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Abstract: Grass pollen is one of the major causes of allergy. Aerobiological monitoring is a necessary
element of the complex of anti-allergic measures, but the similar pollen morphology of Poaceae species
makes it challenging to discriminate species in airborne pollen mixes, which impairs the quality
of aerobiological monitoring. One of the solutions to this problem is the metabarcoding approach
employing DNA barcodes for taxonomical identification of species in a mix by high-throughput
sequencing of the pollen DNA. A diverse set of 14 grass species of different genera were selected to
create a local reference database of nuclear ITS1, ITS2, 5′-ETS, and plastome trnL-F DNA barcodes.
Sequences for the database were Sanger sequenced from live field and herbarium specimens and
collected from GenBank. New Poaceae-specific primers for 5′-ETS were designed and tested to
obtain a 5′-ETS region less than 600 bp long, suitable for high-throughput sequencing. The DNA
extraction method for single-species pollen samples and mixes was optimized to increase the yield
for amplification and sequencing of pollen DNA. Barcode sequences were analyzed and compared
by the barcoding gap and intra- and interspecific distances. Their capability to correctly identify
grass pollen was tested on artificial pollen mixes of various complexity. Metabarcoding analysis of
the artificial pollen mixes showed that nuclear DNA barcodes ITS1, ITS2, and 5′-ETS proved to be
more efficient than the plastome barcode in both amplification from pollen DNA and identification
of grass species. Although the metabarcoding results were qualitatively congruent with the actual
composition of the pollen mixes in most cases, the quantitative results based on read-counts did not
match the actual ratio of pollen grains in the mixes.

Keywords: grass pollen; metabarcoding; plant barcodes

1. Introduction

Grass pollen is one of the major causes of allergy, affecting 10–30% of the population
around the globe [1,2]. There are over 400 species of grass in Europe, and their pollen
is recognized as the leading cause of pollinosis [3]. About 100 species of grass could be
found in the European part of Russia [4], flowering periods of which often overlap, and
their pollen allergenicity is estimated to be from moderate to very high [5]. Aerobiological
monitoring is a necessary element of the complex of anti-allergic measures allowing for
tracking and predicting the dynamics of the concentration of major allergens in the air
and adjusting the therapy and lifestyle of patients with pollinosis. The standard method
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of pollen identification in the air samples is light microscopy. However, one of the major
disadvantages of pollen light microscopy analysis is that similar pollen morphology of
Poaceae species makes it challenging to discriminate species in airborne pollen mixes,
which impairs the quality of aerobiological monitoring [6,7]. DNA metabarcoding is an
alternative approach that has been actively developing recently, allowing qualitative (to
the level of species or genus for some taxa) and quantitative (to some extent) composition
analysis of complex biological mixes. It employs high-throughput sequencing (HTS) and
comparative analysis of specific DNA sequences called “DNA barcodes” to discriminate
species present in the mix. DNA barcoding has been widely used in various areas of botani-
cal research; for example, the phylogeny of wild cherry [8], archaeobotany of grapevine [9],
authentication and identification of medicinal [10] and poisonous [11] plants, and plant
species composition of honey [12,13].

Choosing the correct DNA barcode for the target taxa is one of the main problems
of plant barcoding [14,15]. The resolution capacity of each of the primary chloroplast
markers (first a combination of matK and rbcL recommended by the CBOL group [16] and
later the nuclear ribosomal internal transcribed spacer (ITS) regions and several intergenic
spacers) vary significantly between different taxa (for a review, see [17]). Many studies
focused on the DNA barcoding of plants; note, that the identification at the high-rank taxa
(order, family) is successful in more than 90% of cases, while insufficient data on reference
DNA barcode sequences prevents determination to the level of genus or species [13,18].
Therefore, the right choice of DNA barcode and the primers to amplify them is the key to
successful species identification.

The regions of the chloroplast genome rbcL, matK, trnL, trnH-psbA, and nuclear ITS2
are most often used as plant DNA barcodes. Some of these barcodes have been used with
varying success for metabarcoding pollen (airborne or from food products such as honey).
However, only rbcL, matK, ITS2, and trnL barcodes have been studied compared to the paly-
nological analysis for assessing qualitative and quantitative consistency [19]. In particular,
a comprehensive study of ITS2 and rbcL has shown their usability in metabarcoding of
pollen for the construction of pollinator networks and qualitative analysis of pollen mixes.
Though, the quantitative relativity of the metabarcoding results and real pollen abundance
of mixture components has been low [20,21]. Another study has assessed trnL and ITS1 for
quantitative pollen analysis using metabarcoding and concluded that trnL demonstrates
the best sequence-to-pollen prediction [22]. Furthermore, comparative studies have shown
a good capability of trnL intron and trnL-trnF (trnL-F) intergenic spacers, ITS region, and
their combinations to resolve grass species [23–26]. Indel and SNP patterns of the trnL-F
intergenic spacer and ITS region have been employed for infrageneric classification and
phylogeny study of Chascolytrum and Festuca genera [27,28].

External transcribed spacer (ETS) is another nuclear DNA barcode closely related to
the ITS region in rDNA, but it is less frequently used than ITS. However, ETS is regarded
as a promising DNA barcode as the taxon-specific informativity of the ETS sequence has
proved to be the highest among nuclear and plastid barcodes in several studies [29–31].

Many published studies report the species identification of different grasses using
only some of these barcodes and focusing on a particular plant taxon (e.g., [32,33]). In
this study, we have compared the plastome trnL-F and nuclear ITS1 and ITS2 barcodes
with the 5′-ETS barcode and assessed their capability to identify the pollen of a diverse
set of 14 grass species of different genera from the Poaceae family. New Poaceae-specific
primers were designed to amplify the 5′-ETS fragment suitable for the HTS sequencing
as its length is less than 600 bp for all species in the study (maximum length for Illumina
paired-end sequencing at present). Additionally, we have optimized the protocol for DNA
extraction from pollen grains to obtain high-quality DNA for amplification and sequencing.
To identify the pollen composition, we have created a local barcode sequence database
for the reference Poaceae species using Sanger sequenced trnL-F, ITS1, ITS2, and 5′-ETS
sequences of the live field samples, herbarium specimens, and available GenBank records.
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All four barcode sequences were tested by their capacity to resolve the composition of the
grass pollen mixes using artificial pollen mixes of various complexity.

2. Materials and Methods
2.1. Plant Material

To assess the nuclear (ITS1, ITS2, and 5′-ETS) and plastome (trnL-F) barcodes’ capabil-
ity to identify grass pollen and create a local reference database of barcode sequences, a
broad spectrum of Poaceae species widespread in Central Russia were selected: Alopecurus
pratensis L., Arrhenatherum elatius (L.) P.Beauv. ex J.Presl & C.Presl., Briza media L., Bromus
inermis (Leyss.) Holub (syn. Bromopsis inermis), Calamagrostis epigeios (L.) Roth, Dactylis
glomerata L., Elymus repens (L.) Gould (syn. Elytrigia repens), Festuca pratensis Huds., Lolium
perenne L., Phleum pratense L., Poa annua L., Poa pratensis L., Poa supina Schrad., and Poa
trivialis L. Additionally, Festuca arundinacea Schreb. and Poa palustris L. were collected
for the ETS primers’ design. Fresh leaf material of the morphologically identified grass
plants was sampled in the field (Moscow region) and from the Moscow State University
Herbarium collection specimens.

Pure single-species pollen for a subset of the selected reference species was man-
ually collected to make artificial pollen mixes: Calamagrostis epigeios, Phleum pratense,
Bromus inermis, Festuca pratensis, Elymus repens, Alopecurus pratensis, and Lolium perenne.
These species pollinate in abundance and are easy to collect in enough quantities to create
pollen mixes of various complexity. Therefore, pollen was collected during summer in the
active pollination time of these species. The collected pollen was weighed, and a sample
of 10 mg of each species was suspended in 100 µL TE-buffer. From each sample, 2 µL of
the suspension was analyzed using light microscopy, and pollen grains were counted to
estimate the number of pollen grains for each species. Each sample was diluted in TE buffer
to achieve an equal pollen count per mL based on the observed number of pollen grains.
Then single-species pollen samples were mixed by volume to create a 100 µL pollen mix
that contained pollen from different species in equal abundance (approx. 10,000 pollen
grains per mix in total). The species composition of each artificial mix is presented in
Table 1.

Table 1. Pollen artificial mixes’ composition.

Artificial Pollen Mix Name Species

Pollen mixes with two species, 50% pollen of each type

am1 Calamagrostis epigeios, Phleum pretense
am2 Bromus inermis, Festuca pratensis
am3 Alopecurus pratensis, Lolium perenne
am4 Calamagrostis epigeios, Lolium perenne
am5 Phleum pratense, Alopecurus pratensis
am6 Phleum pratense, Elymus repens

Pollen mixes with three species, 33.3% pollen of each type

am7 Calamagrostis epigeios, Phleum pratense, Bromus inermis
am8 Phleum pratense, Bromus inermis, Festuca pratensis
am9 Bromus inermis, Festuca pratensis, Elymus repens
am10 Phleum pratense, Lolium perenne, Elymus repens

Pollen mixes with four species, 25% pollen of each type

am11 Calamagrostis epigeios, Phleum pratense, Bromus inermis,
Festuca pratensis

am12 Phleum pratense, Calamagrostis epigeios, Elymus repens,
Lolium perenne

am13 Phleum pratense, Festuca pratensis, Lolium perenne, Elymus repens
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Table 1. Cont.

Artificial Pollen Mix Name Species

Pollen mixes with five species, 20% pollen of each type

am14 Calamagrostis epigeios, Phleum pratense, Bromus inermis,
Festuca pratensis, Elymus repens

am15 Phleum pratense, Calamagrostis epigeios, Festuca pratensis,
Lolium perenne, Elymus repens

am16 Phleum pratense, Festuca pratensis, Bromus inermis, Lolium perenne,
Elymus repens

Pollen mixes with six species, 16.7% pollen of each type

am17 Phleum pratense, Calamagrostis epigeios, Festuca pratensis,
Bromus inermis, Lolium perenne, Elymus repens

am18 Calamagrostis epigeios, Phleum pratense, Bromus inermis,
Festuca pratensis, Elymus repens, Alopecurus pratensis

2.2. DNA Extraction

DNA from herbarium samples and fresh leaf material was extracted using the sorbent-
based DiamondDNA Plant kit (ABT, Barnaul, Russia), according to the manufacturer’s
protocol with subsequent additional purification by magnetic silica beads, as described
elsewhere [34].

Pollen DNA extraction protocol was optimized using pollen grains of Phleum pratense
and Bromus inermis. The pollen sample (10 mg) was suspended in 100 µL TE-buffer and
homogenized using a Precellys Bacteria lysing kit CK01 (Bertin Technologies, Montigny-
le-Bretonneux, France) and MiniLys homogenizer (Bertin Technologies, Montigny-le-
Bretonneux, France) at the maximum speed in two runs of 240 s each. Lysis efficiency
was tested using three variants of the lysis buffer: (1) only CTAB-lysis buffer (2% CTAB,
0.1 M Tris-HCl pH 8.0, 1.4 M NaCl, 20 mM EDTA pH 8.0, 1% PVP, 0.2% 2-mercaptoethanol,
0.1 mM DTT); (2) CTAB-lysis buffer with 0.04% SDS; and (3) CTAB-lysis buffer with 0.4%
SDS. Additionally, two variants of proteinase K concentration (0.2 mg and 0.4 mg per sam-
ple) and lysis incubation time (1 and 2 h) at 65 ◦C were tested for all variants of lysis buffer.
DNA from the homogenized and lysed samples were extracted using 1 v/v chloroform:
isoamyl alcohol 24: 1. Then, DNA was precipitated at −20 ◦C for 1 h with 0.1 v/v of 3 M
sodium acetate and 1 v/v of isopropanol.

According to our observations with the light microscope, 10 mg of pollen contains
~150,000 pollen grains. Therefore, to check the minimum amount of pollen grains required
to extract enough DNA for further analysis and HTS, the pollen DNA extraction efficiency
from different amounts of pollen was also tested: 150,000, 37,500, 9375, 2344, 586, and
150 pollen grains. Test samples were created by 4× serial dilution of the initial 10 mg
pollen sample.

DNA extraction from these samples was performed using the best extraction protocol
determined at the previous step: CTAB-buffer with 0.04% SDS, 0.2 mg per sample proteinase
K, lysis incubation for 2 h at 65 ◦C. DNA from artificial pollen mixes was also extracted
according to the optimized protocol.

The purity of the DNA samples was assessed by the A260/280 and A260/230 ratios
on a NanoPhotometer N60-Touch (Implen, Munich, Germany), and the concentration
was measured by fluorescence intensity using a Qubit dsDNA HS Assay Kit (Invitrogen,
Waltham, MA, USA) and Qubit 3.0 fluorometer (Invitrogen, Waltham, MA, USA).

2.3. PCR and Primer Design

Primers for nuclear DNA barcodes ITS1 and ITS2 were designed to anneal to conservative re-
gions of plant rDNA selectively and not fungi (ITS1-F 5′-GGAAGGAGAAGTCGTAACAAGG-3′,
ITS1-R 5′-AGATATCCGTTGCCGAGAGT-3′ [35]; ITS2-F 5′-ATCGAGTYTTTGAACGCAAGTTG-
3′, ITS2-R 5′-TCCTCCATGCTCTATTG-3′ not published). Primers for the chloroplast inter-
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genic spacer trnL-F barcode were obtained from [36] (trnL_F 5′-GGTTCAAGTCCCTCTATCCC-
3′; trnF_R 5′-ATTTGAACTGGTGACACGAG-3′).

Based on the alignment of all available 3′ ends of the 26S and 5′ ends of the 18S
rDNA sequences of Poaceae plants from the GenBank database, two pairs of primers were
designed for amplification of the complete rDNA intergenic region (IGS) for subsequent
Sanger sequencing of 5′-ETS (26S_end_F 5′-GATCCACTGAGATCCAGCCC-3′; 18S_start_R
5′-CTGGCAGGATCAACCAGGTA-3′). Amplification was carried out on DNA from the
leaves of the field plants collected during the vegetation season. In addition, the ETS
region sequences of the Poaceae species were also collected from GenBank to create a
MAFFT alignment of all ETS fragments available. New Poaceae-specific 5′-ETS primers
were designed based on this alignment.

A schematic representation of the primer binding sites is presented in Figure 1.
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The PCR for the Sanger sequencing of DNA from the herbarium specimen and field
samples and DNA library indexation PCR for HTS were performed using NEBNext Ultra II
Q5 Master Mix (NEB, Ipswich, MA, USA) containing high-fidelity Q5 polymerase. The PCR
of barcodes from DNA of artificial pollen mixes was performed using the Encyclo Plus PCR Kit
(Evrogen, Moscow, Russia) containing a mix of high-fidelity and high-processivity polymerases.

2.4. Library Preparation and Sequencing

A simplified two-step PCR using primers for DNA barcodes fused with Illumina adap-
tor sequences was performed for DNA library preparation as described elsewhere [35,37].
Products of the first PCR for each barcode were mixed equimolar (or by volume if product
concentration was below detection level) for each sample, indexed in the second PCR, and
sequenced on the MiSeq platform with the MiSeq Reagent Kit v3 for 600 cycles (2 × 300 nt
paired-end) (Illumina, San Diego, CA, USA).

2.5. Local Barcode Reference Database Construction

A local reference database was created using ITS1, ITS2, trnL-F, and 5′-ETS sequences
of the reference Poaceae species from herbarium and field samples Sanger sequenced at the
Evrogen company (Moscow, Russia). Sanger-sequenced barcode sequences were trimmed
from both ends by the quality and aligned using MAFFT v7.490 (FFT-NS-I algorithm).
In addition, sequences of the studied DNA barcodes of the reference species have been
retrieved from the GenBank database (if available) and added to the alignment if sequences
overlapped and showed similarity by more than 90% with our sequences. Detailed infor-
mation on the corresponding MSU Herbarium voucher numbers, field samples, and the
GenBank accessions can be found in Supplementary Table S1. All barcode sequences were
used to construct a local reference BLAST database as described elsewhere [37].

2.6. Data Analysis and Taxonomical Identification

Sanger sequencing results were manually reviewed and processed using CLC Ge-
nomics Workbench 8.5 software (Qiagen, Hilden, Germany), and all obtained sequences
were submitted to the GenBank database.
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Intra- and interspecific distances between the barcode sequences were calculated in
MEGA v11.0.9 [38]. The best DNA/Protein models (ML) search function determined the
best substitution model for each barcode alignment. The selected best substitution model
for the alignment was used to calculate the distances. Analyses were conducted using
the Tamura 3-parameter model [39] with a gamma distribution (shape parameter = 0.51),
and all positions containing gaps and missing data were eliminated (complete deletion
parameter) for the trnL-F barcode; and the Kimura 2-parameter model [40] with a gamma
distribution and complete deletion for ITS1, ITS2, and 5′-ETS barcode (gamma distribution
shape parameter: 0.77, 0.76, and 1.11, respectively).

Raw sequencing reads were trimmed using the trimmomatic software v.0.38 [41] with
the parameters “LEADING: 3 TRAILING: 3 SLIDINGWINDOW: 4: 10 MINLEN: 40”.
Taxonomic classification of the reads was carried out using the BLAST-based bioinformatic
pipeline described elsewhere [37]. Taxons that demonstrated abundance less than 1% for
all barcodes in each sample were discarded from the analysis. Spearman’s rank-order
correlation was used to calculate the correlation between the mapped reads’ abundance
per species and actual pollen abundance in the artificial pollen mixes.

Analysis results were aggregated and plotted using Python with the Pandas [42],
Matplotlib [43], and Seaborn [44] packages.

3. Results
3.1. ETS Primers Design

We aimed to design primers to amplify the 5′-ETS fragment up to 600 bp in length so it
could be fully sequenced using second-generation high-throughput sequencing (2 × 300 bp
maximum length for the Illumina paired-end sequencing). Agarose gel-electrophoresis
of the full ETS amplification products showed 1000–5000 bp length bands for most of the
reference species, and a 5′-ETS fragment adjacent to 18S rRNA were Sanger sequenced.

We have aligned the 5′-ETS region of the Sanger-sequenced samples and sequences
from the GenBank database to find a region suitable for the Poaceae universal ETS primers.
Unfortunately, we have not found a consecutive conservative region with a length suf-
ficient to design one universal primer for all Poaceae species. Therefore, we have cho-
sen the least discontinuous conserved region with a degenerate sequence ETS-allF 5′-
GCYDTTGGTYYHGGATG-3′ for the 5′-ETS forward primer, with a reasonable Tm range
and desired amplicon size less than 600 bp. According to the alignment of the refer-
ence Poaceae species, there are seven unique sequences for the forward primer (Table 2).
Therefore, only these seven variants were synthesized and then mixed equimolar as a
forward primer (ETS-Fmix) for subsequent PCR of the 5′-ETS barcode, to reduce possible
nonspecific amplification.

Table 2. 5′-ETS forward primers.

Name 5′-3′ Tm (Q5), ◦C Binomial Species Name

ETS-allF GCYDTTGGTYYHGGATG 53–70
ETS-1F GCTATTGGTCTCGGATG 59 Poa palustris

ETS-2F GCTGTTGGTCTCGGATG 63

Poa trivialis, Poa pratensis,
Alopecurus pratensis, Lolium perenne,
Festuca pratensis, Festuca arundinacea,
Poa annua, Poa supina, Elymus repens

ETS-3F GCCGTTGGTCTCGGATG 66 Phleum pratense
ETS-4F GCTTTTGGTCTAGGATG 56 Bromus inermis
ETS-5F GCTGTTGGTTTCGGATG 61 Briza media

ETS-6F GCTGTTGGTTTTGGATG 58 Calamagrostis epigeios,
Arrhenatherum elatius

ETS-7F GCCGTTGGTCCTGGATG 66 Dactylis glomerata

The PCR test with ETS-Fmix and 18S_start_R primer on DNA from herbarium speci-
mens was successful for all species. Gel electrophoresis analysis showed one product band
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per species (Supplementary Figure S1) with a 200–300 bp length product for most reference
species, except Poa supina, Poa annua, and Bromus inermis. Their PCR product length is
~500 bp for Poa supina and Poa annua and ~450 bp for Bromus inermis. Thus, Poaceae-specific
primers have been designed to amplify the 5′-ETS fragment that fits into the desired limit
of 600 bp, suitable for high-throughput sequencing on the Illumina platform.

3.2. Pollen DNA Extraction Optimization

The largest quantity of DNA extracted from 10 mg of pollen has been achieved using
CTAB lysis buffer containing 0.04% SDS and 0.2 mg per sample of proteinase K. The average
concentration of the extracted DNA was 16.57 and 13.62 ng ∗ µL−1 for Poa pratense and
Bromus inermis pollen, respectively. The purity of the extracted DNA was in the range of
1.883–2.006 OD 260/230 and 2.095–2.142 OD 260/280 regardless of the extraction protocol.
An increase in proteinase K concentration in the lysis buffer led to a lower extracted DNA
yield, and an increase in lysis time led to a slight increase in the yield in most cases (Table 3).
Thus, we have chosen a protocol with a lysis incubation time of 2 h in the CTAB lysis buffer
with 0.04% SDS and 0.2 mg per sample proteinase K for all further extractions.

Table 3. Pollen DNA extraction lysis-buffer optimization results.

Lysis
Buffer

Proteinase
K mg per
Sample

1 H Lysis 2 H Lysis

Yield, ng ∗ µL−1 260/280 260/230 Yield, ng ∗ µL−1 260/280 260/230

P. pratense DNA

CTAB
0.2 12.50 ± 0.66 2.06 ± 0.01 1.99 ± 0.05 13.79 ± 0.49 2.03 ± 0.03 2.00 ± 0.01
0.4 7.34 ± 0.22 1.99 ± 0.11 1.99 ± 0.06 6.29 ± 0.29 2.01 ± 0.05 1.96 ± 0.06

CTAB +
0.04% SDS

0.2 16.57 ± 0.61 2.03 ± 0.004 1.95 ± 0.09 16.88 ± 0.19 2.05 ± 0.05 1.99 ± 0.09
0.4 9.51 ± 0.88 2.07 ± 0.01 1.99 ± 0.01 9.08 ± 0.96 2.04 ± 0.10 1.98 ± 0.08

CTAB +
0.4% SDS

0.2 4.41 ± 1.04 2.01 ± 0.03 1.92 ± 0.09 4.43 ± 0.93 1.97 ± 0.06 1.99 ± 0.03
0.4 2.91 ± 0.11 2.01 ± 0.01 1.89 ± 0.05 2.78 ± 0.6 1.99 ± 0.03 2.00 ± 0.03

B. inermis DNA

CTAB
0.2 9.84 ± 0.34 2.01 ± 0.03 1.89 ± 0.09 11.41 ± 0.42 2.05 ± 0.05 2.00 ± 0.01
0.4 7.72 ± 0.44 2.01 ± 0.18 1.99 ± 0.003 8.31 ± 0.31 2.06 ± 0.09 1.89 ± 0.09

CTAB +
0.04% SDS

0.2 13.62 ± 0.64 2.04 ± 0.02 1.95 ± 0.08 15.55 ± 0.59 2.09 ± 0.10 1.99 ± 0.02
0.4 6.46 ± 0.53 1.99 ± 0.01 1.97 ± 0.09 9.69 ± 0.80 2.00 ± 0.02 1.99 ± 0.05

CTAB +
0.4% SDS

0.2 4.15 ± 0.53 2.00 ± 0.05 1.93 ± 0.08 5.36 ± 0.19 2.00 ± 0.05 1.99 ± 0.09
0.4 3.34 ± 0.91 2.01 ± 0.04 1.99 ± 0.02 3.54 ± 0.49 1.95 ± 0.05 1.98 ± 0.04

The quantity of DNA extracted from 4 × serial dilutions of pollen suspension steadily
decreased along with the pollen count and became undetectable (measured by fluorometric
method) starting from a sample with 2350 pollen grains (Table 4). Thus, we have chosen
10,000 pollen grains for artificial pollen mixes creation.

Table 4. Pollen DNA extraction test results.

Pollen Amount,
Dilution Factor

Approximate Pollen
Grain Count Concentration, ng ∗ µL−1

10 mg 150,000 14.7 ± 0.7
1:4 37,500 3.88 ± 0.28

1:16 10,000 1.07 ± 0.12
1:64 2350 too low
1:256 600 too low

1:1024 150 too low

3.3. 5.’-ETS, ITS1, ITS2, and trnL-F Barcodes Comparison

All four barcodes were amplified from DNA of herbarium specimens of 14 reference
Poaceae species, Sanger sequenced, and submitted to the GenBank database. The obtained
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sequences were aligned with the corresponding GenBank sequences of these barcodes and
used to construct a local reference database. The length and GC content of the barcode
sequences varies slightly within each marker, except for the length of 5′-ETS: 307–363 bp,
GC content 29–33% for trnL-F; 175–509 bp, GC content 50–59% for 5′-ETS; 190–204 bp, GC
content 55–67% for ITS1; 193–207 bp, GC content 59–68% for ITS2. Evaluation of intra- and
interspecific variability showed that while all barcodes have low intraspecific distances,
the 5′-ETS barcode has the highest interspecific distance closely followed by ITS2 (Table 5).
Plastome barcode trnL-F showed the lowest intra- and interspecific distances compared to
the nuclear barcodes.

Table 5. Intra- and interspecific distance statistics.

Barcode
Interspecific Intraspecific

Minimum Maximum Median Minimum Maximum Median

ITS1 0.0000 0.4112 0.1514 0.0000 0.0756 0.0000
ITS2 0.0000 0.4549 0.2345 0.0000 0.0726 0.0000
ETS 0.0000 0.6142 0.2897 0.0000 0.0431 0.0000

trnL-F 0.0000 0.1278 0.0698 0.0000 0.0254 0.0000

However, the difference between the barcode sequences is low for the species of the
same genus (Poa in this study). For example, all barcodes of Poa annua and Poa supina
have identical sequences, which means that these species will be impossible to distin-
guish. Other possible misidentification sources with barcoding gap less than 1% could
be Arrhenatherum elatius vs. Calamagrostis epigeios and Alopecurus pratensis, Lolium perenne
vs. Festuca pratensis (barcoding gap equals −0.008, 0.001, and −0.0001, respectively) for
the ITS1 barcode; Poa pratensis vs. Phleum pratense (−0.0142), Calamagrostis epigeios vs.
Briza media, Poa pratensis, and Phleum pratense (−0.002, 0.007, and 0.008, respectively) for
ITS2; Poa annua vs. Poa pratensis, Alopecurus pratensis, and Phleum pratense, Lolium perenne vs.
Festuca pratensis (−0.004, 0.009, 0.009 and 0.0000, respectively) for trnL-F. Barcoding gaps
for all four barcodes are present in Figure 2. Additionally, barcode intra- and interspecific
distances per species are present in Supplementary Figure S2.

3.4. Metabarcoding Analysis of the Artificial Pollen Mixes

Using the optimized protocol for pollen DNA extraction, we have obtained DNA of
1.2–1.5 ng ∗ µL−1 from artificial pollen mixes (am). The quality of obtained DNA was the
same as we have obtained for the Poa pratense and Bromus inermis single-species pollen at the
optimization step. Amplification was successful for all barcodes and all samples of artificial
pollen mixes, though the amplification efficiency differs significantly between the barcodes
and decreases as follows: ITS2 > ITS1 > 5′-ETS > trnL-F (confidence intervals for amplified
barcode concentrations are 20.02± 4.44, 13.04± 3.47, 8.32± 1.69, and 0.43± 0.07 ng ∗ µL−1,
respectively).

The species composition of the artificial pollen mixes determined by HTS analysis is
congruent with the actual pollen species content in 10 out of 18 artificial mixes. The most
frequent erroneous identification has occurred in mixes containing either Lolium or Festuca
pollen. In these mixes, the erroneous presence of Lolium, where only Festuca is present, and
vice versa, was detected. However, the abundance of the erroneously identified species is
often low (less or close to 1%). This issue is common for all barcodes in the study, especially
for the plastome trnL-F barcode (1.7–4.9% Festuca/Lolium errors). Nuclear barcodes show
fewer errors of this type, minimal for ITS2, for which abundance of erroneously identified
Lolium or Festuca is close to 0 in all cases.
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Spearman’s correlation coefficient between HTS determined the abundance and true
abundance of each species in the artificial pollen mix decreases as follows: ITS1 > ITS2 >
trnL-F > 5′-ETS (0.8, 0.78, 0.63, and 0.59, respectively). For the 5′-ETS barcode, the Bromus
inermis abundance in all the mixes is significantly lower than for the other barcodes and
actual mix composition (0.41–3.16%). As the complexity of the artificial pollen mix increases,
the abundance of the detected 5′-ETS of Bromus inermis decreases. The low representation
of the 5′-ETS barcode of Bromus inermis is most likely related to the length of the amplified
5′-ETS fragment (444 bp vs. 220 bp in average for other reference species in the database,
except for 509 bp of Poa supina and Poa annua), which could lead to a lower amplification
efficiency of the 5′-ETS of Bromus inermis when in the mix with other species.

Overall, the nuclear barcodes proved to be the most effective in the amplification and
species classification. The plastome trnL-F barcode has demonstrated a lower amplification
efficiency and a higher rate of erroneously identified species than the nuclear barcodes.
Though the mix composition could be determined well qualitatively by metabarcoding
analysis, quantitative results for each pollen species, determined by read counts, is rarely
congruent with the actual abundance of pollen species in the mix. Most of the congruent
quantitative results were achieved using ITS1 and ITS2 barcodes (Figure 3).
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Figure 3. Metabarcoding results for the artificial pollen mixes.

4. Discussion

Previously designed primers for ETS amplification for some of the Poaceae genera
and species could amplify a fragment of ~500–900 bp [30,45,46], but we aimed to obtain a
shorter amplicon for a broad spectrum of Poaceae species of diverse genera that could be
sequenced entirely using HTS and is suitable for metabarcoding analysis. Unfortunately,
we could not find a region for a universal forward primer for all Poaceae species in the
study due to the lack of long consecutive conservative regions. However, we have found
a region that allowed us to design 7 primers, an equimolar mix of which proved to be
efficient for specific amplification of all species in the study. New Poaceae-specific primers
(degenerate 5′-ETS forward and universal 18S reverse) amplify the 5′-ETS fragment less
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than 600 bp, which is ~300 bp shorter than other published primers could amplify for the
same species in this study.

The effectiveness of the protocols for sample preparation for HTS highly depends,
among other things, on the quality and quantity of the DNA. Various methods for pollen
DNA extraction involve using commercial solutions such as column-based and DNA
binding with magnetic beads purification methods after preliminary homogenization of the
pollen sample with metal beads [47,48]. We propose a protocol based on a classical CTAB-
lysis extraction method [49] with modifications that achieve results similar to commercial
kits for pollen DNA extraction. The addition of a small amount of SDS, which helped
increase the DNA extraction efficiency from fossil pollen of Abies spp. from Pleistocene
peat [42], showed increased extraction efficiency from Poaceae pollen as well. The DNA
yield from the samples is associated with the lysis efficiency of the pollen grains. In different
plant species, the structure of the shells of the pollen grains can vary greatly. The use of
methods of mechanical destruction, such as grinding with metal balls [47] or the use of a
bullet blender [24], increases the DNA yield. In this case, the yield becomes comparable
with the one we have achieved using tubes with fine sand for grinding pollen.

Festuca and Lolium genera form a phylogenetic complex where Lolium is a subgroup
of the Festuca genus according to several phylogenetic studies that employed restriction
fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD),
as well as rDNA (ITS region) and cpDNA sequences data for analysis [50,51]. It was
also pointed out that Festuca pratensis is the most closely related to Lolium species in
Festuca/Lolium complex, and suggested that the closeness of Festuca pratensis ITS to Lolium
ITS sequences could represent a reticulate evolutionary event [50,51]. The closeness of
these species is also supported by the fact that Festuca species readily cross with Lolium
species in nature or synthetically form Festulolium hybrids (e.g., F. pratensis × L. perenne, or
L. multiflorum× F. pratensis) [52]. Furthermore, species of these genera display a high level of
sequence similarity for orthologous genes (>91% identity) and conservation of gene family
content, as showed by the transcriptome analysis [53]. Several plastome barcodes have been
used to untangle the relationships within complex and construct phylogenetic trees [54,55],
though nuclear barcode ITS2 showed better results than plastome barcodes [56]. We
have found that the 5′-ETS barcode has 6 SNPs, ITS1 has 3 SNPs, and ITS2 has 8 SNPs
between Festuca pratensis and Lolium perenne sequences. In contrast, trnL-F 5′-ETS has only
2 short insertions (4 and 5 bp long) and no SNP in Lolium perenne sequences compared
to Festuca pratensis. Thus, nuclear barcodes resolve these species better than the trnL-F
plastome barcode, and ITS2 shows the least errors in distinguishing these species due to
more SNPs than other nuclear barcodes have.

Plant pollen taxon identification using the trnL barcode showed promising results and
a pollen-to-read quantitative correlation [22]. However, it was also shown that this barcode
could give incorrect taxon predictions, e.g., Lolium/Festuca and Arrenatherum/Poa [24]. In
this study, we have assessed the taxon identification capabilities of the adjacent plastome
region trnL-F intergenic spacer, but it has also shown a high error rate in resolving Lolium
and Festuca species. Moreover, we have observed a low amplification efficiency of this
barcode for pollen-extracted DNA. The low efficiency of amplification of the plastome area
may be caused by the fact that during the development of the pollen grain, chloroplasts,
which can be found in both vegetative and generative cells, are destroyed, and thus cpDNA
can be severely damaged [57].

5. Conclusions

ITS1 and ITS2 proved to be the most effective qualitatively and quantitatively, and
we recommend using them for Poaceae pollen analysis. Another nuclear barcode, 5′-
ETS, showed good qualitative results, but due to variability in fragment length, failed
to show good quantitative results. We suggest that 5′-ETS could be successfully used in
phylogenetic studies or direct PCR detection of certain species due to the highest genetic
distance between species among all barcodes in the study, if not for the metabarcoding of
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pollen. Plastome trnL-F showed the lowest amplification efficiency, intra- and interspecific
distances, and the highest error rate for pollen identification, especially in resolving Lolium
and Festuca sequences. In general, we can say that the barcodes used in this study allow
efficient amplification and metabarcoding analysis of Poaceae pollen of various genera,
and we suggest that nuclear barcodes are better for this task than plastome ones.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14030191/s1, Figure S1: PCR test results with primers ETS-
Fmix + 18S_start_R; Figure S2: Barcodes’ intra- and interspecific distances per species; Table S1:
Accession numbers and basic characteristics of DNA barcodes used to create local reference database
for grass pollen metabarcoding.
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