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Abstract

IMPORTANCE For patients with locally advanced esophageal squamous cell carcinoma,

neoadjuvant chemoradiation has been shown to improve long-term outcomes, but the treatment

response varies among patients. Accurate pretreatment prediction of response remains an

urgent need.

OBJECTIVE To determine whether peritumoral radiomics features derived from baseline computed

tomography images could provide valuable information about neoadjuvant chemoradiation

response and enhance the ability of intratumoral radiomics to estimate pathological complete

response.

DESIGN, SETTING, AND PARTICIPANTS A total of 231 patients with esophageal squamous cell

carcinoma, who underwent baseline contrast-enhanced computed tomography and received

neoadjuvant chemoradiation followed by surgery at 2 institutions in China, were consecutively

included. This diagnostic study used single-institution data between April 2007 and December 2018

to extract radiomics features from intratumoral and peritumoral regions and established

intratumoral, peritumoral, and combined radiomics models using different classifiers. External

validation was conducted using independent data collected from another hospital during the same

period. Radiogenomics analysis using gene expression profile was done in a subgroup of the training

set for pathophysiological explanation. Data were analyzed from June to December 2019.

EXPOSURES Computed tomography–based radiomics.

MAINOUTCOMESANDMEASURES The discriminative performances of radiomics models were

measured by area under the receiver operating characteristic curve.

RESULTS Among the 231 patients included (192men [83.1%]; mean [SD] age, 59.8 [8.7] years), the

optimal intratumoral and peritumoral radiomics models yielded similar areas under the receiver

operating characteristic curve of 0.730 (95% CI, 0.609-0.850) and 0.734 (0.613-0.854),

respectively. The combinedmodel was composed of 7 intratumoral and 6 peritumoral features and

achieved better discriminative performance, with an area under the receiver operating characteristic

curve of 0.852 (95% CI, 0.753-0.951), accuracy of 84.3%, sensitivity of 90.3%, and specificity of

79.5% in the test set. Gene sets associated with the combinedmodel mainly involved lymphocyte-

mediated immunity. The association of peritumoral area with response identification might be

partially attributed to type I interferon–related biological process.

(continued)
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Abstract (continued)

CONCLUSIONS ANDRELEVANCE A combination of peritumoral radiomics features appears to

improve the predictive performance of intratumoral radiomics to estimate pathological complete

response after neoadjuvant chemoradiation in patients with esophageal squamous cell carcinoma.

This study underlines the significant application of peritumoral radiomics to assess treatment

response in clinical practice.

JAMA Network Open. 2020;3(9):e2015927. doi:10.1001/jamanetworkopen.2020.15927

Introduction

Esophageal cancer (EC) is one of themost fatal malignant neoplasms worldwide.1 In Asia, more than

90% of patients with EC receive a diagnosis of esophageal squamous cell carcinoma (ESCC),

compared with approximately 20% of patients with EC inWestern countries.2Neoadjuvant

chemoradiotherapy (nCRT) has been confirmed by large-scale randomized clinical trials to benefit

tumor resectability and long-term survival of patients with locally advanced ESCC.3-6However,

treatment response patterns vary from patient to patient. Pathological complete response (pCR) has

been considered as a strong prognostic factor for favorable outcome.7-9 Approximately less than

one-half of patients receiving nCRT have been shown to achieve pCR.3,4,10 Patients with limited

tumor regression are likely to experience unnecessary adverse events and run the risk of delay of

operation and even disease progression. Therefore, accurate estimation of nCRT response is

meaningful for pretherapeutic decision-making. A practical and noninvasive approach to precisely

assess therapeutic response before treatment implementation is required.

Previous studies11-16 have evaluated the capability of conventional parameters derived from

computed tomography (CT) or integrated positron emission tomography to estimate treatment

response. In these studies, most examinations were performed in the early course of or after nCRT,

which is of little importance regarding the initial planning of therapy regimen. The use of

conventional parameters from baseline imaging alone has limited value in pretreatment

prediction.17,18 Radiomics has provided novel information frommedical images.19 It has been

reported that radiomics features of the core tumoral area present significant predictive power for the

treatment response in EC.20-23 Recently, radiomics features derived from the peritumoral area have

also been shown to be predictive in response assessment in other cancers. Braman et al24 showed

that peritumoral radiomics possessed valuable pCR-related attributes in breast cancer across

different molecular types. Sun and colleagues25 reported an area under the receiver operating

characteristic curve (AUC) of 0.999 in the testing set of a magnetic resonance imaging–basedmodel

combining intratumoral and peritumoral radiomics for predicting response to neoadjuvant

chemotherapy in cervical cancer. Khorrami et al26 reported that peritumoral radiomics features

derived from CT images were predictive of response to chemotherapy in lung adenocarcinoma.

Previous radiomics studies20-23,27 in ECmainly focused on the intratumoral region alone,

whereas little is known about the role of peritumoral radiomics features, which are likely to provide

crucial but easily overlooked information about pCR. In this context, we hypothesized that the subtle

structural deformations occurring around esophageal wall regions seen on CT images could be

potential biomarkers to nCRT response in ESCC. Thus, we aimed to develop baseline CT-based

models to identify pCR using intratumoral and peritumoral radiomics features separately and in

combination and to validate their performances in an independent cohort. Furthermore, we also

performed a radiogenomics analysis to investigate the pathophysiological features associated with

radiomics signatures and how peritumoral features contributed to the predictive ability.
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Methods

Patients

This diagnostic study was approved by the institutional review boards of Sun Yat-sen University

Cancer Center and University of Hong Kong. The requirement for informed consent was waived

because the study was deemed to pose no additional risk to patients and the data were deidentified.

The study follows the Standards for Reporting of Diagnostic Accuracy (STARD) reporting guideline.

Figure 1 shows the experimental design.

We retrieved records between April 2007 and December 2018 from Sun Yat-sen University

Cancer Center (institution 1) and University of Hong Kong (institution 2). The flow of patient selection

is depicted in eFigure 1 in the Supplement. Images from patients at institution 1 were used as the

training set, and those from patients at institution 2 were used as the test set. Enrolled patients with

ESCC underwent pretreatment contrast-enhanced CT scans, with coverage from the neck to the

upper abdomen, and then underwent nCRT followed by radical esophagectomy. All patients received

platinum-based chemotherapy and concurrent radiotherapy preoperatively (see eAppendix 1 in the

Supplement for detailed regimens). Radical esophagectomy was performed 4 to 8 weeks after the

completion of nCRT. Pathological response was assessed by pathologists specialized in EC, and pCR

was identified as no presence of viable cancer cells in all the resected specimens.

Delineation of Regions of Interest

CT image acquisition is detailed in eAppendix 1 in the Supplement. The pretreatment contrast-

enhanced CT images were retrieved from the picture archiving and communication system. Two

senior radiologists (V.V. and L.H.) with 10 and 9 years of experience, respectively, were blinded to

pathological response andmanually delineated the intratumoral and peritumoral regions of interest

using ITK-SNAP image segmentation software version 3.6 (Yushkevich P and Gerig G). The

Figure 1. Analysis Flowchart
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JAMANetworkOpen | Imaging CT Radiomics for Predicting Response to Neoadjuvant Chemoradiation in Patients With ESCC

JAMA Network Open. 2020;3(9):e2015927. doi:10.1001/jamanetworkopen.2020.15927 (Reprinted) September 10, 2020 3/14

Downloaded From: https://jamanetwork.com/ on 10/19/2020

http://www.equator-network.org/reporting-guidelines/stard/
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.15927&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.15927
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.15927&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.15927
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.15927&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.15927


intratumoral delineation covered the whole tumor in all slices with the primary lesion present. The

peritumoral region was empirically annotated by radiologists including the adjacent tissue and lymph

nodes immediately around the esophagus, where the airway, aorta, vertebrae, and azygos veinwere

excluded.We further conducted a test-retest study using a randomly selected subset of 30 patients

from the training set. Features extracted from 2 sets of regions of interest and contoured separately

by 2 radiologists in a blinded fashion were used to calculate the intraclass correlation coefficients.

Features with intraclass correlation coefficients greater than 0.8 were regarded as robust features

with good reproducibility and were selected for further analysis (1208 of 1316 of intratumoral

features and 1036 of 1316 of the peritumoral features had intraclass correlation coefficients >0.80).

Feature Extraction, Preprocessing, and Selection

Radiomics features were extracted using PyRadiomics image extraction software version 3.0.28

Defined features from original, wavelet-filtered, and Laplacian of Gaussian–filtered images were

extracted. Additional details of feature extraction and definition are specified in eAppendix 1 in the

Supplement. Radiomics features collected from different institutions were first harmonized using

ComBat29 to minimize the batch effect caused by differences in CT acquisition and reconstruction

parameters. To remove potentially redundant features and decrease data dimensions, we conducted

feature selection in the training set. First, correlated features were grouped by Pearson correlation

coefficient (>0.80), and the most predictive ones were retained. Correlated features in each group

were fitted into a decision treemodel and ranked according to their contribution for the prediction of

pCR status. The top feature was selected as the representative of this group and retained. Second,

we adopted a wrapper method using recursive feature addition algorithm to find the most

predictable features. Features were ranked according to their relevant importance, and contributable

ones were added in a recursive process using the corresponding classifiers.

Classifiers

The selected features were used to train predictionmodels. Multiple classifiers that were frequently

used in radiomics studies were adopted to achieve the best predictive performance. Classifiers

tested in this study included linear regression, support vector machine (SVM) with linear kernel, SVM

with radial basis function kernel, k-nearest neighbors, naive bayes, decision tree, random forest, and

extreme gradient boosting. The optimal classifier with the best AUCwas used for further exploration.

The classification probability was regarded as the radiomics score.

Radiogenomics Analysis

To explore the association of radiomics signatures and corresponding pathophysiological features,

we used the RNA sequencing data to establish links to transcriptome level. Procedures of RNA-seq

are shown in eAppendix 1 in the Supplement. Gene expression level was normalized by calculating

fragments per kilobase of exon per million fragments. We calculated Spearman rank correlation

coefficients between expression levels and radiomics scores. A total of 24 860 genes were ranked by

coefficients and input to perform gene set enrichment analysis using the gene set enrichment

analysis reranked tool (eAppendix 2 in the Supplement).30 The gene set collection of Gene Ontology

Biological Process from theMolecular Signatures Database31was tested. The result of enrichment

analysis was then demonstrated using the EnrichementMap32 on Cytoscape33 software version 3.8.0

to create an enrichmentmap of enriched gene sets withQ values less than0.05. Clusteringwas done

using the AutoAnnotate tool34 version 1.3.3 and thenmanually modified and labeled.

Statistical Analysis

The statistical differences were calculated by χ2 or Fisher exact test for categorical variables and the

Kruskal-Wallis test for numeric variables. The performances of radiomics models were quantified by

the AUC and P values for differences were calculated by the Delong test.35 The cutoff points of

accuracy, sensitivity, and specificity were determined by the Youden Index. Calibration curve and
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decision curve were performed to test the calibration performance and clinical utility.36Univariable

analysis was used to detect the correlations of clinical parameters for pCR. The influence of clinical

parameters on the performance was assessed by stratification analysis. A 2-tailed P < .05 was

regarded as statistically significant. Python software version 3.7 (Python) was used for graphic

depiction, and R statistical software version 3.3.3 (R Project for Statistical Computing) was used for

statistical analysis (eAppendix 1 in the Supplement). Data were analyzed from June to

December 2019.

Results

Baseline Characteristics

A total of 231 patients were enrolled in this study, including 161 in the training set and 70 in the

external test set (Table 1). The mean (SD) age of all patients was 59.8 (8.7) years; 192 (83.1%) were

men, and 39 (16.9%) were women. Patients with stage III disease accounted for the majority (173

patients [74.9%]). The pCR rates of the training and test sets were 46.0% and 44.3%, respectively.

Intratumoral and Peritumoral RadiomicsModels

We used 8 classifiers to construct radiomics models with intratumoral or peritumoral features.

Comparisons of performance across different classifiers are shown in eTable 1 in the Supplement. The

intratumoral model achieved the highest AUC of 0.730 (95% CI, 0.609-0.850) for the test set by

using the SVMwith radial basis function kernel classifier, whereas the peritumoral model performed

best in extreme gradient boosting with an AUC of 0.734 (0.613-0.854). Intriguingly, these 2models

demonstrated similar performance, indicating that peritumoral area did possess radiomics properties

relevant to treatment response. The 16 intratumoral features and 8 peritumoral features that

constituted the optimal models are listed in eTable 2 in the Supplement. Because the wrapped

feature selectionmethod was classifier specific, the number for selected features varied for different

classifiers (eTable 3 in the Supplement).

Combined RadiomicsModel

Performance was significantly improved by combining intratumoral and peritumoral features for all

8 classifiers (eTable 1 in the Supplement). The optimal performance was achieved by using SVMwith

radial basis function kernel with an AUC of 0.852 (95% CI, 0.753-0.951) and showed a significant

improvement compared with the intratumoral model (AUC, 0.881; 95% CI, 0.827-0.835; P = .047)

(Figure 2). The model showed good predictive value, with an accuracy of 83.9%, sensitivity of

82.4%, specificity of 85.1%, positive predictive value of 82.4%, and negative predictive value of

85.1% in the training set, and an accuracy of 84.3%, sensitivity of 90.3%, specificity of 79.5%,

positive predictive value of 77.8%, and negative predictive value of 91.2% in the test set. This model

was composed of 7 intratumoral and 6 peritumoral features (Table 2). One feature from original

images, 7 fromwavelet-filtered images, and 6 from Laplacian of Gaussian–filtered images were

selected. Basic metrics first-order statistics (median and kurtosis) and high-dimensional textual

features (gray level co-occurrencematrix and gray level size zonematrix features) contributed to the

model construction. Figure 3 depicts expression heat maps for intratumoral first-order kurtosis by

Laplacian of Gaussian (σ = 2 mm) and peritumoral gray level nonuniformity normalized without

filters from representative patients. The heatmaps highlighted the subtle tumoral heterogeneity that

was hardly visible in original CT images. The baseline tumor volumewas not predictive of pCR in this

study (eFigure 2 in the Supplement). Calibration curve and decision curve also showed good

calibration and clinical application performance of themodel (eFigure 3 and eFigure 4 in the

Supplement). Using the optimal cutoff value of 0.47, patients with radiomics scores greater than or

equal to 0.47 were predicted to have pCR, and those with radiomics score less than 0.47 were

predicted to not have pCR (eFigure 5 in the Supplement).
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Except for the optimal intratumoral, peritumoral, and combinedmodels, no clinical factors were

significantly associated with pCR in univariable analysis (eTable 4 in the Supplement). We further

stratified the prediction performance of the combinedmodel by clinical factors. Interestingly, family

history of cancer was significantly associated with the discriminative performance (eTable 5 in the

Supplement). The AUC for the subgroup of patients with family history of cancer was 0.977 (95% CI,

0.944-1.000), compared with 0.868 (95% CI, 0.813-0.922) for patients with no family history of

cancer (P < .001). The likelihood of different performance existed in subgroups stratified by tobacco

or alcohol use, with no statistical significance.

Table 1. Patient Characteristics for Training and Test Sets

Characteristic

Patients, No. (%)

Institution 1 (training set) Institution 2 (test set)

Non-pCR (n = 87) pCR (n = 74) P value Non-pCR (n = 39) pCR (n = 31) P value

Age, mean (SD), y 58.26 (6.77) 57.58 (7.00) .53 64.85 (8.83) 63.26 (12.67) .54

Sex

Male 72 (83) 62 (84)
>.99

33 (85) 25 (81)
.91

Female 15 (17) 12 (16) 6 (15) 6 (19)

Clinical T stagea

1b 0 1 (1)

.59

0 0

.50
2 23 (26) 19 (26) 1 (23) 2 (7)

3 61 (70) 53 (72) 37 (95) 29 (93)

4a 3 (4) 1 (1) 1 (2) 0

Clinical N stagea

0 3 (3) 5 (7)

.43

3 (8) 2 (7)

.51
1 40 (46) 39 (53) 12 (31) 15 (48)

2 37 (43) 23 (31) 20 (51) 12 (39)

3 7 (8) 7 (9) 4 (10) 2 (6)

Clinical stage group

I 0 1 (1)

.69

0 0

.65
II 13 (15) 13 (18) 3 (8) 2 (7)

III 64 (74) 51 (69) 31 (80) 27 (87)

IV A 10 (11) 9 (12) 5 (12) 2 (6)

Tumor location

Proximal third 6 (7) 11 (15)

.23

2 (5) 0

.38Middle third 52 (60) 43 (58) 18 (46) 13 (42)

Distal third 29 (33) 20 (27) 19 (49) 18 (58)

Histologic grade

G1 5 (6) 3 (4)

.38

0 3 (10)

.10G2 52 (60) 52 (70) 30 (77) 19 (61)

G3 30 (34) 19 (26) 9 (23) 9 (29)

Tobacco use

No 33 (38) 30 (41)
.86

13 (33) 11 (36)
>.99

Yes 54 (62) 44 (59) 26 (67) 20 (64)

Alcohol use

No 56 (64) 53 (72)
.42

15 (39) 15 (48)
.56

Yes 31 (36) 21 (28) 24 (61) 16 (52)

Family history of cancer

No 69 (79) 57 (77)
.87

33 (85) 26 (84)
>.99

Yes 18 (21) 17 (23) 6 (15) 5 (16)

Abbreviation: pCR, pathological complete response.
a Cancer staging was done with the American Joint Committee on Cancer TNM staging system (8th edition).
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Radiogenomics Analysis

To elucidate the pathophysiological association with the radiomics signatures and how peritumoral

radiomics features contributed to the predictive performance, we performed a radiogenomics

analysis using RNA-seq data derived from pretreatment specimens from 40 patients in the training

set. The range of the radiomics scores (0.353-0.613) in this subset basically overlapped with that of

the original training set (0.347-0.613). Genes were ranked via correlation coefficients for the

combined or intratumoral model, yielding 2 ranked gene lists for enrichment analysis. After

simplifying the redundancy of enrichment results of the 2models through an enrichment map

(eFigure 6 in the Supplement), most of the enriched gene sets were indicated to be immune related.

For both the combined and intratumoral models, clusters of interferon-γ, T cell–related immunity, B

cell–related immunity, andmultiple families of interleukin gene sets had high normalized enrichment

scores (eTable 6 in the Supplement). Exclusive clusters that were associatedwith only the combined

Figure 2. Predictive Performance of RadiomicsModels
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Graphs show receiver operating characteristic curve curves of the intratumoral, peritumoral, and combined radiomicsmodels constructed by support vectormachinewith radial basis

function kernel for training set (A) and test set (B). AUC indicates area under the receiver operating characteristic curve.

Table 2. Description of Selected Features in the CombinedModel Using Support VectorMachine

With Radial Basis Function Kernel

Group and filtera Feature class Feature

Intratumoral feature

Wavelet (HHH) GLSZM Large area low gray level emphasis

LoG (σ = 2 mm) First order Kurtosis

Wavelet (LLL) GLSZM Large area low gray level emphasis

LoG (σ = 2 mm) First order Median

LoG (σ = 5 mm) GLCM Sum average

LoG (σ = 2 mm) GLCM Inverse variance

Wavelet (HLH) First order Median

Peritumoral feature

Wavelet (HHH) First order Median

Wavelet (HHH) GLCM Inverse difference normalized

Wavelet (LLL) GLCM Cluster shade

LoG (σ = 1 mm) First order Kurtosis

Original GLSZM Gray level nonuniformity normalized

Wavelet (HLH) First order Kurtosis

Abbreviations: GLSZM, gray level size zonematrix;

GLCM, gray level co-occurrencematrix; LoG, Laplacian

of Gaussian.

a For wavelet filtration, H and L represent high-pass

filter and low-pass filter on the x, y, and z directions,

respectively.
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model, rather than the intratumoral model, might show the contribution of peritumoral features to

the identification of pCR (eg, type I interferon, lymphocyte apoptosis, and natural killer cell) ranked

by the highest normalized enrichment scores for gene set in the cluster. Because most of the gene

Figure 3. Radiomics FeatureMaps
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Expression heat maps for intratumoral first order kurtosis by LoGB

pCR Non-pCR

Expression heat maps for peritumoral GLSZM without filtersC

pCR Non-pCR

Radiologist-annotated intratumoral and peritumoral

regions and the corresponding radiomics expression

heatmaps for top selected feature on representative

CT images from patients with andwithout pathological

complete response (pCR). Panel A shows original

computed tomography (CT) images in the soft-tissue

window setting. Panel B shows expression heat maps

for intratumoral first order kurtosis by Laplacian of

Gaussian (LoG; σ = 2mm). Panel C shows expression

heat maps for peritumoral gray level nonuniformity

normalized (GLSZM) without filters. Radiomics

features were scaled between 0 and 1 for comparison.

Red and blue correspond to higher and lower values,

respectively.
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sets enriched in the immune-related clusters had positive normalized enrichment scores, the

corresponding phenotypes were positively associated with radiomics scores and nCRT response.

Discussion

The pretreatment prediction of pCR is important for developing individualized therapy. Previous

radiomics studies20-23 of patients with EC receiving nCRTmainly focused on intratumoral features

alone and establishedmodels using data of small cohorts from single institutions without validating

performance externally. There is emerging evidence that predictive models should not be limited to

mere tumor areas. Recent studies24-26,37-40 have shown that the surrounding regions may provide

complementary information on tumor heterogeneity in other cancers. Here we proposed a

noninvasive, CT-based radiomics model with favorable predictive value using both intratumoral and

peritumoral radiomics features to predict the possibility of pCR in patients with ESCC before

receiving nCRT. Although awide range of performance across different classifiers was achieved in the

test set, the combination of intratumoral and peritumoral features always improved the classification

accuracy regardless of the choice of classifier, confirming the additional predictive value of

peritumoral radiomics features. We only included 1 external cohort for validation because of data

resource restriction. More data sets are needed to further validate the optimal classifier for clinical

practice.

The risk stratification analysis demonstrated that the prediction performance could vary in

terms of family history of cancer, whichmay correlate with oncogenesis heterogeneity, reflecting the

differing genetic traits. Previous studies on breast cancer found that risk stratificationmodels could

perform differently for patients with various family histories of tumor.41,42 Familial risks could reflect

the shared genetic susceptibility and similar exposures to environmental risk factors and have been

reported to be associated with esophageal carcinogenesis and prognosis.43 Patients could benefit

from risk evaluation that involves collection of detailed information on clinical risk factors. Further

clinical studies on large-scale data sets are needed to fully address this question.

Various lines of evidence have shown stroma-mediated and lymphocyte-related resistance of

chemotherapy or radiotherapy in malignant neoplasms.44-49 Previous radiomics studies have

associated the treatment response prediction power of intratumoral and peritumoral radiomics with

immunemicroenvironment. Beig et al37 reported that the diagnostic value of perinodular radiomics

could be linked to the dense distribution of tumor-infiltrating lymphocytes and tumor-associated

macrophages surrounding the core area in lung adenocarcinoma. Braman and colleagues38 observed

a significant correlation between peritumoral radiomic features immediately outside breast cancer

and lymphocytic density. Jiang et al50 proposed a radiomics signature by using both intratumoral and

peritumoral CT features to evaluate the ImmunoScore calculated by immune cell biomarkers in tumor

core and invasive margin and proved it to be prognostic and predictive of chemotherapy response

in gastric cancer. Our results demonstrate that the combined intratumoral and peritumoral radiomics

model might be associated with lymphocyte-mediated immunity and cytokines such as interferons

and interleukins, implying the significant predictive value and functions of microenvironmental

immune components in the innate chemoresistance or radioresistance in ESCC. Wu and colleagues51

have investigated themolecular basis of imaging characteristics of tumor-adjacent parenchyma in

breast cancer. Themost enriched pathways were identical in the tumor and tumor-adjacent

parenchyma gene profiles associated with the imaging characteristics and enriched genes in the 2

parts located upstream and downstream, respectively. This provided evidence of a molecular

association between the intratumoral and peritumoral regions. In the present study, we used the

intratumoral gene profiles to explore the associated peritumoral biological basis and found that the

exclusive clusters associated with the combined model were also immune related (eg, type I

interferon) and underlined the potentially important role of the surrounding stroma or peritumoral

tissue in therapy resistance.
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Limitations

There are several limitations to the current study. First, generation of peritumoral shell expansion as

the peritumoral area is not feasible because of overlaps of attenuation values between ROIs and

excluded areas and possibly insufficient dilation covering the adjacent enlarged nodes. The contour

of the peritumoral area relied on manual delineation by experienced radiologists, which was time-

consuming and labor-intensive. Further study on automatic volumetric segmentation is required to

simplify the process. Second, our test-retest analysis showed that peritumoral radiomics features

were less robust than the intratumoral features (1208 of 1316 of intratumoral and 1036 of 1316 of the

peritumoral extracted featurewith intraclass correlation coefficients >0.80, shown in eTable 7 in the

Supplement). A previous test-retest study52 using the RIDER data set investigated the reproducibility

of intratumoral features over a wide range of imaging settings. To account for this variability, further

prospective test-retest studies are needed to assess peritumoral feature robustness. Third, the

RNA-seq data were representative only for the genetic profile of tumors. We did not perform

RNA-seq on peritumoral tissue, so the actual pathophysiological process for the peritumoral tissue

affecting chemoradiotherapy sensitivity remains unclear. Furthermore, the radiogenomics analysis

was based on a small sample size (40 patients in the training set) because of the difficulty in assessing

pretreatment samples in a retrospective setting, and we did not validate the radiogenomics results

in the test set. Further studies with larger sample sizes are needed to confirm its role in therapy

response.

Conclusions

These findings suggest that peritumoral radiomics features provide valuable information about

response to nCRT treatment. A combination of intratumoral and peritumoral radiomics features

could enhance the predictive ability of radiomics model in identifying pCR in patients with ESCC. The

microenvironmental immune components were most likely to be associated with both the

intratumoral and peritumoral radiomics prediction.
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