for IL-2 and IL-17F. IL-β is the most important feature for IFNγ, IL-4 and IL-5, whereas IL-6 is
the most important feature for IL-10 and IL-17A.

Target Cytokine
Input Cytokine

IL-6 TNF IL-1β Age

IFN-γ 6 10 6 5
IL-10 10 7 4 3
IL-2 7 6 5 10

IL-17A 9 8 6 5
IL-17F 7 7 4 8

IL-4 8 10 6 5
IL-5 8 10 5 6

8. Conclusions

In this review, we identified in total 12 technologies developed for the rapid deter-
mination of cytokines that can be tested at home. Most of the technologies found are
from recent years (2018 to 2021) and are still in the prototype phase. Additionally, fur-
ther technologies could be identified that measure no cytokines but other immune-related
biomarkers. The identified technologies were divided into inexpensive and expensive
technologies depending on whether the cytokines are easy and inexpensive to acquire with
these technologies or not. Inexpensive-to-acquire cytokines suitable for home testing could
be identified: Interleukin 1β (IL-1β), Interleukin 3 (IL-3), Interleukin 6 (IL-6), Interleukin 8
(IL-8) and Tumor necrosis factor alpha (TNF-α). The only expensive-to-acquire cytokine
suitable for home testing identified is Interferon gamma (IFN-γ).

The PRISMA literature review results were the basis for answering research question
three (RQ3) as the identified inexpensive-to-acquire cytokines are the input variables and
the expensive-to-acquire cytokine IFN-γ in addition to six cytokines from the public dataset
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10k Immunomes are the target variable for the implementation of regression models. Three
different regression algorithms were implemented for a group of 351 healthy subjects:
(multiple) linear regression, decision tree and random forest. With the selected algorithms,
the implemented approach and the available dataset, the following results could be achieved:
the best performing model is the random forest model for the expensive cytokine IFN-γ
with R2 = 0.743, followed by IL-5 then IL-4 with R2 = 0.69, 0.517 respectively. TNF had a
significant role in the immune system as it appears among the independent variables used
for predicting all the seven expensive cytokines. The regression analysis results also show
that it is difficult to predict the expensive cytokine IL-10 relying solely on the identified
inexpensive cytokines.

This study focuses on modeling the dependencies between the expensive and the
inexpensive cytokines in healthy subjects. However, it is also necessary to analyse these de-
pendencies in subjects with some health conditions because we expect these dependencies
to differ when the studied subjects have a disease.

Quantifying the cytokines that play vital roles in the immune system allows for a
reliable assessment of the immune system’s fitness and the body’s health. Therefore, devel-
oping an efficient method that does not require many resources is necessary. We believe that
exploiting the inexpensive cytokines to quantify the expensive ones moves us one step closer
to assessing the fitness of the immune system without the need for complex equipment and
professional staff.
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