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Abstract: The prediction of rate-dependent compressive strength of rocks in dynamic compression
experiments is still a notable challenge. Four machine learning models were introduced and employed
on a dataset of 164 experiments to achieve an accurate prediction of the rate-dependent compressive
strength of rocks. Then, the relative importance of the seven input features was analyzed. The
results showed that compared with the extreme learning machine (ELM), random forest (RF), and the
original support vector regression (SVR) models, the correlation coefficient R2 of prediction results
with the hybrid model that combines the particle swarm optimization (PSO) algorithm and SVR was
highest in both the training set and the test set, both exceeding 0.98. The PSO-SVR model obtained
a higher prediction accuracy and a smaller prediction error than the other three models in terms
of evaluation metrics, which showed the possibility of the model as a rate-dependent compressive
strength prediction tool. Additionally, besides the static compressive strength, the stress rate is the
most important influence factor on the rate-dependent compressive strength of the rock among the
listed input parameters. Moreover, the strain rate has a positive effect on the rock strength.

Keywords: machine learning; rock; rate-dependent compressive strength; SVR; random forest

1. Introduction

Strain rate is one of the most important factors affecting the dynamic properties of
rocks [1]. Especially for engineering projects involving blasting and excavation, the stress
waves generated by blasting are different from the static loads acting on rocks and are
complex dynamic processes. In the blasting analysis of rock tunnels, the dynamic properties
of rocks show obvious strain rate dependence, and the effect of strain rate should be further
considered [2–4]. Many studies have shown that the mechanical properties of rock materials
change significantly as the strain rate increases [5,6]. Therefore, it is of great theoretical
and practical importance to study the compressive strength of rocks under different strain
rate conditions. Moreover, understanding the rate dependence of rock strength is of great
importance to rock engineering design and construction [7,8].

As a key indicator of the mechanical properties of rocks, the current methods for
determining the compressive strength of rocks rely on laboratory tests such as static
compression tests and the Split Hopkinson Pressure Bar (SHPB) test [9,10]. These test
methods investigate the rate dependence of the compressive strength of rocks at low
and high strain rates, respectively. However, these methods are cumbersome and time-
consuming to operate. Moreover, it is difficult to use these test methods to directly study
the compressive strength of rocks at moderate strain rates. The study of the mechanical
properties of rocks at moderate strain rates can be of great help in understanding the
mechanism of excavation-induced geohazards (e.g., rock bursts) [11–13]. Some scholars
have attempted to modify the test setup to control the intermediate strain rate [14], but it
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remains a challenging task. This is because there are many influencing factors, and these
factors are complexly coupled with each other. Although numerical simulations have
been applied in this area [15–17], the accurate prediction of rock strength depends on a
reasonable intrinsic model and reliable model calibration. Therefore, there is an urgent
need for a simple, fast, and reliable intelligent method to predict the compressive strength
of rocks at different strain rates and to facilitate understanding of the rate dependence of
rock strength.

With the development of artificial intelligence, some intelligent methods such as ma-
chine learning have been used to solve some complex engineering problems. In recent
years, machine learning techniques such as artificial neural network (ANN), support vector
machine (SVM), random forest (RF), extreme learning machine (ELM), and other models
have been employed to predict concrete compressive strength and have achieved good
prediction behavior [18–25]. Similarly, some intelligent models have been introduced to
predict the mechanical properties and stability of rocks, with significant progress being
made by numerous scholars [26–34]. For example, Ebrahim, et al. [35] developed a model
tree approach to predict the uniaxial compressive strength and elastic modulus of car-
bonate rocks, which provided better prediction results. Li, et al. [36] utilized the Least
squares support vector machine model to predict the compressive strength and shear
strength of rocks, and the correlation coefficient R2 of the predicted results exceeded 0.99.
Yılmaz, et al. [37] employed an ANN to predict the compressive strength and elastic modu-
lus of rocks. Compared with the conventional statistical model, the ANN network obtained
a higher prediction accuracy. Ehsan, et al. [38] proposed a particle swarm optimization
(PSO) algorithm-based ANN model with four input parameters including point load index,
Schmidt hammer rebound number, P-wave velocity, and dry density, to predict the uni-
axial compressive strength of rocks. Compared with the conventional ANN, the hybrid
optimized model reached higher prediction accuracy with R2 = 0.97. Gupta et al. [39]
employed five machine learning models on 170 samples to predict rock strength, and
the proposed density-weighted least squares twin support vector regression (SVR) model
showed the best predictive performance compared with the other four models in terms of
evaluation indicators. Hany et al. [40] developed two models, random forest and functional
network, to predict the unconstrained compressive strength of rocks using six parameters:
drilling torque, weight on bit, mud pumping rate, stand-pipe pressure, drill string rotating
speed, and the rate of penetration. The model results showed that the developed RF and
functional network models can provide accurate uniaxial compression strength estimations
from drilling data in real-time. The application of the model saves time and costs and
provides data support and guidance to improve well stability.

Although many successful applications have been achieved using methods such as
empirical formulas [41] and intelligent models to estimate the compressive strength of
rocks [42,43], it is undeniable that the relevant research has mainly focused on static com-
pressive strength, less research has been performed on the rate-independent compressive
strength of rocks, and more research is needed to improve the understanding of this prob-
lem. In particular, further analysis is required to understand the compressive strength
of rocks under rate independence to improve the ability to predict the rate dependence
of rock strength. Fortunately, these successful applications provide a research base and
important guidance for the further extension of machine learning model applications to
rock dynamics. To this end, this paper attempts to propose a hybrid model which combines
a PSO algorithm and SVR to predict the rate-independent compressive strength of rocks. In
addition, a comparative analysis with three other models (ELM, random forest, and SVR)
is performed, providing new insights into the rate-dependence of rock strength.

2. Method and Models
2.1. Extreme Learning Machine

ELM is an algorithm based on a single hidden layer feedforward neural network, in
which the input weights and biases are randomly assigned, and the output weights are
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calculated using the Moore–Penrose generalized inverse within the framework of the least-
squares criterion [44–46]. Therefore, ELM has the advantage of fast convergence and is less
likely to fall into local extremes than traditional neural networks based on gradient descent
learning theory [47,48]. The network architecture of ELM is shown in Figure 1. Given a
dataset containing N arbitrary samples (xi, ti), the number of nodes in the input layer is
n and the number of nodes in the output layer is m, where xi = [xi1, xi2, · · · , xin] ∈ Rn,
ti = [ti1, ti2, · · · , tim] ∈ Rm. For a neural network with an activation function g(x) and a
single hidden layer with K hidden nodes, the expression is shown below.

K

∑
i=1

βig(〈wi, xi〉+ bi) = oj j = 1, 2, · · · , N (1)

where wi = [wi1, wi2, · · · , win]
T is the weight vector between the ith hidden node and the

input node; βi = [βi1, βi2, · · · , βin]
T is the weight vector between the ith hidden node and

the output node; bi is the bias of the ith hidden node; 〈wi, xi〉 is the inner product of wi and
x; oj is the output value.
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Figure 1. Extreme Learning Machine Network Structure.

It is known that the learning goal of a single hidden layer neural network is to minimize
the error in the output, i.e., there exists βi, wi, and bi satisfying the following conditions.

K

∑
i=1

βig(〈wi, xi〉+ bi) = tj j = 1, 2, · · · , N (2)

Equation (2) is expressed in matrix form as follows.

Hβ = T (3)

2.2. Random Forest

Random forest is a variant of the bagging integration algorithm to improve the model.
The random forest uses decision trees as the base learner and builds a random forest
model by integrating several decision trees, while the random forest introduces a random
selection of feature attributes in the training process of the decision trees [49,50]. Based on
this mechanism, random forest inherits the advantages of sample perturbation from the
bagging integration algorithm and improves on it by introducing the perturbation strategy
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of a random selection of attributes. Therefore, for the same data set, the double randomness
of the random forest provides a better generalization ability and overfitting resistance. As
shown in Figure 2, the algorithm principle of random forest can be expressed as follows.

Y =
1
N

N

∑
i=1

Fi(X) (4)

where X is the input feature vector, Y is the prediction result, and N is the number of
regression tree models built.
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2.3. Support Vector Regression

Support vector machines can effectively solve classification and complex nonlinear
regression problems [52]. When they are applied to regression problems, the basic idea is
to find an optimal classification surface that minimizes the error of all training samples
from that classification surface [53–55]. Assuming that there is a set of training samples
{(xi, yi), i = 1, 2, · · · , l} ∈ (Rn × R), a linear regression function is established in the high-
dimensional feature space as follows.

f (x) = wφ(x) + b (5)

where φ(x) is a nonlinear mapping function. By finding w as well as b according to the
structural risk minimization principle, the problem of solving the regression function is
transformed into the optimization problem of the function [56,57].

min 1
2

∥∥w2
∥∥+ C

l
∑

i=1
(ξi + ξ∗i )

s.t.


yi − wφ(x)− b ≤ ε + ξi
−yi + wφ(x) + b ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

(6)

where C is the penalty factor. A larger C indicates a larger penalty for samples with a
training error greater than ε; ε specifies the error requirement of the regression function,
and a smaller ε indicates a smaller error of the regression function. ξi and ξ∗i are slack
variables.



Minerals 2022, 12, 731 5 of 13

This optimization problem can be solved by introducing the Lagrange function and
transforming it into a pairwise form. The regression function can eventually be expressed as:

f (x) =
l

∑
i=1

(αi − α∗i )K(xi, x) + b (7)

where K(xi, x) = φ(xi)φ(x) is the kernel function. In this paper, the radial basis function
(RBF) with a wide convergence domain is selected as the kernel function.

2.4. Support Vector Regression with Particle Swarm Optimization

For the SVR model with RBF function, the combined values of C and g have a signifi-
cant effect on the predictive ability of the model. Some intelligent algorithms such as grid
search, genetic algorithm, and PSO algorithm, are used to optimize the model. Considering
the advantages of the PSO algorithm with fewer parameters and higher efficiency, a PSO-
based SVR model is proposed to improve the model performance of the original SVR. The
PSO algorithm can be represented as follows. In addition, the training and testing process
of the hybrid model is shown in Figure 3.{

vk+1
i = ω·vk

i + c1r1(pbestk
i − xk

i ) + c2r2(gbestk
i − xk

i )

xk+1
i = xk

i + vk+1
i

(8)

where ω is the initial weight, k is the number of iterations, vk
i and xk

i are the velocity and
position vectors of the particle, respectively, c1 and c2 are the learning factors, r1 and r2 are
arbitrary values between [0, 1], pbestk

i is the best position passed by the i-th particle, and
gbestk

i is the global best position.
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3. Dataset Description

A total of 164 datasets were collected from the literature [5]. Each data set consists of
seven input parameters which include length, diameter, grain size, bulk density, P-wave
velocity, strain rate, and static compressive strength (SCS). The output is the rate-dependent
compressive strength (CS) of the rocks. The distribution between each input parameter and
output parameter is shown in Figure 4. To further understand the characteristics of the
input parameters, the distribution characteristics of these parameters are listed in Table 1.
For model training and testing, 131 sets of data were randomly selected for the training of
the model, and the remaining data set was used as the test set. For comparison purposes,
the training set and test set will be fixed after the training set has been randomly selected
by the first model. In this way, the training and test sets of the four models are identical.
The model training phase used 10-fold cross-validation.

Table 1. Distribution characteristics of the parameters.

Parameter Length Diameter Grain Size Bulk
Density

P-Wave
Velocity Strain Rate SCS CS

Unit mm mm mm kg/m3 m/s s−1 MPa MPa
Max 70 70 3.5 2850 6651 223 212 352.71
Min 10 2.5 0.03 2278 2437 0.000005 28.6 30.03

Mean 40.43 41.95 0.75 2479.68 3542.99 59.48 87.55 128.14
Median 49.77 49.50 0.23 2384.00 3031.00 56.00 71.91 101.42

Standard
deviation 15.81 18.15 1.07 186.21 1231.89 46.85 56.39 80.23

Coefficient
of variation 0.39 0.43 1.43 0.08 0.35 0.79 0.64 0.63

Kurtosis −0.74 −0.55 1.76 −1.04 0.12 1.16 −0.81 −0.32
Skewness −0.76 −0.62 1.75 0.59 1.33 0.90 0.75 0.91
Pearson

correlation
coefficient

−0.22 0.13 0.54 0.71 0.78 0.16 0.89 1

In addition, three evaluation metrics are introduced for quantification when assess-
ing and comparing the predictive performance of the models. The definitions of these
evaluation metrics are listed in Table 2 [58–61].

Table 2. Definitions of evaluation indexes.

Evaluation Metrics Definition

Correlation coefficient
R2 =

(n
n
∑

i=1
(OeOp)−

n
∑

i=1
Oe

n
∑

i=1
Op)2

[n(
n
∑

i=1
O2

e )− (
n
∑

i=1
Oe)

2
][n(

n
∑

i=1
O2

p)− (
n
∑

i=1
Op)

2
]

Mean absolute error MAE = 1
n

n
∑

i=1

∣∣Oe −Op
∣∣

Mean absolute percentage error MAPE = 1
n

n
∑

i=1

∣∣∣Oe−Op
Oe

∣∣∣× 100%

Where Oe and Op are the true and predicted result of the rate-dependent compressive
strength, respectively.
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4. Model Performance Comparison

After training and testing, the prediction results of the four models are shown in
Figure 5. Moreover, a linear fitting was performed between the predicted results and the
actual values. According to the correlation coefficient R2 provided in Figure 5, it can be seen
that among the four models, the PSO-SVR model achieves the best prediction performance,
followed by the random forest, SVR, and ELM model. Specifically, the PSO-SVR model
presents the best prediction results both in the training and testing phases. For both the
training and test sets, the correlation coefficient R2 of the models exceeded 0.98.

The box line plots of the relative prediction errors for the testing samples are shown in
Figure 6. Compared with the ELM model, the mean prediction relative errors of the other
three models were within 10%. For the PSO-SVR model, the mean value of the prediction
error reached a minimum of 7.944%. To facilitate further comparison of the prediction
performance of different models, Table 3 lists the evaluation metrics for the training and
testing phases of each model. For the PSO-SVR model, the correlation coefficient R2 is the
highest and is close to 1. The other two error metrics are smaller than the other three models,
which confirm the high accuracy, reliability, and generalization ability of the PSO-SVR
model in predicting the rate-dependence compressive strength of rocks.

Table 3. Evaluation indicators of four models.

Model MAE MAPE/% R2

ELM training 12.531 10.620 0.947
ELM test 15.573 12.664 0.946

RF training 9.429 8.411 0.972
RF test 10.312 9.007 0.979

SVR training 10.218 9.871 0.969
SVR test 11.04145 9.278841 0.972

PSO-SVR training 4.9511 4.718 0.992
PSO-SVR test 10.052 7.944 0.980
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5. Relative Importance of Input Parameters

Analyzing the influence degree and relative importance of each influencing parameter
on the output results is important for the prediction of the results. In particular, it is
important to understand the positive or negative effect of each influencing parameter on
the output. Figure 7 shows the relative importance of each influence parameter on the
output results. It can be seen that among the seven influence parameters listed, the static
compressive strength is the most important parameter, with a relative importance of more
than 75%. It is followed by the strain rate, whose relative importance is about 15%. The
remaining five parameters have a smaller degree of influence on the output results. Further,
the effect of each influencing parameter on the output results is analyzed in detail and
presented in Figure 8. Each scatter in Figure 8 represents a rock sample in the data set.
The red color indicates that the parameter is positive for the output, while the blue color
indicates that it is negative for the output. It can be observed that the three parameters,
static compressive strength, strain rate, and bulk density, have a significant positive effect
on the rate-independent compressive strength of rocks. Their increase leads to an increase
in compressive strength.Minerals 2022, 12, x FOR PEER REVIEW 11 of 14 
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6. Conclusions

In this work, four intelligent machine learning models were introduced to predict the
rate-independent compressive strength of rocks. The main findings are summarized below.

(1) All four machine learning models presented in this paper can effectively achieve a
fast and rough estimation of the rate-independent compressive strength of rocks for a
given combination of input parameters. Compared with ELM, the average relative
prediction errors of the random forest, SVR, and PSO-SVR models were all within
10%, while the PSO-SVR model reached a minimum average relative error of 7.944%
for the test set.

(2) The PSO-SVR model could capture the complex nonlinear mapping between multiple
inputs and outputs more accurately than the other two models in terms of the evalua-
tion metrics, and its prediction performance is superior to the other three methods.

(3) Among the seven input parameters mentioned, the static compressive strength and the
strain rate are the two most important variables for the rate-independent compressive
strength of rocks. The three parameters, static compressive strength, strain rate, and
bulk density, have significant positive effects on the rate-independent compressive
strength of rocks. Their increase leads to an increase in compressive strength.
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