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Abstract: Land use land cover (LULC) has altered dramatically because of anthropogenic activities,
particularly in places where climate change and population growth are severe. The geographic
information system (GIS) and remote sensing are widely used techniques for monitoring LULC
changes. This study aimed to assess the LULC changes and predict future trends in Selangor,
Malaysia. The satellite images from 1991–2021 were classified to develop LULC maps using support
vector machine (SVM) classification in ArcGIS. The image classification was based on six different
LULC classes, i.e., (i) water, (ii) developed, (iii) barren, (iv) forest, (v) agriculture, and (vi) wetlands.
The resulting LULC maps illustrated the area changes from 1991 to 2021 in different classes, where
developed, barren, and water lands increased by 15.54%, 1.95%, and 0.53%, respectively. However,
agricultural, forest, and wetlands decreased by 3.07%, 14.01%, and 0.94%, respectively. The cellular
automata-artificial neural network (CA-ANN) technique was used to predict the LULC changes from
2031–2051. The percentage of correctness for the simulation was 82.43%, and overall kappa value was
0.72. The prediction maps from 2031–2051 illustrated decreasing trends in (i) agricultural by 3.73%,
(ii) forest by 1.09%, (iii) barren by 0.21%, (iv) wetlands by 0.06%, and (v) water by 0.04% and increasing
trends in (vi) developed by 5.12%. The outcomes of this study provide crucial knowledge that may
help in developing future sustainable planning and management, as well as assist authorities in
making informed decisions to improve environmental and ecological conditions.

Keywords: land use land cover (LULC); support vector machine (SVM); cellular automata-artificial
neural network (CA-ANN); change detection; sustainable development

1. Introduction

Humans have made major modifications to the earth’s surface over time in order to
generate food via farming methods. Over half of the earth’s surface has been transformed in
the last few years [1], and over one-third of the earth’s surface is believed to be agricultural.
This process of transitioning from naturally occurring farming land to agricultural land is
still currently ongoing [2]. Land use administrators and experts have been investigating the
impact of land use changes on hydrological processes as a result of these major changes [3].
Analyzing patterns in change detection, land use managers, and decision makers may
gain a better understanding of the relationships between human and natural processes.
According to [4], the massive increase in population is the most important element in the
global shift of land use.

The transition of natural regions into industrial or agricultural fields is mainly respon-
sible for the dramatic differences in land cover, especially in developing nations [5]. The
hydrological cycle and river basin processes are under significant stress as natural land,
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dense forests, and watersheds are diminished [6]. Land use and water quality changes
can be influenced by anthropogenic activities, such as industrialization, urbanization, and
mining [7,8]. These patterns of LULC are thought to have a substantial impact on ground-
water quality [9,10]. The US Geological Survey (USGS) investigated the impact of changing
land conditions on local groundwater quality to establish a correlation between the LULC
and groundwater quality in 1984. He et al., [11] illustrates the effects of different types of
land use on groundwater quality by establishing that carcinogenic risks caused by Cr6+
were related to urban lands and exposure to NO3− and Cr6+ related to agricultural lands
created non-carcinogenic risks. Nitrate concentrations in groundwater are also linked to
paved light-duty roads [12]. Change detection is a method for identifying changes in any
process or resource by analyzing data over several time periods [13]. For the evaluation of
changes in the spatial features of the land, it is critical to offer multi-temporal datasets [14].
The use of multi-temporal datasets simplifies the understanding of significant LULC shifts
and trends [15]. The launch of Landsat satellites and improvements in computer technology
have made it easier to trace the changes and advancements that have happened over the
past decades.

The use of remote sensing technology in conjunction with a geographic informa-
tion system (GIS) has proven to be effective in identifying a variety of environmental
characteristics, such as vegetation cover, urban sprawls, forest changes, and, particularly,
variations in LULC changes over time [16]. In comparison to other conventional methods
and surveys, remote sensing and GIS techniques have shown to provide more reliable
and cost-effective data assessments [5]. Remote sensing is described as the monitoring
of spatial changes in various elements without interacting with them physically. Remote
sensing uses space-based satellites to classify the earth’s unique attributes, which can aid
in tracking changes on the land surface since they monitor the earth’s characteristics on
a regular basis [17]. Scientists and researchers can detect large-scale changes in land use
patterns with the knowledge acquired on a temporal and spatial level, allowing regional
politicians and authorities to make future decisions. Many studies have documented the
use of remote sensing in natural disaster management. For example, it has been used in
India to monitor floods [18]. Alexakis et al., [19] investigated geomorphic variables in order
to develop a decision support system to prevent landslides using remote sensing. It has
also been helpful in detecting changes in agricultural patterns, land cover changes, and
urban sprawl [20]. For detecting changes in remotely sensed data, GIS is considered a vital
tool [21]. It allows for the integration of data from many sources in order to detect changes.
The combined effect of hydrological data, soil, topographic maps, and classified images
produced by GIS may be useful in extracting land use information for a particular region.
Furthermore, because of its flexibility to create the model using the supplied statistics and
information, it may be able to illustrate trends in land use changes. Furthermore, GIS
and remotely sensed data are often used to detect LULC changes [22]. The combined
use of GIS and remote sensing has been shown to be a viable and effective approach for
tracking land cover changes [23]. Many works [24,25] have proven the effectiveness of
space-borne imaging in mapping LULC changes. Gammal et al., [26] utilized many Landsat
data from several time periods (1972–2008) to examine land use and land cover changes
in Egypt. Landsat images over several years were utilized to evaluate LULC trends in
Rwanda [27]. Similarly, several studies in Malaysia have been published to track LULC
patterns in various regions [28]. LULC changes were observed in parts of the Cameron
Highlands by implementing SVM image classification [29]. Al-Najjar et al. [30] assessed
the LULC changes using convolutional neural networks on DSM and UAV images. The
transitions and change detection techniques are revealed using conventional approaches
for assessing the spatiotemporal extent of LULC changes.

Parametric and non-parametric classifiers are the two types of classification techniques.
Parametric classifiers presume that the data for each class is regularly distributed [31]. The
maximum likelihood classification (MLC) is the most extensively used parametric classifier,
which generates decision surfaces based on the mean and covariance of each class [32,33].
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Non-parametric image classification approaches, such as the artificial neural network
(ANN) and the support vector machine (SVM), make no assumptions about the statistical
character of the data and are relatively new image classification techniques. SVM is a
non-parametric classifier that consists of a collection of linked learning algorithms that
may be used for classification and regression [34,35]. Machine-learning techniques, such
as artificial neural networks (ANNs), the SVM, Random Forest, decision tree, and other
models, have garnered considerable attention for LULC classification [36–39]. The level of
accuracy for each machine-learning approach is different. ANN, SVM, and Random Forest
have been reported to have higher accuracy than other conventional classifier methods [40],
and SVM and Random Forest are the best approach for LULC classification when compared
to all other machine-learning techniques [41,42].

Land use planners, resource managers, and conservation officers can utilize pre-
dicted LULC changes to promote sustainable land management and mitigate adverse
consequences. As a result, LULC change detection and prediction have become essential
considerations in a wide array of disciplines, such as identifying biodiversity hotspots for
prioritizing conservation efforts, modelling rural and urban planning [43,44], and investi-
gating degradation processes, among others [45]. Aerial imagery and historical maps have
been used in conjunction with geospatial technologies and remote sensing to characterize
landscape dynamics and deliver scientifically reliable results and action plans that have
aided policymakers and planners in advancing sustainable development, particularly in
rapidly growing urban environments [46]. As a result, transition potential modelling and
projecting future LULC under the impact of geographical factors are used to figure out
where changes have occurred and may occur in the future [47]. Most of these models ana-
lyze LULC transitions using temporal land-use data, which, combined with spatial factors,
may forecast future LULC possibilities [48]. A variety of models have been developed so
far for forecasting and simulating LULC changes [49]. Statistical-based techniques and
machine learning methods have also been utilized for decades in land use modelling [34,50].
To analyze the LULC change process, researchers often utilize a combination of models,
GIS, and remote sensing methods. Models based on equations [42], statistics [35], Markov
chains [28], and cellular models are the most used approaches.

Selangor is the economic hub of Malaysia due to its location and proximity to the
countries capital, as well as its developed transportation system. The rapid urbanization
and industrialization can prove to be a challenge for sustainability of the region. The
study aims to observe the land use changes in the years 1991, 2001, 2011, and 2021 within
the region of Selangor. The study will also focus on identifying the driving force for the
LULC changes. CA-ANN simulation was also conducted to analyze the predicted land
use patterns and trends from 2031 to 2051. Previous studies showed several concerns
related to data quality, data inconsistency, data harmonization, validation of data, and
uncertainties linked with data [51]. It has also appeared from literature that no study has
been conducted to investigate LULC pattern changes and prediction in Selangor state.
Additionally, the land use classification in previous studies was conducted by a parametric
method of classification, resulting in lower accuracy of classification that also affected the
prediction results. However, the SVM classification method was used in this study to obtain
higher accuracy of land use classification and prediction. The results can provide valuable
hints to regional authorities for future decisions.

2. Materials and Methods
2.1. Study Area

The study area considered for this study was the state of Selangor, Malaysia. Selangor
is Malaysia’s most developed and densely inhabited state. The state of Selangor is divided
into nine districts, as shown in Figure 1. Selangor is located on the western cost of Malaysia.
The state is surrounded by the state of Perak to the north, state of Negeri Sembilan to its
south, and the state of Pahang to its east. The study area was located between the latitudes
ranging from 2◦35′ to 3◦60′ N and longitudes ranging from 100◦45′ to 102◦00′ E. The total
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area of Selangor is 8100 Km2 with the population of over 6.5 million. The temperature in
Selangor ranges between 23 to 30 ◦C, with an annual mean temperature of 26 ◦C. Selangor
experiences sunny days throughout most of the year, with sporadic rainfall. The annual
rainfall in Selangor is 1200 mm, and humidity reaches more than 80% [46]. Kuala Lumpur,
the capital of the country, and the federal administrative capital, Putrajaya, are located
within the state of Selangor and were considered in the study area. Of all Malaysian states,
Selangor has the greatest population density and gross domestic output per capita. Selangor
is geographically diverse, having major metropolitan centers, agricultural development,
forests, and wetlands, as well as a wide range of land use and related environmental
aspects [47].
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Figure 1. Study area map of Selangor, Malaysia.

2.2. Data Collection and Processing

The Landsat images for the years 1991, 2001, 2011, and 2021 were used for image
classification to identify land use patterns and create LULC maps. Landsat-5 satellite images
were obtained for 1991 and 2001. Similarly, Landsat-8 satellite images were acquired for
2011 and 2021. The Landsat images had the spatial resolution for 30 m. Images with
cloud cover of less than 5% were only selected to maintain quality and uniform weather
conditions throughout the study period. The Landsat images were acquired from USGS
through their earth explorer web portal (https://glovis.usgs.gov/ (Retrieved on 21 October
2021). The satellite images were analyzed and processed (geo-referencing, mosaic, and
extraction) to correct its geospatial imagery. Multiple band combinations were used to
identify the land use patterns within the Landsat images. Visible bands (red, green, and
blue) 3, 4, and 5 were used for Landsat-5 images, and bands 4, 5, and 6 were used for
Landsat-8 images. Landsat images were spatially projected to WGS_1984_UTM_Zone_49N.
The study area of Selangor was then extracted from the projected datasets to create a raster
for image classification. The digital elevation model (DEM) was also obtained from the

https://glovis.usgs.gov/
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USGS web portal, which was analyzed using ArcGIS to create spatial maps, such as slope
and aspect. The data for transportation and road networks was downloaded from Diva-GIS
(https://www.diva-gis.org/ (Retrieved on 21 October 2021)). ArcGIS was employed to find
the distance from major roads using the Euclidean distance method. Figure 2 shows the
spatial parameters used for predicting the land use changes. Google Earth and public map
datasets were also utilized for reference and better understanding of land use distribution.
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2.3. Land Use Classification and Accuracy Assessment

The land use classification of satellite images was done by implementing a pixel-based,
supervised classification technique. Upon analysis of the study area, six different land use
classes were identified: (a) water, (ii) developed, (iii) barren, (iv) forest, (v) agricultural, and
(vi) wetlands. Based on the LULC classes, training samples were collected using defined
polygons upon the various locations of different land use classes. A suitable spectral
signature helps to guarantee that there is little misunderstanding between the land covers
to be mapped [48]. The collected training samples were grouped depending on the land
cover. A total of 30 training samples were collected for each of the six land use classes
considered for image classification. The signature file was then created as the training
dataset for the purpose of supervised classification. The land use classification was done
via the support vector machine (SVM) algorithm. Although SVM is primarily developed for
binary classification, it may also be used to identify patterns and objects, and it can be used
for both pixel-based and object-based classifications [34]. The SVM does not require a large
number of ground truth samples for training and does not assume that the data are selected
from a specific probability distribution [42]. Using a feature vector and model parameters,
the SVM seeks to identify the best hyperplane that defines the class boundary during the
training phase [35]. Only the samples in the margin between classes are utilized to create
the optimum hyperplane in the SVM, and they are referred to as support vectors [34]. The
flow chart illustrating the process for land use classification to create LULC maps is shown
in Figure 3.

The accuracy of classified maps was assessed by comparing the created land use
maps for 1991, 2001, 2011, and 2021, with the referenced satellite imagery and public land
use maps for the state of Selangor. To enhance accuracy, the output classification results
were visually inspected multiple times before being updated by introducing new training
sets. In order to compute the accuracy of the classified thematic maps, sample points
were randomly distributed on the classified maps using GIS. High resolution images were
observed and cross-referenced to determine the ground truth of the selected sample points.
Each point position was analyzed based on the polygon into which it was placed and

https://www.diva-gis.org/
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compared to the reference image to determine whether or not it was accurately identified.
These sample points were then converted into a confusion matrix. The confusion matrix
was used to determine the kappa coefficient [52], overall accuracies, and user and producer
accuracies [53].
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2.4. Cellular Automata-Artificial Neural Network Simulation

Simulation modules were used to minimize the dynamics of composite urban struc-
tures and interpret them in a clear and accessible manner. Studies claim that the CA-ANN
method is more effective than linear regression, thus the modules for the land-use change
simulation (MOULSCE) plugin were implemented for transition potential modelling and
future simulation [54,55]. The MOLUSCE plugin is perfectly adapted to evaluating spa-
tiotemporal land-use changes, transition potential modelling, and predicting future sce-
narios [54]. The artificial neural network (ANN) was used in association with cellular
automata (CA) to predict the land use changes. Because of its dynamic simulation capacity,
high efficiency with limited data, simple calibration, and ability to reproduce different
land covers and complicated patterns, CA-ANN was chosen to simulate land use change.
CA-ANN combines the CA and Markov chain to model land use changes across various
categories [56]. ANN was employed in the transition potential modelling to establish
trends on the basis of which future prediction will be made. The MOLUSCE plugin within
QGIS was executed to establish the spatiotemporal changes with a given time period and
calculate the LULC transition to generate the LULC change map. A transition potential
matrix was generated in the study between (2001–2011) to create the change map. The
ANN-multilayer perception method (ANN-MLP) was employed for the transition potential
modelling. Slope, aspect, elevation, and distance from the road were the spatial parameters
implemented as input parameters. The structure of ANN-MLP is shown in Figure 4, where
the input layer is processed by the hidden layers and produces the output layer containing
the reclassified LULC classes. The transition potential model is trained based on the LULC
maps of 2001 and 2011, as well as spatial parameters to produce the predicted map of 2021.
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In order to validate the ANN model, the simulated map of 2021 was compared with
the classified LULC map of 2021. Satisfactory results were obtained, and the model was
trained with a learning rate of 0.001 and momentum of 0.001. The ANN training process
ran for 100 iteration and a neighborhood value of 3 pixels with 10 hidden layers. The
trained model was then simulated to obtain the predicted maps of 2031, 2041, and 2051.
The steps of the CA-ANN model are illustrated in Figure 5.

Water 2021, 13, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 5. Flow chart illustrating the steps of CA-ANN simulation to predict LULC maps. 

3. Results and Discussion 
3.1. Land Use and Land Cover Changes in Selangor from 1991 to 2021 

The classified LULC maps of the study area for 1991 to 2021 were classified into six 
different land use classes, namely (i) water, (ii) developed, (iii) barren, (iv) forest, (v) ag-
riculture, and (vi) wetlands. LULC changes were observed over the period of 3 decades, 
ranging from 1991 to 2001, 2001 to 2011, and 2011 to 2021. Agricultural, forest, and devel-
oped areas were found to be the major land use types that cover Selangor, Malaysia, as 
shown in Figure 6. 

. 

Figure 6. Changes in different land use classes from the year 1991 to 2021 in Selangor. 

The distribution of total area covered by the different LULC classes and their per-
centage of cover in the years 1991, 2001, 2011, and 2021 is shown in Table 1. Agricultural 

0
5

10
15
20
25
30
35
40
45
50

Water Developed Barren Forest Agriculture Wetlands

Pe
rc

en
ta

ge
 C

ov
er

 (%
)

Land Use Classes

Land Use Changes (Year 1991 to 2021)

1991

2001

2011

2021

Figure 5. Flow chart illustrating the steps of CA-ANN simulation to predict LULC maps.



Water 2022, 14, 402 8 of 17

3. Results and Discussion
3.1. Land Use and Land Cover Changes in Selangor from 1991 to 2021

The classified LULC maps of the study area for 1991 to 2021 were classified into six
different land use classes, namely (i) water, (ii) developed, (iii) barren, (iv) forest, (v) agricul-
ture, and (vi) wetlands. LULC changes were observed over the period of 3 decades, ranging
from 1991 to 2001, 2001 to 2011, and 2011 to 2021. Agricultural, forest, and developed
areas were found to be the major land use types that cover Selangor, Malaysia, as shown
in Figure 6.
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The distribution of total area covered by the different LULC classes and their per-
centage of cover in the years 1991, 2001, 2011, and 2021 is shown in Table 1. Agricultural
areas experienced a rapid growth from 1991 to 2001, where it increased from 2921.91 Km2

to 3416.77 Km2 (35.82% to 41.88%). Between the years 2001 and 2011, agricultural areas
experienced a decline in total area coverage as they reduced from 3416.77 Km2 in 2001 to
2735.24 Km2 in 2011. In the year 2021, agricultural areas continued their decreasing trend,
occupying 2671.36 Km2 (32.64%) of the total study area. On the other hand, forest covers ex-
perienced a drop in percentage cover from 46.65% to 36.59% (3805.57 Km2 to 2985.31 Km2)
between the years of 1991 and 2001, respectively. A steady decrease in forest covers con-
tinued in the years 2011 and 2021 as the area covered was 2734.60 Km2 and 2662.41 Km2

(33.52% and 32.64%), respectively. In contrast, developed areas experienced an exponential
growth over the observed period. The developed area grew from 707.32 Km2 (8.67%) in
1991 to 1003.50 Km2 (12.30%) in 2001. Between the years 2001 and 2011, developed areas
had a major expansion as the total area cover in the year 2011 increased to 1878.31 Km2

(23.02%) and subsequently increased to 1974.95 Km2 (24.21%) in 2021. Minimal changes
were observed in the land use classes of water, barren, and wetlands. Wetlands in the study
area reduced from 281.95 Km2 in 1991 to 168.66 Km2 in 2001, followed by a rise in 2011 to
183.29 Km2 and then to 205.40 Km2 in 2021. The percentage cover of barren lands showed
an increase from 4.19% to 5.96% within 1991 and 2001 and then observed minimal change
between 2011 and 2021, as the percentage cover was 6.02% and 6.15%, respectively. Water
had marginal area changes, where an increasing trend was noted as the total area cover
inflated from 99.14 Km2 in 1991 to 142.49 Km2 in 2021.
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Table 1. Total area cover by different LULC classes and the percentage of cover for the years 1991,
2001, 2011, and 2021 in Selangor.

Years 1991 2001 2011 2021
LULC Classes Area (Km2) % Area (Km2) % Area (Km2) % Area (Km2) %

Water 99.14 1.22 97.74 1.20 135.58 1.66 142.49 1.75
Developed 707.32 8.67 1003.50 12.30 1878.31 23.02 1974.95 24.21

Barren 342.11 4.19 486.02 5.96 490.97 6.02 501.40 6.15
Forest 3805.57 46.65 2985.31 36.59 2734.60 33.52 2662.41 32.64

Agriculture 2921.91 35.82 3416.77 41.88 2735.24 33.53 2671.36 32.75
Wetlands 281.95 3.46 168.66 2.07 183.29 2.25 205.40 2.52

The LULC maps of Selangor from the year 1991 to 2021 are shown in Figure 7. The
changes in the LULC of Selangor was observed between three periods, from 1991–2001,
2001–2011, and 2011–2021. Table 2 illustrates the changes experienced by each LULC class
in terms of area over the three study periods. It was noted from 1991–2001 that forest
cover decreased dramatically in covered area, which was attributed to agricultural lands
taking over forest lands. Due to this conversion, agricultural lands saw great expansion,
accompanied by significant changes in barren lands. Wetlands were also affected as the area
covered sustained a major drop. In the 2001–2011 period, a rapid growth was noted in the
total area covered by developed lands. This exponential rise was at the cost of agricultural
areas as the area covered by agricultural lands reduced significantly. Forest cover continued
to decrease but at a slower rate compared to the previous period. Since forest lands, which
are towards the east of Selangor, were at a higher altitude, as shown in Figure 7b,c, the
probability of them being converted to agricultural lands were minimal. Percentage of
water cover in the 2001–2011 period can be attributed to construction of hydraulic structures
and settlement ponds. Barren lands also decreased, but there was a rise in wetlands. In the
2011–2021 period, the changes in LULC experienced similar trends but at a substantially
reduced rate. Forest and agricultural lands reduced, followed by a rise in developed and
barren land. Wetlands saw marginal rise; however, water reduced significantly.

The main factors related to the increasing development land use at the expense of
deteriorating the forest and agricultural covers can be attributed to urban expansion and
growth in commercial agricultural [57]. The rapid urbanization has radically altered the
natural environment and landscape patterns around the world, particularly in the twenty-
first century [58]. The most important driving factors for urbanization are physical and
social aspects, such as topography, population, and industrial growth [59]. Consequently,
urban expansion is influenced more by economic growth than by population increase [60].
These expansions raise concerns regarding the effects of urbanization and disruption of land
use patterns, which have effects on climate change, food security, and natural resources.
The results obtained from the LULC classification indicate that the changes in the land use
patterns are supported by the polices of the state [61–63].

Table 2. Changes in total area of different LULC classes between the years of 1991–2001, 2001–2011,
and 2011–2021.

Periods 1991–2001 2001–2011 2011–2021

LULC Classes Area (Km2) Area (Km2) Area (Km2)

Water −1.40 37.84 6.90
Developed 296.19 874.81 96.64

Barren 143.90 4.95 10.43
Forest −820.26 −250.70 −72.20

Agriculture 494.86 −681.52 −63.88
Wetlands −113.29 14.62 22.11
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3.2. Accuracy Assessment of LULC Maps

The accuracy of the classified LULC maps was assessed by comparing the land use
classes with the satellite image (reference) ground truth data. The pixel-by-pixel accuracy
assessment approach was undertaken based on which 150 random points were generated
on the LULC maps of 1991, 2001, 2011, and 2021. The selected points were cross-referenced
with the satellite images, as well as spatial maps of the study area. The selected points
represent the various land use classes used for image classification. A confusion matrix was
generated using the cross-referenced data to identify the degree of misclassified pixels by
the image classification. Table 3 shows the percentage of accuracy based on the classified
generated points (producer accuracy) and cross-referenced points (user accuracy) and
the calculated overall accuracy and kappa coefficient. Multiple land use classification
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trails were conducted to achieve the optimum accuracy, based on Anderson’s classification
scheme. An overall accuracy minimum of 85% is considered satisfactory of land use
classification [28]. The analysis of the generated confusion matrix resulted in an overall
accuracy of 96.7%, 94.0%, 94.0%, and 94.7% for the years 1991, 2001, 2011, and 2021,
respectively. The corresponding kappa coefficient for the LULC maps of 1991, 2001, 2011,
and 2021 was 0.96, 0.92, 0.92, and 0.93, respectively. The overall accuracies of the different
land use classes are shown in Table 3. The overall accuracy of water and wetlands was
observed to be relatively higher when compared with other land use classes as they were
identified as clear pixels. On the other hand, barren lands were easily misclassified as
the pixels were similar to developed lands. This was also observed between the classes
of forest and agriculture. Areas with a greater concentration of mixed pixels belonging
to different land use classes had a higher tendency of misclassification during the image
classification process.

Table 3. Accuracy assessment of LULC maps from the years 1991 to 2021.

Accuracy
Types

Year 1991 2001 2011 2021
LULC % % % %

Producer
Accuracy (%)

Water 100.0 100.0 100.0 100.0
Developed 95.8 97.1 98.0 98.0

Barren 77.8 80.0 58.3 81.8
Forest 98.0 88.9 93.1 90.3

Agriculture 97.9 98.0 97.6 94.6
Wetlands 100.0 90.0 100.0 100.0

User
Accuracy (%)

Water 100.0 100.0 100.0 100.0
Developed 92.0 94.4 90.6 96.2

Barren 87.5 88.9 87.5 90.0
Forest 98.0 94.1 96.4 93.3

Agriculture 97.9 94.1 95.3 92.1
Wetlands 100.0 90.0 100.0 100.0

Overall Accuracy (%) 96.7 94.0 94.0 94.7
Kappa Coefficient 0.96 0.92 0.92 0.93

3.3. Transition Potential Modelling and Validation

The transitional changes undergone by the different land use classes between the years
2001 and 2011 are expressed as a confusion matrix in Table 4. These changes represent
the distribution and conversion of individual land use class, as well as their nature of
conversion. As observed from Table 4, some of the major transitions are agriculture to
developed, forest to agriculture, and barren to developed and agricultural lands. These
trends of land conversion and transition forms the basis of transition potential modelling
for CA-ANN simulation. A changes map was created using the transition matrix. The
changes map of 2001–2011 and spatial parameters (slope, aspect, and distance form roads)
were considered as input parameters for training the ANN model.

Table 4. Accuracy assessment of LULC maps from the years 1991 to 2021.

Year 2011
Category Water Developed Barren Forest Agriculture Wetlands

2001

Water 0.997 0.00118 0.00046 0.00061 0.0006 0.0002
Developed 0.017 0.731 0.086 0.054 0.1109 0.0015

Barren 0.006 0.533 0.122 0.064 0.2737 0.0011
Forest 0.002 0.050 0.024 0.748 0.1717 0.0040

Agriculture 0.011 0.210 0.078 0.116 0.5740 0.0108
Wetlands 0.015 0.045 0.009 0.075 0.0802 0.7751

The transition potential model (ANN) was validated by comparing the classified land
use map of 2021 with the resulting simulated map of 2021 from the CA-ANN simula-
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tion [57,64]. The comparison of the maps was evaluated based on the kappa coefficient
value and percentage of correctness. The magnitude of correlation between the classified
map and simulated map of 2021 is represented in the validation graph shown in Figure 8.
The graph illustrates the degree of agreement between the different land use classes from
the two maps. The land use classes in perfect agreement overlap each other, indicating
that the land use pattern was simulated correctly, whereas deviance from the classified line
denotes an inaccurate simulation of the land use pattern. The percentage of correctness
for the simulation was 82.43%, and 0.72, 0.92, and 0.76 were the overall kappa, kappa his-
togram, and kappa location, respectively [57]. Based in the validated model, the CA-ANN
simulation was executed to obtain the predicted land use maps of the years 2031, 2041,
and 2051.
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3.4. LULC Maps for the Predicted Years of 2031, 2041, and 2051

The CA-ANN simulation was performed to obtain the predicted LULC maps from the
years 2031 to 2051. Figure 9 shows the predicted changes in different LULC classes from the
years 2031 to 2051 in Selangor. Total area cover by different LULC classes and the percentage
of cover for the years 2031, 2041, and 2051 are illustrated in Table 5. The observed outcomes
elucidated the steady changes within the study period. A continued growth was noted
in the developed land use pattern, where the area increased from 2874.31 Km2 (35.23%)
in 2031 to 3118.96 Km2 (38.23%) in 2041, then to 3292.40 Km2 (40.36%) in the year 2051.
Due to the increasing rate of area covered by developed land, diminishing trends for forest
and agricultural lands were observed in the simulated maps. Forest cover experiences
a decline from 2536.46 Km2 (31.09%) in 2031 to 2447.83 Km2 (30.01%) in 2051. Similarly,
agricultural cover also maintains its decreasing trend between the years 2031 and 2051 as
the total percentage cover regresses from 27.51% to 23.78%, respectively. Water, barren, and
wetlands experience a very minute change in their total area covered over the study period,
as shown in Table 5. Water cover reduced slightly as the areas decreased from 85.14 Km2

in 2031 to 81.80 Km2 in 2051. Similarly, barren lands reduced from 284.25 Km2 in 2031 to
266.75 Km2 in 2051. Wetlands showed a drop in the percentage of area cover, reducing
from 1.64% in 2031 to 1.58% in 2051.
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Table 5. Total area cover by different LULC classes and the percentage of cover for the years 2031,
2041, and 2051 in Selangor.

Years 2031 2041 2051
LULC Classes Area (Km2) % Area (Km2) % Area (Km2) %

Water 85.14 1.04 82.66 1.01 81.80 1.00
Developed 2874.31 35.23 3118.96 38.23 3292.40 40.36

Barren 284.25 3.48 272.03 3.33 266.75 3.27
Forest 2536.46 31.09 2482.07 30.42 2447.83 30.01

Agriculture 2244.04 27.51 2071.81 25.40 1940.11 23.78
Wetlands 133.80 1.64 130.48 1.60 129.11 1.58

Physical and socioeconomic factors had a substantial impact on landscape patterns
during the study period, according to the observed outcomes. The geographical variables
included in model calibration were chosen because of their significant relationship with
LULC. Physical variables, such as geography and climate, are thought to be the most signif-
icant in promoting anthropogenic activity [65]. Socioeconomic factors, such as population
and GDP, may have an impact on LULC change [66], while proximity factors, such as
accessibility to highways, distance from the city center, and distance from the stream net-
work, aid in determining the driving forces of the landscape pattern [67]. Areas with lower
altitudes are often associated with rapid LULC changes, as the geography of these locations
is more susceptible to anthropogenic activity. Since the slope towards the western regions
of Selangor is comparably lower than that of other areas, the greatest changes happened in
the plain areas of the state, particularly along the western shore. The mountainous, hilly,
and forested areas of the north and east do not endure extensive fragmentation.

The outcomes of the simulated maps predict an increase in the expansion of com-
mercial, industrial, and residential development at the cost of diminishing forest covers
and agricultural lands, as shown in the simulated LULC maps for the years 2031, 2041,
and 2051 in Figure 10. The driving causes of built-up expansion, according to several
research, are population growth and economic development [46,68]. The natural ecosystem,
water quality, and biodiversity are all harmed as the developed area grows [69]. Similarly,
outcomes were noted by [57], where the prediction maps for the Great Bay area in China
from 2030 to 2050 saw a rising trend in developed lands while agricultural lands continued
decreasing. Yatoo et al. [64] also reported the rise of developed lands in the predicted LULC
maps for the year 2027 in Ahmedabad, India. The findings also reflected a diminishing
pattern of agricultural and water covered areas over the study period. The simulation of
LULC maps from t 2031 to 2051 estimated a continuous surge in urban development in the
state of Selangor.
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4. Conclusions

The study identified the changes in the LULC patterns in the study area of Selangor,
Malaysia, from 1991 to 2021. Land-use changes are mostly influenced by population and
demand growth. To improve landscape planning and sustainable management, it is neces-
sary to recognize harmful tendencies from the past years. Changing LULC patterns can
also adversely affect the groundwater quality. For LULC classification, the support vector
machine (SVM) offered accurate representations of land cover changes and related trends.
Based on the observed outcomes of the classified maps, agricultural lands experienced a
rapid increase from 35.82% in 1991 to 41.88% in 2001. A total of 9.13% of the agricultural
area was reduced between 2001 and 2021. Developed lands experienced a 15.54% rise in the
total percentage cover from 1991 to 2021. The driving factor for land-use change in Selangor
was attributed to the rapid rate of urbanization and the conversion of agricultural lands
for industrial expansions and urban settlements between 2011 and 2021. Forest covers
experienced continuous degradation within the study time period as it diminished by
14.01%. Minimal changes were observed in the classes of water, barren, and wetlands. The
analysis of the transition matrix signified the conversion of forest covers to agriculture and
the expansion of developed lands upon agricultural lands. The CA-ANN-simulated maps
of 2031, 2041, and 2051 also predicted the rise in developed areas and decline in forest and
agricultural covers. Natural resources, ecology, and food security might all be jeopardized
by severe changes in LULC, particularly due to urban expansion and agricultural frag-
mentation. The growing rate of urbanization and degradation of vegetation will greatly
influence the quality of groundwater and exploitation of natural resources. Consequently,
the spatiotemporal and prospective LULC simulation findings may aid decision-makers in
analyzing LULC intensity changes and the effects of socioeconomic variables, as well as
promoting environmental conservation and sustainable development plans. The influence
of climatic changes (e.g., greenhouse gas emissions, land and water degradation, etc.),
brought about by the rapid rate of industrial and urban expansion, as well as the extent of
economic benefits to the state from industrial growth and land-use licensing, should be
analyzed in future studies.
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