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Abstract

Introduction

Hand-held dynamometry (HHD) has never previously been used to examine isometric mus-

cle power. Rate of force development (RFD) is often used for muscle power assessment,

however no consensus currently exists on the most appropriate method of calculation. The

aim of this study was to examine the reliability of different algorithms for RFD calculation

and to examine the intra-rater, inter-rater, and inter-device reliability of HHD as well as the

concurrent validity of HHD for the assessment of isometric lower limb muscle strength and

power.

Methods

30 healthy young adults (age: 23±5yrs, male: 15) were assessed on two sessions. Isometric

muscle strength and power were measured using peak force and RFD respectively using

two HHDs (Lafayette Model-01165 and Hoggan microFET2) and a criterion-reference Kin-

Com dynamometer. Statistical analysis of reliability and validity comprised intraclass corre-

lation coefficients (ICC), Pearson correlations, concordance correlations, standard error of

measurement, and minimal detectable change.

Results

Comparison of RFD methods revealed that a peak 200ms moving window algorithm pro-

vided optimal reliability results. Intra-rater, inter-rater, and inter-device reliability analysis of

peak force and RFD revealed mostly good to excellent reliability (coefficients� 0.70) for all
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muscle groups. Concurrent validity analysis showed moderate to excellent relationships

between HHD and fixed dynamometry for the hip and knee (ICCs� 0.70) for both peak

force and RFD, with mostly poor to good results shown for the ankle muscles (ICCs = 0.31–

0.79).

Conclusions

Hand-held dynamometry has good to excellent reliability and validity for most measures of

isometric lower limb strength and power in a healthy population, particularly for proximal

muscle groups. To aid implementation we have created freely available software to extract

these variables from data stored on the Lafayette device. Future research should examine

the reliability and validity of these variables in clinical populations.

Introduction
Muscular weakness, as a component of muscle function, is an impairment that is commonly
observed in clinical populations and has been widely documented to impact upon physical
function [1–4]. Two important components of muscle function are the peak force that a muscle
group can produce (muscle strength) and how rapidly that force can be produced (muscle
power) [3, 5]. The latter has previously been quantified by calculating the rate of force develop-
ment (RFD), which is calculated by measuring the change in force over a certain time period
(Δforce/Δtime), usually during an isometric contraction [5, 6]. The measure of RFD has impor-
tant functional implications; sufficient RFD is necessary to perform quick and forceful muscle
contractions, such as those observed during walking [5]. Previous literature indicates that
reduced muscle power, often associated with aging, may contribute to reduced physical func-
tion and an increased risk of falls in a range of clinical populations [7–13]. As such, assessments
of muscle power may be useful in clinical settings for identifying individuals at risk of falls and
functional limitations.

Currently there are varying methods utilised to calculate RFD from isometric contractions.
Commonly used methods involve calculating the change in force over the change in time with
discrete time intervals from the onset of contraction to 30, 50 or 100ms [5, 14, 15]. However,
onset of contraction has been defined in different ways including when the force reading
exceeds a set threshold of either absolute values or percentages of a maximal voluntary contrac-
tion [5, 14, 16–18]. Other methods of calculating RFD involve examining successive time inter-
vals (e.g. 5ms) during the initial rise in force to determine the peak RFD across the trial [19–
21], or examining the RFD between percentages of the peak force (e.g. between 30 and 60% of
peak force) [22]. There is currently no consensus as to which measure of RFD should be used
in the assessment of muscle power.

The criterion-reference assessment of muscle strength and power involves fixed laboratory-
based dynamometry. A limitation of laboratory-based dynamometers is they are expensive and
cumbersome which precludes their use as a clinically-feasible device for routine patient assess-
ment [23–25]. Other devices that can be used to assess dynamic muscle power include linear
position transducers [26–28], the Nottingham power rig [28–30], and force plates [31, 32],
however the cost, availability, time-consuming nature, and difficulty of implementation of
such assessments may limit their use in clinical settings. Clinic-based assessment of muscle
power is important to allow widespread access to testing and easily-interpreted results. Com-
monly used devices that measure isometric lower limb muscle strength include hand-held
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dynamometers (HHDs). These low-cost and portable devices are an appropriate and conve-
nient method to assess muscle strength in a clinical setting due to their strong reliability and
validity when compared with expensive laboratory-based dynamometers [23–25, 33, 34]. Pre-
vious psychometric literature assessing isometric lower limb strength using HHDs has focused
predominantly on the knee extensors, with limited information on the validity of HHDs when
assessing the muscle strength of other lower limb muscle groups [25, 34]. Additionally, the reli-
ability and validity of HHDs for the assessment of isometric muscle power is currently
unknown and warrants further investigation due to the importance of muscle power [30, 35].

The first aim of this study was to examine the reliability of different algorithms for assess-
ment of RFD using fixed dynamometry. Secondly, this study aimed to determine the concur-
rent validity of two HHDs (Lafayette and Hoggan manufactured devices) compared to fixed
dynamometry (KinCom) to assess isometric lower limb muscle strength and power using mea-
sures of peak force and RFD. Additionally, the intra-rater, inter-rater, and inter-device reliabil-
ity of each device for the assessment of peak force and RFD was assessed. It was hypothesised
that the HHDs would demonstrate good validity and reliability for the assessment of both mus-
cle strength and power (intraclass correlation coefficients�0.75).

Materials and Methods

Participants
The isometric lower limb muscle strength and power of 30 healthy participants over the age of
18 was assessed. Participants were required to have no lower limb injury in the preceding two
months or other comorbidities such as cardiovascular or respiratory conditions that could
potentially impact on the assessment of muscle strength and power. This study used a concur-
rent validity, test-retest reliability design whereby participants attended two identical testing
sessions. This study had approval from the Australian Catholic University Human Research
Ethics Committee, where a convenience sample of participants were recruited. All participants
gave written informed consent.

Instrumentation
Two HHDs were used to assess lower limb strength and power: a Lafayette Manual Muscle
Testing System Model-01165 (Lafayette Instrument Company, Lafayette IN, USA) and a Hog-
gan microFET2 (Hoggan Scientific, LLC, Salt Lake City UT, USA). The two HHDs were left as
purchased from each manufacturer with no additional padding secured to the devices. The
approximate retail cost of the Lafayette device is US$1,200, with the Hoggan device costing
approximately US$1,095 (plus US$495 for the software package). For determination of the
validity of each HHD, participants were also assessed using a fixed, laboratory-based KinCom
dynamometer (Chattex Corporation, Chattanooga TN, USA). Laboratory-based dynamome-
ters can often cost in excess of US$50,000. All devices recorded force in kilograms and were cal-
ibrated once at the start of the study. Both assessors were male and were experienced at using
such devices, with Assessor-A having one year experience using HHDs and Assessor-B having
10 years of clinical physiotherapy experience using HHDs.

Procedure
Currently there is no consensus on the most appropriate testing positions for HHD use, with a
recent systematic review demonstrating a variety of methodologies used for lower limb assess-
ment in previous research [25]. Based on prior research and our own pilot work of assessments
in a variety of different positions, we implemented those shown in Fig 1. These testing positions
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have shown strong reliability for the measurement of isometric strength in previous studies for
the hip [36], knee [37], and ankle [37] muscle groups.

Assessment of isometric muscle strength and power was performed with the participants in
three positions (seated, supine, and prone); hip flexors, knee extensors, and knee flexors were
assessed in a seated position; ankle plantarflexors, ankle dorsiflexors, hip abductors, and hip
adductors in a supine position; hip extensors in a prone position. These positions were chosen
to minimise changes in position by the participant to enhance the feasibility of testing in a clin-
ical setting. All tests involved maximal voluntary isometric contractions. Assessment using the
HHDs was conducted first. The order was randomised for assessor and HHD, however the
order of the muscle groups tested was kept consistent as shown in Fig 1; for example if HHD1
was randomly assigned first, all seated muscle groups would be assessed, followed by HHD2
assessing seated muscle groups, with the same order of HHDs for supine and then prone mus-
cle groups. Following a rest period of five minutes, the same protocol was repeated by the sec-
ond assessor. During pilot testing, problems arose in the assessment of very strong muscle
groups, namely the knee extensors and ankle plantarflexors. To assist the assessor in overcom-
ing the force produced by the participant, the plinth was placed close to a wall, which aided the
assessors in their resistance of the participants’ contractions for these two muscle groups (see
Fig 1B and 1D).

Fig 1. Testing positions for strength and power assessment. Note: Same positions were used on the fixed dynamometer. (A) Hip flexors with the
participant seated and hips and knees flexed at 90°. Dynamometer placed on the anterior aspect of the thigh, proximal to the knee joint. (B) Knee extensors
with the participant seated and hip and knees flexed at 90°. Dynamometer placed on the anterior aspect of the shank, proximal to the ankle joint. (C) Knee
flexors with the participant seated and hips and knees flexed at 90°. Dynamometer placed on the posterior aspect of the shank, proximal to the ankle joint. (D)
Ankle plantarflexors with the participant lying supine with the ankle in plantargrade and hips and knees extended. Dynamometer placed over the metatarsal
heads on the sole of the foot. (E) Ankle dorsiflexors with the participant lying supine with the ankle relaxed and hips and knees extended. Dynamometer
placed over the metatarsal heads on the dorsum of the foot. (F) Hip abductors with the participant lying supine and hips and knees extended. Dynamometer
placed on the lateral aspect of the shank, proximal to the ankle joint. (G) Hip adductors with the participant lying supine and hips and knees extended.
Dynamometer placed on the medial aspect of the shank, proximal to the ankle joint. (H) Hip extensors with the participant lying prone and hips and knees
extended. Dynamometer placed on the posterior aspect of the shank, proximal to the ankle joint.

doi:10.1371/journal.pone.0140822.g001
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Following HHD testing, the isometric strength and power of participants was then assessed
using the KinCom dynamometer utilising the positions described for the HHDs. In order to
minimise position changes and reduce time requirements, the order of muscles tested was differ-
ent during the assessment with the KinCom dynamometer. The order for the KinCom was as
follows: knee extensors, knee flexors, hip flexors, hip abductors, hip adductors, hip extensors,
ankle plantarflexors, and ankle dorsifexors. Instructions provided to participants for all trials
were ‘at the count of three, push/pull as hard and as fast as you can and hold that contraction
until I say relax’. Each test lasted between three to five seconds and ended after a steady maximal
force was produced by the participant. Participants were instructed to hold the side of the plinth
for stabilization (see Fig 1). Constant verbal encouragement was provided throughout the testing.
Only the right limb of each participant was assessed to reduce fatigue and the time demands of
the testing session. A submaximal practice trial was given for each muscle group on both HHDs
and the fixed dynamometer to ensure the participant understood the contraction required. Two
trials were recorded for each muscle group, again to minimise the time requirements of testing.

Data Analysis
A custom-written software program (LabVIEW 2009 National Instruments, Austin TX, USA)
was made to analyse the data from the three devices using the following procedures. A zero-
phase shift 10Hz lowpass 4th order Butterworth filter was applied to data from each of the three
devices. Due to the differing sampling rates between devices (Lafayette: stable 40Hz; Hoggan:
unstable, approximately 100Hz; KinCom: stable 1000Hz), the data for the HHDs were resam-
pled to a constant interval 1000Hz using cubic spline interpolation to allow for consistent and
unbiased analysis. Strength was assessed by measuring peak force, which was determined by
calculating the highest force value recorded in kilograms during both trials for each muscle
group. Whilst normalisation to the length of the lever arm and body mass is crucial if compar-
ing results from HHDs between participants, data from this study were not normalised in this
way; our analysis of results was only performed within participants and therefore normalisa-
tion was redundant.

There is currently no consensus in the literature on the most appropriate measure of RFD
[5, 19, 22]. Thus a comparison of the reliability of differing methodologies on the criterion-ref-
erence KinCom dynamometer was included in the current study. The analysis methods used
included variants of three methods for the assessment of muscle power: 1) time to peak force,
2) calculating peak RFD between percentages of the peak force (5–95%, 10–90%, 15–85%, 20–
80%, 25–75%, 30–70%, 35–65%, 40–60%), and, 3) examining successive time intervals (e.g.
sample 1–11, 2–12, 3–13 etc.) during the initial rise in force to determine the peak RFD across
the trial for time intervals of 10, 20, 50, 100, and 200ms. The methods differed in that the sec-
ond method has a fixed position on the force trace but a variable time interval (i.e. it is always
between the set force thresholds, but the duration shortens if the RFD is higher), whilst the
third method has a fixed time interval but variable force position (i.e. the extracted data always
has the same number of samples in it, but it could occur anywhere on the ascending slope of
the force trace).

Statistical Analysis
Data were assessed for normality using a Shapiro-Wilk test, with the data conforming to nor-
mal distribution. Descriptive statistics (mean and standard deviations) were used to describe
participant demographics and anthropometrics and outcome measures of peak force and RFD.
The first step in analysis was to calculate the reliability of different RFD algorithms from the
fixed dynamometer, which was done through intraclass correlation coefficients (ICC2,1).
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Assessment of intra-rater and inter-rater reliability was conducted using ICC2,1, standard
error of measurement (SEM), and minimal detectable change (MDC) with 95% confidence
intervals. The SEM and MDC were calculated using the formulas provided by Portney and
Watkins [38] and expressed as percentages of the mean. The SEM was calculated by multiply-
ing the standard deviation of the first session results by the square root of one minus the ICC

(SEM ¼ SD1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ICC
p

) [38]. The MDC was calculated using the following formula

MDC ¼ z � SEM � ffiffiffi

2
p

, where z = 1.96 (based on 95% confidence) and SEM is the stan-
dard error of measurement [38]. The association and agreement between assessors and devices,
for inter-rater and inter-device reliability, were also measured using Pearson’s correlation (R)
and concordance correlation coefficients (Rc). The Pearson’s correlation coefficient assesses
association irrespective of magnitude differences whereas the concordance coefficient assesses
both association and deviations from the line of identity (y = x).

Analysis of concurrent validity was conducted by comparing results from the two HHDs to
the gold standard laboratory-based KinCom using ICC2,1, R, and Rc. Standard or regression-
based (when proportional bias was detected) Bland-Altman plots with 95% limits of agreement
[39] were calculated for all variables (see S1–S4 Files). Correlations of the difference between
scores and the average scores were examined to detect a proportional bias (R>0.50), which
indicated use of a regression-based Bland-Altman plot. Point estimates of the correlation and
ICC values for reliability and validity analyses were based on those provided by Portney and
Watkins [38] interpreted as excellent (�0.90), good (0.75–0.89), moderate (0.50–0.74), or poor
(<0.50).

Results
A convenience sample of thirty participants (age: 22.87±5.08yrs, mass: 68.67±9.15kg, height:
172.85±9.11cm, male: 15) who were recruited through the University attended two testing ses-
sions one week apart (mean: 7±2 days). One participant was unable to attend the second ses-
sion. Further explanation of missing data is provided in S1–S4 Files and the full data set is in S5
File.

Reliability of RFDmeasures
Measures of time to peak force and RFD that involved calculating the change in force over the
change in time between percentages of the peak force (5–95%, 10–90%, 15–85%, 20–80%, 25–
75%, 30–70%, 35–65%, 40–60%) revealed poor to moderate test re-test reliability (median
ICC<0.85) across the majority of muscle groups on the fixed KinCom dynamometer (Table 1).
Examination of the RFD measures calculated across successive time intervals (10, 20, 50, 100,
and 200ms) showed good to excellent results for test re-test reliability on the KinCom dyna-
mometer (median ICC�0.91). The 200ms time interval method displayed the highest median
reliability results (median ICC = 0.93) and no results lower than our threshold for good
(�0.75), and was therefore used for further analyses.

Intra- and Inter-rater Reliability
The mean (standard deviation (SD)) and intra-rater reliability results for peak force and RFD
are shown in Tables 2 and 3 respectively. Intra-rater reliability was good to excellent
(ICC�0.75) for all peak force measures with the exception of a moderate result for the ankle
plantarflexors measured by Assessor-B using the Hoggan device (ICC = 0.74). Intra-rater reli-
ability was also good to excellent for all RFD measures with the exception of the knee extensors
measured by Assessor-A using the Hoggan device (ICC = 0.71), and measures of ankle

Muscle Power Assessment with Hand-Held Dynamometry

PLOS ONE | DOI:10.1371/journal.pone.0140822 October 28, 2015 6 / 18



dorsiflexors (ICC = 0.49), hip abductors (ICC = 0.74), and knee extensors (ICC = 0.71) using
the Lafayette device by Assessor-B.

Inter-rater reliability results are displayed in Table 4. Inter-rater reliability was good to
excellent for both peak force and RFD measures (ICC�0.75) in all muscle groups except for
peak force of the ankle dorsiflexors (ICC = 0.68) and ankle plantarflexors (ICC = 0.66) mea-
sured on the Hoggan device, and RFD of the ankle dorsiflexors measured on the Lafayette
device (ICC = 0.70). The tables also show the intra- and inter-rater reliability results of the
SEM and MDC calculations, expressed as a percentage of the mean.

Inter-device Reliability
Analysis of inter-device results showed good to excellent correlations (R�0.75) between results
obtained on the Lafayette and Hoggan devices for all peak force measures (Table 4). Addition-
ally, concordance correlations for peak force also showed good to excellent agreement
(Rc�0.75) with the exception of ankle dorsiflexors (Rc = 0.66) measured by Assessor-A. Inter-
device analysis of RFD measures showed good to excellent correlations (R�0.75) for all muscle
groups with the exception of the ankle dorsiflexors measured by Assessor-B (R = 0.73) and the
knee extensors for Assessors-A and B (R = 0.41, 0.57 respectively). The majority of RFD con-
cordance correlation results showed moderate to good agreement (see Table 4). Measures of
RFD for the knee extensors showed poor agreement and moderate correlations between
devices for both assessors.

Concurrent Validity
Results from the validity analysis for peak force and RFD measures are shown in Table 5.
Validity of peak force measures were good to excellent (ICC�0.75) with the exception of most
ankle results which demonstrated moderate validity; this included ankle dorsiflexors measured
by Assessor-A on the Lafayette device (ICC = 0.62) and the Hoggan device (ICC = 0.51) and

Table 1. Test-retest reliability (ICCs) of different rate of force development measures on the fixed KinCom dynamometer.

Musclegroups Time
to

peak

Percentage of peak force measures Successive time intervals

RFD
(5–
95)

RFD
(10–
90)

RFD
(15–
85)

RFD
(20–
80)

RFD
(25–
75)

RFD
(30–
70)

RFD
(35–
65)

RFD
(40–
60)

Peak
RFD

(10ms)

Peak
RFD

(20ms)

Peak
RFD

(50ms)

Peak
RFD

(100ms)

Peak
RFD

(200ms)

ADF -0.93 0.24 0.49 0.71 0.7 0.65 0.63 0.63 0.62 0.64 0.65 0.62 0.72 0.77

APF 0.67 0.95 0.96 0.97 0.95 0.87 0.85 0.88 0.88 0.96 0.96 0.96 0.95 0.95

HAB -0.47 -0.22 0.45 0.59 0.77 0.82 0.81 0.79 0.83 0.83 0.83 0.86 0.9 0.88

HAD 0.46 0.47 0.62 0.56 0.59 0.75 0.74 0.77 0.77 0.78 0.79 0.8 0.88 0.92

HE 0.40 0.41 0.17 0.26 0.54 0.57 0.84 0.79 0.85 0.91 0.91 0.91 0.91 0.87

HF 0.70 0.77 0.92 0.94 0.95 0.95 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.94

KE 0.75 0.82 0.83 0.91 0.91 0.92 0.91 0.9 0.9 0.97 0.97 0.97 0.97 0.98

KF 0.39 0.77 0.84 0.78 0.73 0.7 0.66 0.66 0.67 0.93 0.93 0.92 0.89 0.93

Median 0.43 0.62 0.73 0.75 0.75 0.79 0.83 0.79 0.84 0.92 0.92 0.92 0.91 0.93

IQR 0.18–
0.68

0.37–
0.78

0.48–
0.86

0.58–
0.92

0.67–
0.92

0.69–
0.88

0.72–
0.87

0.74–
0.89

0.75–
0.89

0.82–
0.95

0.82–
0.95

0.85–
0.95

0.89–
0.95

0.88–
0.94

N = <0.75 7 4 4 4 4 3 3 2 2 1 1 1 1 0

Abbreviations: RFD: rate of force development; ADF: ankle dorsiflexors; APF: ankle plantarflexors; HAB: hip abductors; HAD: hip adductors; HE: hip

extensors; HF: hip flexors; KE: knee extensors; KF: knee flexors; IQR: interquartile range (25–75%); N = <0.75: number of muscle groups below the

threshold of 0.75.

doi:10.1371/journal.pone.0140822.t001
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Table 2. Mean (SD) values and intra-rater reliability for each assessor on each device plus the KinCom for peak force (kg).

Muscle Groups Intra-rater reliability Assessor-A Assessor-B KinCom

Lafayette Hoggan Lafayette Hoggan

ADF Day 1—Mean (SD) 19.19 (4.92) 20.89 (3.64) 27.47 (5.96) 30.68 (6.89) 18.47 (6.87)

Day 2—Mean (SD) 17.83 (4.35) 20.92 (4.11) 27.42 (5.85) 29.93 (5.49) 17.52 (6.30)

ICC (95% CI) 0.89 (0.76,0.95) 0.87 (0.71,0.94) 0.88 (0.75,0.95) 0.87 (0.71,0.94) 0.78 (0.43,0.92)

SEM (%) 8.62 6.20 7.39 8.13 17.45

MDC (%) 23.89 17.19 20.47 22.52 48.36

APF Day 1—Mean (SD) 51.00 (10.94) 48.06 (8.12) 52.29 (11.17) 51.16 (10.85) 91.02 (35.94)

Day 2—Mean (SD) 50.42 (11.34) 47.83 (9.70) 51.95 (10.05) 51.30 (11.27) 83.16 (36.13)

ICC (95% CI) 0.84 (0.66,0.93) 0.87 (0.70,0.95) 0.87 (0.72,0.94) 0.74 (0.38,0.89) 0.98 (0.95,0.99)

SEM (%) 8.53 6.06 7.70 10.81 5.72

MDC (%) 23.64 16.81 21.35 29.97 15.86

HAB Day 1—Mean (SD) 13.85 (3.73) 13.23 (3.91) 13.06 (3.03) 13.38 (3.83) 11.91 (3.39)

Day 2—Mean (SD) 13.01 (3.27) 12.77 (3.50) 12.46 (3.71 12.94 (3.74) 11.14 (3.45)

ICC (95% CI) 0.87 (0.73,0.94) 0.94 (0.86,0.97) 0.92 (0.84,0.96) 0.95 (0.89,0.98) 0.95 (0.88,0.98)

SEM (%) 9.59 7.30 6.43 6.53 6.17

MDC (%) 26.59 20.23 17.82 18.11 17.10

HAD Day 1—Mean (SD) 18.27 (6.31) 17.53 (5.81) 19.65 (6.91) 20.37 (7.27) 19.56 (5.91)

Day 2—Mean (SD) 18.57 (6.27) 18.16 (5.84) 19.10 (7.45) 19.56 (6.99) 18.92 (6.81)

ICC (95% CI) 0.96 (0.92,0.98) 0.97 (0.92,0.99) 0.97 (0.93,0.99) 0.97 (0.92,0.99) 0.98 (0.94–0.99)

SEM (%) 6.82 5.74 6.09 6.68 4.48

MDC (%) 18.89 15.91 16.87 18.51 12.42

HE Day 1—Mean (SD) 23.01 (5.34) 23.60 (5.69) 25.25 (6.80) 24.41 (5.66) 25.82 (6.58)

Day 2—Mean (SD) 23.45 (6.62) 23.34 (5.92) 25.16 (6.67) 24.31 (5.97) 25.43 (7.13)

ICC (95% CI) 0.92 (0.82,0.96) 0.95 (0.90,0.98) 0.94 (0.86,0.97) 0.95 (0.88,0.98) 0.92 (0.81,0.97)

SEM (%) 6.77 5.22 6.76 5.34 7.03

MDC (%) 18.76 14.48 18.74 14.79 19.49

HF Day 1—Mean (SD) 30.44 (7.84) 31.23 (7.82) 36.54 (8.23) 38.63 (8.26) 34.83 (10.48)

Day 2—Mean (SD) 30.05 (6.53) 31.72 (7.81) 36.62 (6.74) 36.53 (7.50) 35.86 (9.73)

ICC (95% CI) 0.94 (0.88,0.97) 0.95 (0.89,0.98) 0.93 (0.86,0.97) 0.85 (0.67,0.94) 0.95 (0.89,0.98)

SEM (%) 6.15 5.43 5.83 8.17 6.45

MDC (%) 17.05 15.05 16.16 22.65 17.89

KE Day 1—Mean (SD) 44.27 (11.34) 50.41 (13.89) 43.92 (13.62) 47.70 (13.03) 63.54 (23.76)

Day 2—Mean (SD) 41.51 (11.55) 46.07 (12.49) 42.66 (13.52) 46.13 (13.86) 58.66 (25.19)

ICC (95% CI) 0.91 (0.80,0.96) 0.90 (0.76,0.96) 0.92 (0.83,0.96) 0.89 (0.76,0.95) 0.98 (0.94,0.99)

SEM (%) 7.73 8.54 8.72 8.98 5.67

MDC (%) 21.42 23.67 24.16 24.88 15.72

KF Day 1—Mean (SD) 23.28 (5.74) 23.58 (6.19) 27.55 (9.15) 29.46 (7.69) 25.84 (7.28)

Day 2—Mean (SD) 23.19 (5.25) 23.99 (4.84) 27.49 (7.90) 28.67 (7.45) 25.73 (7.35)

ICC (95% CI) 0.92 (0.83,0.96) 0.89 (0.71,0.96) 0.94 (0.87,0.97) 0.96 (0.90,0.98) 0.94 (0.86,0.98)

SEM (%) 6.93 8.59 8.07 5.29 6.67

MDC (%) 19.21 23.81 22.36 14.66 18.48

Abbreviations: ADF: ankle dorsiflexors; APF: ankle plantarflexors; HAB: hip abductors; HAD: hip adductors; HE: hip extensors; HF: hip flexors; KE: knee

extensors; KF: knee flexors; SD: standard deviation; CI: confidence intervals; SEM: standard error measurement (expressed as a percentage of the

mean); MDC: minimal detectable change with 95% confidence intervals (expressed as a percentage of the mean). A description of missing data is

outlined in S1–S4 Files.

doi:10.1371/journal.pone.0140822.t002
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Table 3. Mean (SD) values and intra-rater reliability for each assessor on each device plus the KinCom for rate of force development (kg/s).

Muscle Groups Intra-rater reliability Assessor-A Assessor-B KinCom

Lafayette Hoggan Lafayette Hoggan

ADF Day 1—Mean (SD) 35.55 (11.38) 46.17 (12.51) 53.06 (14.63) 71.28 (18.92) 67.74 (28.40)

Day 2—Mean (SD) 32.90 (10.27) 45.46 (13.73) 53.34 (17.96) 68.26 (19.70) 64.59 (25.61)

ICC (95% CI) 0.87 (0.72,0.94) 0.84 (0.63,0.93) 0.49 (-0.10,0.76) 0.75 (0.44,0.88) 0.77 (0.40,0.91)

SEM (%) 11.63 11.01 19.69 13.38 20.24

MDC (%) 32.24 30.52 54.57 37.09 56.10

APF Day 1—Mean (SD) 111.31 (35.70) 125.40 (35.58) 118.54 (38.41) 144.89 (40.28) 230.81 (113.89)

Day 2—Mean (SD) 107.63 (27.01) 119.24 (35.82) 113.41 (27.76) 143.09 (41.15) 216.40 (111.54)

ICC (95% CI) 0.89 (0.76,0.95) 0.81 (0.55,0.92) 0.85 (0.67,0.93) 0.81 (0.56,0.92) 0.95 (0.88,0.98)

SEM (%) 10.64 12.37 12.68 12.05 10.81

MDC (%) 29.48 34.28 35.14 33.41 29.96

HAB Day 1—Mean (SD) 30.49 (10.01) 34.80 (13.56) 30.08 (9.19) 37.78 (15.86) 37.75 (15.12)

Day 2—Mean (SD) 28.80 (7.54) 33.51 (9.30) 29.16 (8.30) 36.71 (13.45) 34.35 (13.64)

ICC (95% CI) 0.84 (0.66,0.93) 0.90 (0.77,0.95) 0.74 (0.44,0.88) 0.89 (0.76,0.95) 0.88 (0.71,0.95)

SEM (%) 13.08 12.50 15.69 13.92 13.65

MDC (%) 36.27 34.65 43.49 38.59 37.83

HAD Day 1—Mean (SD) 39.97 (17.13) 43.42 (19.90) 44.73 (19.67) 58.55 (27.95) 58.23 (24.36)

Day 2—Mean (SD) 39.33 (13.02) 46.55 (14.52) 43.54 (16.15) 55.74 (22.40) 54.76 (27.89)

ICC (95% CI) 0.91 (0.80,0.96) 0.87 (0.64,0.95) 0.93 (0.84,0.97) 0.94 (0.86,0.98) 0.92 (0.78,0.97)

SEM (%) 13.00 16.85 11.96 11.69 12.13

MDC (%) 36.04 46.69 33.15 32.40 33.61

HE Day 1—Mean (SD) 47.42 (15.08) 56.88 (20.79) 58.21 (17.55) 72.18 (25.61) 83.10 (29.19)

Day 2—Mean (SD) 48.26 (14.57) 56.31 (14.84) 55.82 (15.43) 67.79 (17.93) 84.39 (28.50)

ICC (95% CI) 0.91 (0.80,0.96) 0.86 (0.69,0.94) 0.87 (0.73,0.94) 0.89 (0.74,0.95) 0.87 (0.68,0.95)

SEM (%) 9.70 13.58 10.71 11.82 12.62

MDC (%) 26.88 37.64 29.67 32.77 34.98

HF Day 1—Mean (SD) 67.45 (18.88) 88.05 (23.72) 84.78 (23.54) 112.95 (30.30) 147.38 (46.94)

Day 2—Mean (SD) 65.82 (17.32) 89.84 (22.51) 82.34 (18.84) 104.49 (28.15) 152.80 (54.08)

ICC (95% CI) 0.88 (0.75,0.94) 0.86 (0.66,0.94) 0.82 (0.62,0.92) 0.87 (0.71,0.95) 0.94 (0.85,0.98)

SEM (%) 9.65 10.26 11.68 9.52 7.87

MDC (%) 26.76 28.43 32.38 26.39 21.80

KE Day 1—Mean (SD) 83.24 (27.78) 126.25 (55.88) 87.65 (24.45) 125.37 (43.44) 210.61 (91.22)

Day 2—Mean (SD) 82.36 (27.09) 106.23 (34.03) 80.38 (25.90) 112.72 (36.38) 200.01 (86.90)

ICC (95% CI) 0.84 (0.66,0.93) 0.71 (0.26,0.88) 0.71 (0.37,0.87) 0.77 (0.50,0.90) 0.98 (0.95,0.99)

SEM (%) 13.18 24.04 15.02 16.55 5.81

MDC (%) 36.54 66.63 41.64 45.86 16.11

KF Day 1—Mean (SD) 42.87 (16.77) 52.07 (17.22) 53.92 (24.01) 77.15 (27.58) 90.55 (28.42)

Day 2—Mean (SD) 38.86 (13.53) 49.83 (16.10) 52.47 (15.47) 70.63 (20.90) 92.74 (36.16)

ICC (95% CI) 0.91 (0.80,0.96) 0.78 (0.38,0.92) 0.85 (0.69,0.93) 0.83 (0.56,0.94) 0.93 (0.82,0.97)

SEM (%) 11.99 15.65 17.02 14.69 8.48

MDC (%) 33.24 43.38 47.17 40.73 23.51

Abbreviations: ADF: ankle dorsiflexors; APF: ankle plantarflexors; HAB: hip abductors; HAD: hip adductors; HE: hip extensors; HF: hip flexors; KE: knee

extensors; KF: knee flexors; SD: standard deviation; ICC: intraclass correlation coefficient; CI: confidence intervals; SEM: standard error measurement

(expressed as a percentage of the mean); MDC: minimal detectable change with 95% confidence intervals (expressed as a percentage of the mean). A

description of missing data is outlined in S1–S4 Files.

doi:10.1371/journal.pone.0140822.t003
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Table 4. Inter-rater and inter-device reliability for the HHDs.

Muscle
Groups

Inter-rater reliability Inter-device reliability

Peak Force (kg) RFD (kg/s) Peak Force (kg) RFD (kg/s)

Lafayette Hoggan Lafayette Hoggan Assessor-A Assessor-B Assessor-A Assessor-B

ADF ICC (95%
CI)

0.77
(0.50,0.89)

0.68
(0.29,0.86)

0.70
(0.36,0.86)

0.75
(0.44,0.89)

SEM (%) 11.30 11.54 16.05 13.41

MDC (%) 22.15 22.63 31.46 26.28

R (95%
CI)

0.59
(0.29,0.79)

0.61
(0.29,0.81)

0.52
(0.19,0.74)

0.68
(0.40,0.84)

0.79
(0.59,0.90)

0.84
(0.68,0.92)

0.85
(0.70,0.93)

0.73
(0.49,0.87)

Rc (95%
CI)

0.25
(0.09,0.40)

0.19
(0.06,0.32)

0.24
(0.06,0.41)

0.26
(0.10,0.40)

0.66
(0.44,0.81)

0.76
(0.57,0.87)

0.53
(0.34,0.68)

0.44
(0.23,0.61)

APF ICC (95%
CI)

0.81
(0.60,0.91)

0.66
(0.24,0.85)

0.90
(0.79,0.95)

0.83
(0.61,0.92)

SEM (%) 9.33 11.18 10.25 11.74

MDC (%) 18.29 21.91 20.08 23.01

R (95%
CI)

0.66
(0.39,0.83)

0.47
(0.10,0.73)

0.78
(0.58,0.89)

0.71
(0.45,0.86)

0.85
(0.70,0.93)

0.75
(0.52,0.88)

0.86
(0.71,0.93)

0.78
(0.57,0.89)

Rc (95%
CI)

0.66
(0.40,0.83)

0.44
(0.10,0.69)

0.77
(0.56,0.88)

0.66
(0.40,0.82)

0.80
(0.64,0.89)

0.75
(0.52,0.88)

0.74
(0.55,0.85)

0.61
(0.39,0.77)

HAB ICC (95%
CI)

0.92
(0.84,0.96)

0.95
(0.89,0.98)

0.92
(0.82,0.96)

0.88
(0.73,0.94)

SEM (%) 6.92 6.51 9.24 14.27

MDC (%) 13.56 12.75 18.10 27.97

R (95%
CI)

0.89
(0.78,0.95)

0.91
(0.81,0.96)

0.85
(0.71,0.93)

0.80
(0.61,0.90)

0.96
(0.92,0.98)

0.92
(0.83,0.96)

0.90
(0.79,0.95)

0.84
(0.69,0.92)

Rc (95%
CI)

0.84
(0.71,0.91)

0.91
(0.82,0.96)

0.85
(0.71,0.92)

0.78
(0.59,0.88)

0.96
(0.91,0.98)

0.89
(0.81,0.94)

0.80
(0.65,0.88)

0.64
(0.47,0.77)

HAD ICC (95%
CI)

0.98
(0.96,0.99)

0.95
(0.88,0.98)

0.92
(0.82,0.96)

0.91
(0.79,0.96)

SEM (%) 4.54 7.72 12.59 14.00

MDC (%) 8.90 15.12 24.68 27.44

R (95%
CI)

0.96
(0.92,0.98)

0.92
(0.82,0.97)

0.82
(0.64,0.91)

0.84
(0.66,0.93)

0.95
(0.89,0.98)

0.96
(0.91,0.98)

0.84
(0.66,0.93)

0.91
(0.81,0.96)

Rc (95%
CI)

0.94
(0.88,0.97)

0.86
(0.73,0.93)

0.77
(0.59,0.88)

0.71
(0.50,0.84)

0.95
(0.88,0.98)

0.96
(0.91,0.98)

0.71
(0.53,0.83)

0.73
(0.56,0.84)

HE ICC (95%
CI)

0.92
(0.82,0.96)

0.95
(0.89,0.98)

0.89
(0.77,0.95)

0.86
(0.70,0.94)

SEM (%) 7.29 5.34 10.15 13.36

MDC (%) 14.29 10.46 19.90 26.18

R (95%
CI)

0.87
(0.74,0.94)

0.90
(0.79,0.95)

0.83
(0.67,0.92)

0.79
(0.59,0.90)

0.96
(0.92,0.98)

0.93
(0.85,0.97)

0.77
(0.56,0.89)

0.89
(0.77,0.95)

Rc (95%
CI)

0.78
(0.63,0.88)

0.89
(0.77,0.95)

0.64
(0.44,0.78)

0.61
(0.39,0.76)

0.95
(0.89,0.98)

0.89
(0.79,0.94)

0.64
(0.42,0.78)

0.70
(0.52,0.82)

HF ICC (95%
CI)

0.93
(0.85,0.97)

0.92
(0.80,0.96)

0.85
(0.69,0.93)

0.87
(0.69,0.94)

SEM (%) 6.39 6.71 10.76 9.80

MDC (%) 12.53 13.15 21.08 19.21

R (95%
CI)

0.86
(0.73,0.93)

0.84
(0.66,0.93)

0.83
(0.67,0.92)

0.75
(0.49,0.89)

0.91
(0.80,0.96)

0.82
(0.64,0.91)

0.85
(0.69,0.93)

0.81
(0.62,0.91)

Rc (95%
CI)

0.69
(0.50,0.81)

0.63
(0.41,0.79)

0.61
(0.42,0.75)

0.57
(0.32,0.75)

0.91
(0.81,0.96)

0.81
(0.62,0.91)

0.54
(0.34,0.69)

0.56
(0.35,0.71)

(Continued)
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ankle plantarflexors measured by Assessor-A and B on the Lafayette device (ICC = 0.51, 0.54
respectively) and the Hoggan device (ICC = 0.47, 0.40 respectively). The validity of RFD mea-
sures were mixed, however all measures of the hip musculature demonstrated good to excellent
validity (ICC�0.75) except for the hip abductors measured by Assessor-B using the Lafayette
device (ICC = 0.74). Ankle and knee RFD measures displayed mostly moderate to good valid-
ity. Results from the Bland-Altman plots are provided in S1–S4 Files.

Discussion
Hand-held dynamometry demonstrated good to excellent intra- and inter-rater reliability for
the assessment of isometric lower limb muscle strength and power in a healthy population.
Comparison of the HHDs to a laboratory-based dynamometer showed moderate to excellent
concurrent validity for both measures of isometric lower limb strength and power. To the
authors’ knowledge, this is the first study to evaluate the intra- and inter-rater reliability and
validity of HHDs for assessing muscle strength in all major muscles of the lower limbs with a
greater than poor sample size based on the COSMIN checklist [40], and the first to use HHDs
to assess muscle power. These low-cost, portable, and easy-to-use devices have previously
shown excellent results for use as a clinically-feasible alternative to laboratory-based
dynamometry for the assessment of isometric muscle strength. The results from the current
study indicate promise for HHDs in the assessment of isometric muscle power.

Previous literature has focussed primarily on the assessment and treatment of muscle
strength in various clinical populations; however, muscle power is another important consider-
ation. Evidence indicates that in an elderly population, measures of muscle power are more

Table 4. (Continued)

Muscle
Groups

Inter-rater reliability Inter-device reliability

Peak Force (kg) RFD (kg/s) Peak Force (kg) RFD (kg/s)

Lafayette Hoggan Lafayette Hoggan Assessor-A Assessor-B Assessor-A Assessor-B

KE ICC (95%
CI)

0.89
(0.77,0.95)

0.90
(0.77,0.96)

0.80
(0.56,0.91)

0.75
(0.44,0.89)

SEM (%) 9.30 8.76 13.84 19.58

MDC (%) 18.23 17.18 27.12 38.37

R (95%
CI)

0.86
(0.71,0.93)

0.82
(0.63,0.92)

0.61
(0.31,0.80)

0.56
(0.21,0.78)

0.93
(0.85,0.97)

0.89
(0.77,0.95)

0.41
(0.02,0.69)

0.57
(0.25,0.78)

Rc (95%
CI)

0.84
(0.70,0.92)

0.81
(0.62,0.91)

0.60
(0.30,0.79)

0.54
(0.22,0.75)

0.83
(0.70,0.91)

0.85
(0.72,0.93)

0.24
(0.02,0.44)

0.31
(0.11,0.49)

KF ICC (95%
CI)

0.82
(0.62,0.91)

0.92
(0.77,0.97)

0.81
(0.60,0.91)

0.82
(0.49,0.94)

SEM (%) 12.53 7.40 18.46 14.71

MDC (%) 24.56 14.51 36.18 28.83

R (95%
CI)

0.78
(0.58,0.89)

0.84
(0.59,0.94)

0.69
(0.44,0.84)

0.71
(0.33.0.89)

0.95
(0.88,0.98)

0.85
(0.68,0.93)

0.90
(0.76,0.96)

0.88
(0.74,0.95)

Rc (95%
CI)

0.61
(0.41,0.76)

0.70
(0.39,0.87)

0.55
(0.32,0.72)

0.43
(0.13,0.65)

0.94
(0.85,0.97)

0.84
(0.67,0.92)

0.78
(0.58,0.89)

0.66
(0.46,0.80)

Abbreviations: RFD: rate of force development; ADF: ankle dorsiflexors; APF: ankle plantarflexors; HAB: hip abductors; HAD: hip adductors; HE: hip

extensors; HF: hip flexors; KE: knee extensors; KF: knee flexors; ICC: intraclass correlation coefficient; CI: confidence intervals; SEM: standard error

measurement (expressed as a percentage of the mean); MDC: minimal detectable change with 95% confidence intervals (expressed as a percentage of

the mean); R: Pearson’s correlation coefficient; Rc: concordance correlation coefficient. A description of missing data is outlined in S1–S4 Files.

doi:10.1371/journal.pone.0140822.t004
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Table 5. Concurrent validity analysis of the HHDs for assessment of peak force and RFDmeasures compared to the KinCom.

Muscle
Groups

Validity Peak Force (kg) RFD (kg/s)

Assessor-A Assessor-B Assessor-A Assessor-B

Lafayette Hoggan Lafayette Hoggan Lafayette Hoggan Lafayette Hoggan

ADF ICC (95%
CI)

0.62
(0.15,0.83)

0.61
(0.09,0.83)

0.79
(0.52,0.91)

0.76
(0.44,0.90)

0.41
(-0.32,0.74)

0.40
(-0.36,0.74)

0.31
(-0.56,0.70)

0.72
(0.35,0.88)

R (95%
CI)

0.46
(0.09,0.72)

0.49
(0.11,0.75)

0.66
(0.36,0.84)

0.61
(0.28,0.81)

0.35
(-0.04,0.65)

0.34
(-0.06,0.65)

0.23
(-0.18,0.57)

0.60
(0.27,0.80)

Rc (95%
CI)

0.44
(0.10,0.70)

0.39
(0.09,0.63)

0.30
(0.11,0.46)

0.22
(0.06,0.36)

0.11
(-0.02,0.24)

0.17
(-0.04,0.36)

0.16
(-0.12,0.41)

0.54
(0.24,0.75)

APF ICC (95%
CI)

0.51
(-0.12,0.78)

0.47
(-0.25,0.78)

0.54
(-0.14,0.81)

0.40
(-0.42,0.74)

0.73
(0.38,0.88)

0.70
(0.31,0.87)

0.70
(0.32,0.87)

0.54
(-0.06,0.80)

R (95%
CI)

0.49
(0.12,0.74)

0.59
(0.24,0.81)

0.51
(0.14,0.75)

0.41
(0.00,0.70)

0.73
(0.47,0.87)

0.69
(0.40,0.86)

0.67
(0.37,0.84)

0.44
(0.05,0.72)

Rc (95%
CI)

0.16
(0.02,0.30)

0.13
(0.03,0.23)

0.17
(0.03,0.30)

0.11
(-0.01,0.22)

0.24
(0.10,0.38)

0.30
(0.12,0.46)

0.25
(0.09,0.39)

0.23
(0.01,0.43)

HAB ICC (95%
CI)

0.88
(0.74,0.95)

0.89
(0.75,0.95)

0.91
(0.80,0.96)

0.91
(0.79,0.96)

0.82
(0.60,0.92)

0.82
(0.59,0.92)

0.74
(0.42,0.88)

0.88
(0.74,0.95)

R (95%
CI)

0.79
(0.58,0.90)

0.80
(0.59,0.91)

0.85
(0.69,0.93)

0.83
(0.65,0.92)

0.76
(0.53,0.89)

0.70
(0.42,0.86)

0.66
(0.37,0.83)

0.79
(0.58,0.90)

Rc (95%
CI)

0.66
(0.43,0.81)

0.75
(0.52,0.88)

0.80
(0.63,0.90)

0.77
(0.57,0.89)

0.63
(0.40,0.78)

0.70
(0.43,0.85)

0.52
(0.26,0.70)

0.79
(0.59,0.90)

HAD ICC (95%
CI)

0.95
(0.87,0.98)

0.94
(0.84,0.98)

0.95
(0.89,0.98)

0.94
(0.85,0.98)

0.86
(0.68,0.94)

0.92
(0.80,0.97)

0.92
(0.82,0.97)

0.94
(0.87,0.98)

R (95%
CI)

0.90
(0.78,0.96)

0.90
(0.76,0.96)

0.91
(0.80,0.96)

0.89
(0.75,0.95)

0.82
(0.62,0.92)

0.87
(0.70,0.95)

0.88
(0.74,0.95)

0.90
(0.78,0.96)

Rc (95%
CI)

0.89
(0.76,0.95)

0.85
(0.67,0.93)

0.91
(0.80,0.96)

0.89
(0.76,0.95)

0.58
(0.36,0.74)

0.79
(0.57,0.90)

0.74
(0.55,0.86)

0.89
(0.76,0.95)

HE ICC (95%
CI)

0.88
(0.72,0.95)

0.90
(0.76,0.95)

0.94
(0.85,0.97)

0.93
(0.85,0.97)

0.76
(0.46,0.90)

0.88
(0.73,0.95)

0.87
(0.69,0.94)

0.88
(0.72,0.95)

R (95%
CI)

0.80
(0.59,0.91)

0.82
(0.62,0.92)

0.88
(0.74,0.95)

0.89
(0.76,0.95)

0.76
(0.52,0.89)

0.84
(0.67,0.93)

0.83
(0.65,0.92)

0.80
(0.59,0.91)

Rc (95%
CI)

0.72
(0.49,0.85)

0.77
(0.57,0.89)

0.88
(0.74,0.94)

0.86
(0.71,0.93)

0.28
(0.13,0.42)

0.52
(0.32,0.68)

0.52
(0.31,0.67)

0.74
(0.51,0.87)

HF ICC (95%
CI)

0.94
(0.87,0.97)

0.94
(0.85,0.97)

0.94
(0.86,0.97)

0.92
(0.82,0.97)

0.77
(0.50,0.90)

0.78
(0.49,0.91)

0.80
(0.56,0.91)

0.92
(0.82,0.97)

R (95%
CI)

0.92
(0.83,0.96)

0.90
(0.77,0.96)

0.90
(0.79,0.95)

0.88
(0.74,0.95)

0.88
(0.75,0.95)

0.77
(0.53,0.90)

0.79
(0.58,0.90)

0.95
(0.89,0.98)

Rc (95%
CI)

0.80
(0.65,0.89)

0.84
(0.68,0.92)

0.87
(0.76,0.93)

0.81
(0.64,0.91)

0.19
(0.09,0.28)

0.30
(0.13,0.45)

0.28
(0.14,0.42)

0.61
(0.44,0.74)

KE ICC (95%
CI)

0.82
(0.58,0.92)

0.90
(0.76,0.96)

0.92
(0.82,0.97)

0.88
(0.72,0.95)

0.40
(-0.37,0.74)

0.82
(0.58,0.92)

0.63
(0.16,0.84)

0.67
(0.24,0.85)

R (95%
CI)

0.82
(0.63,0.92)

0.87
(0.71,0.94)

0.90
(0.78,0.96)

0.86
(0.70,0.94)

0.36
(-0.04,0.66)

0.72
(0.45,0.87)

0.68
(0.39,0.85)

0.57
(0.23,0.79)

Rc (95%
CI)

0.48
(0.28,0.64)

0.71
(0.51,0.84)

0.61
(0.42,0.75)

0.62
(0.42,0.77)

0.07
(-0.01,0.15)

0.38
(0.17,0.56)

0.13
(0.04,0.22)

0.25
(0.07,0.41)

KF ICC (95%
CI)

0.80
(0.55,0.91)

0.79
(0.39,0.93)

0.85
(0.67,0.93)

0.87
(0.66,0.95)

0.72
(0.38,0.88)

0.79
(0.41,0.92)

0.84
(0.64,0.93)

0.84
(0.60,0.93)

R (95%
CI)

0.68
(0.40,0.84)

0.66
(0.25,0.87)

0.76
(0.53,0.89)

0.76
(0.48,0.90)

0.65
(0.35,0.83)

0.73
(0.39,0.90)

0.73
(0.48,0.87)

0.72
(0.42,0.88)

Rc (95%
CI)

0.64
(0.37,0.81)

0.65
(0.25,0.86)

0.72
(0.49,0.85)

0.73
(0.44,0.88)

0.18
(0.06,0.30)

0.29
(0.09,0.48)

0.36
(0.17,0.52)

0.58
(0.29,0.77)

Abbreviations: RFD: rate of force development; ADF: ankle dorsiflexors; APF: ankle plantarflexors; HAB: hip abductors; HAD: hip adductors; HE: hip

extensors; HF: hip flexors; KE: knee extensors; KF: knee flexors; ICC: intraclass correlation coefficient; CI: confidence intervals; R: Pearson’s correlation

coefficient; Rc: concordance correlation coefficient. A description of missing data is outlined in S1–S4 Files.

doi:10.1371/journal.pone.0140822.t005
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strongly associated with self-reported function and incidence of falls than muscle strength [30,
35]. As such, knowledge of both muscle strength and power may be of use to clinicians when
assessing and treating their patients. The HHD results for both peak force and RFD can be
obtained from the same trial using the same methodology, adding to the feasibility of using this
device in a clinical setting for patient assessment. A potential limiting factor is the lack of
widely available software to extract the RFD data. For this reason we have created a freely avail-
able software program (available at http://www.instrumentedmovement.com) which allows the
user to obtain the 200ms rolling window RFD from data stored on a Lafayette device. A soft-
ware program for data from a Hoggan device is not available on the website due to the addi-
tional cost of purchasing the data recording software for this device and issues experienced
during testing with saving recorded data (See S1–S5 Files).

The inter-rater reliability was good to excellent for both peak force and RFD using both
HHD devices. Nonetheless, agreement between assessors ranged from moderate to excellent
for peak force and RFD, suggesting that although results between assessors are comparable, the
results are not interchangeable. Previous research has found mixed inter-rater reliability in a
range of populations for the assessment of muscle strength [34, 41–45]. Both assessors in the
current study were male, with differing levels of experience. Prior research has compared reli-
ability results for peak force analysis using a Hoggan microFET2 HHD and found similar reli-
ability between male and female assessors with varying levels of experience, height, and weight
[46]. Previous studies have commented on the influence that assessor strength may have on
HHD testing [34, 47]. In our experience, sufficient strength levels are required to control the
movement of the patient, after which the technique of the assessor is likely to be just as impor-
tant for obtaining valid results. During testing assessors should have a wide base of support,
use their own body mass to lean into the participant and keep arms tucked in towards their
body.

Closer examination of the results from each lower limb muscle group revealed that the hip
musculature showed the strongest reliability and validity for measures of peak force and RFD.
Previous research examining peak force has also found similar results for the assessment of hip
strength using HHD in a range of populations [36, 37, 48–50]. Assessment of the ankle muscles
demonstrated good to excellent reliability however validity was lower than expected. Previous
research in a healthy population has also shown poor validity of HHDmeasures of plantar-
flexor strength in comparison with the KinCom [51]. Assessment of the ankle muscle groups is
important, because the ankle plantarflexors have a primary role in power generation during
walking [52] and the dorsiflexors are the lower body muscles most strongly associated with gait
speed in people living with stroke [53]. Our mixed validity results in the current study and pre-
vious research [51] may have been caused by the ankle plantar/dorsiflexor attachment used on
the KinCom. Participants reported difficulty in using the attachment, especially for ankle dorsi-
flexion, due to the lack of stabilisation that the attachment provides. Moreover, the ankle
attachment does not fit tightly within the load cell, which may have resulted in measurement
error. Similar comments have been made previously using the ankle inversion/eversion attach-
ment on the KinCom [54]. Assessment of peak force of the knee extensors and flexors demon-
strated good to excellent reliability and validity however validity of RFD measures for the knee
extensors using both HHDs ranged from moderate to good. This may have been due to the
higher levels of force and power generated in the knee extensors, leading to the assessors having
difficulty in stabilising the HHD during the initial rapid rise in force, consequently impacting
on measures of RFD. Therefore, if the knee extensors are the primary muscle of interest it may
be necessary to consider external bracing during power assessment. Analysis of the SEM for
intra-rater reliability for each device showed small percentages of the mean indicating low mea-
surement error, with RFD higher than peak force values (<10% for peak force except one
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measure and<20% for RFD except for one measure). The MDC results were also higher for
RFD measures compared with peak force (<50% of the mean for RFD except two measures
and<25% for peak force except for two measures). Analysis of the MDC for HHDmeasures of
muscle strength and power may prove more informative in clinical populations than the
healthy participants used in the current study.

The measurement of RFD has been widely used previously with a lack of consensus of
which method is appropriate. After a comparison of various techniques for assessing RFD that
were applicable to a HHD, this study utilised a peak 200ms iterative windowed time period
method to determine peak RFD. Previous work has commented on the arbitrary nature of
determining onset of contraction for calculation of RFD [55]. As such, this study did not deter-
mine the onset of contraction; rather RFD was identified using algorithms calculated from the
first sample recorded to determine the peak RFD across the trial. This method ignores any
erroneous recordings made by placing the HHD on the lower limb and as such the calculation
of RFD will not include these initial recordings. Whilst increasing the duration of the window
in the calculation of RFD may produce higher reliability results, a longer time window may
include unwanted plateaus. We found the 200ms successive time window analysis technique to
be robust to different sources of error during testing, however further research is needed in
clinical populations to verify the findings of the current study.

Comparison of the Hoggan and Lafayette HHDs used in this study revealed no apparent dif-
ferences between the devices in their reliability or validity for either measure of peak force or
RFD. The inter-device reliability indicated that peak force results are interchangeable between
the two different HHDs. Caution is necessary if interchanging RFD results between devices, as
this study demonstrated mixed agreement between HHDs for measures of RFD. Additionally,
both HHDs demonstrated mixed agreement with the KinCom for measures of peak force and
RFD. The lack of agreement between devices for measures of RFD may be due to the different
sampling rates employed by each device. Based on the results of the current study, there can be
no recommendation as to which HHD should be used, with both devices demonstrating similar
reliability and validity. One consideration for the future development of HHDs is the real-time
calculation of RFD. Calculation of RFD on both of the devices chosen for this study currently
requires post-testing analysis. The Hoggan device needs to be wirelessly connected to a com-
puter during testing; with the software interface occasionally losing recorded data during col-
lection (see S1–S5 Files). The Lafayette device stores raw data within the device, which can be
downloaded to a laptop for analysis. After further testing, manufacturers should consider
including RFD as an automated output on their device.

Study Limitations
The sample used in this study was a group of young, healthy, and physically active individuals.
Even with the assessors bracing against a wall, the assessment of the knee extensors and ankle
plantarflexors could not be completed for one male participant. Additionally, as can be seen in
Tables 2 and 3, these two muscle groups recorded much higher strength and power values on
the fixed dynamometer across all participants. It is likely that the assessment of muscle strength
and power would be easier in those with muscle weakness, such as the elderly or those with
neurological impairments. The findings of this study may therefore not be directly generalisa-
ble to some clinical populations. A recent review demonstrated that the reliability of HHDs is
generally lower in healthy populations compared to clinical populations [34]. This could be
due to the difficulties when testing stronger participants or lower inter-subject variability in
healthy populations, compared to clinical. Nonetheless, the inclusion of healthy individuals
does not discount the importance of our study, as normative data is required, albeit not
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normalised to body mass, to allow comparison with healthy populations and therefore estab-
lishing reliability and validity in this group was considered essential.

Conclusions
Hand-held dynamometry is a reliable and valid tool for the assessment of isometric lower limb
muscle strength and power, which may be valuable information particularly in clinical popula-
tions with gait impairments. Assessment of muscle strength and power in clinical populations
using HHDs is warranted to determine the psychometric properties of these devices.
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