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ABSTRACT 

System design studies and detailed radar simulations have identified the utility of space-time 
adaptive processing (STAP) to accomplish target detection in cases where the target Doppler is 
immersed in sidelobe clutter and jamming. A recent US Air Force investment in STAP has 
produced a database of multichannel airborne data, through Rome Laboratory‘s Multichannel 
Airborne Radar Measurement (MCARM) program, to hrther develop STAP architectures and 
algorithms suited to operational environments. An aspect of actual data not typically incorporated 
into simulation scenarios is the nonhomogeneous features of real-world clutter and interference 
scenarios. In this paper we investigate the impact of nonhomogeneous data on the performance of 
STAP. Furthermore, we propose a preliminary scheme to detect and excise nonhomogeneous 
secondary data in the sample covariance estimation, thereby dramatically improving STAP 
performance as shown through a specific example using monostatic MCAKM data. 

1 .O INTRODUCTION 

Current wide-area surveillance (WAS) demands focus on improved detection of low radial velocity and low radar 
cross-section targets by existing WAS platforms. Theoretical studies and computer simulations have identified 
space-time adaptive processing (STAP) as a potentially suitable technique to meet WAS objectives. To support the 
development and validation of STAP, the USAF Rome Laboratory has collected data under the Multichannel 
Airbome Radar Measurement (MCARM) program in collaboration with Westinghouse Electric Corporation. A 
more detailed description of the MCARM database is available in (Fenner, 1996). In this paper we consider the 
practical problem of applying STAP to actual airborne data, taken via the MCAKM sensor. Measurement data, 
particularly data representative of mission-like scenarios, can appear severely nonhomogeneous in range due to 
spatially-varying clutter and interference statistics, exacerbated by array errors, airframe effects, etc. The 
nonhomogeneous characteristics of actual data can degrade STAP performance most directly by corrupting the 
estimation of the sample covariance matrix integral to the computation of the adaptive weights used to cancel clutter 
and interference. 

Fundamentally, STAP is a two-dimensional filtering technique employed to maximize signal-to-clutter-plus-noise 
ratio (SCNR) through the adaptive control of spatial andor Doppler sidelobes. In the optimum case, the linear 
combination of the weighted elements of the spatial-temporal data vector, X,, into the scalar output, Y,, via 

Y, = sHRk’Xk = GkXk 

maximizes SCNR and the probability of detection for gaussian-distributed interference (Brennan, 1973). In (l), s is 
the spatial-temporal steering vector, Rkis the known clutter-plus-noise covariance matrix, and G, are the resulting 
filter weights for range bin, k. In practice, the clucer and interference statistics are never known a priori, requiring 
R,be replaced by the sample covariance matrix, Rk, commonly computed via the maximum-likelihood estimate as 
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The secondary data vectors, Qj ,  are the spatial-temporal data vectors, q.2 from those range cells other than the kth 
range being tested for a target. Implementing (2) in practice requires the selection of K independent and identically 
distributed (iid) secondary data vectors. Selecting at least K=2N iid vectors, where N is the product of spatial 
channels and temporal pulses, yields an average loss ratio of less than 3 dB between the adaptive and optimal 
implementations (Reed, 1974). The challenge in a fielded STAP-based system then becomes finding a sufficient 
quantity of iid secondary data vectors to support the computation of (2). The difficulties associated with adequate 
sample support and non-iid data have been previously recognized by (Wang, 1994), for instance. 

In this paper it is shown that the nonhomogeneous characteristics of actual airborne data can severely degrade 
STAP performance through the corrupted estimate of Rk. We then*propose a simple scheme to detect and excise 
questionable secondary data vectors to improve the estimation of Rk, resulting in dramatically improved detection 
performance in an example employing actual MCARM data. 

2.0 THE EFFECTS OF NONHOMOGENEOUS SECONDARY DATA 

A 

of R, 
fro? 

secondary data vector, Qi, is nonhomogeneous with respect to the data vector, X,, if Q, statistically departs 
X,in the structure of its covariance matrix, thereby violating the iid assumption critical to statistical estimation 
,, the sample covariance matrix of X,. Rather than quantify the preceding definition of "nonhomogeneous", it 

is shown by example that the nonhomogeneous aspects of actual MCARM data can seriously degrade STAP 
capability. Also, it is shown that application of a nonhomogeneity detector aids selection of secondary data to 
compute (2), improving STAP performance and yielding results far exceeding that of digital beamforming (DBF). 

MCARM data is processed for targets both adaptively and with DBF over range bins 270 to 360 (12.5 range bins = 1 
m i ) .  The lowest complexity STAP architecture, Factored Time-Space, is employed solely as a means of illustrating 
the effects of nonhomogeneous data and its impact on the chosen adaptive algorithm. The Factored Time-Space 
method is post-Doppler, adaptive beamforming, with adaptive weights applied to the output of each Doppler filter. 
The Doppler filtering employs 128 pulses with a Hanning window hnction (1 Doppler bin 2 3.9 kts). The first 
implementation of this architecture, hereafter solely referred to as FTS, selects N consecutive range cells on each 
side of the cell under test (CUT), excluding 2 guard cells, as secondary data. This "windowing" about the CUT is 
sensible if one assumes the closest range cells share similar statistical properties to the CUT and hence are 
approximately iid. The second implementation of the Factored Time-Space method, referred to as FTSNH, uses a 
nonhomogeneity detector to sort all secondary data used in FTS over the entire range interval and select the 2N, 
possibly nonconsecutive, secondary data appearing most homogeneous to improve estimation of the underlying 
clutter-plus-noise covariance matrix. This second approach also excludes the current CUT and 2 guard cells on each 
side. All 22 channels of the MCARM sensor are used in a planar 11 over 1 1 array, providing up to 11 adaptive nulls 
in azimuth and 1 adaptive null in elevation. Thus, 2N = 44 range cells are selected for both FTS and FTSNH. 

Figures 1 and 2 compare the detection performance of the FTS and FTSNH approaches for Doppler bins 6 and 
10. A synthetic target has been injected into range bin 290 at Doppler bin 10. Both Doppler bins are in regions with 
the most severe clutter. The figures show the modified sample matrix inversion (MSMI) test statistic versus range 
for the given Doppler. The MSMI test statistic is given as 

As an example, a single coherent processing interval (CPI) of medium pulse repetition frequency (MPRF) 

- 
Xkis the output of the selected Doppler filter for range k and Rk is its covariance matrix estimate. MSMI has an 
embedded constant false alarm rate (CFAR) characteristic, implied by a threshold independent of range, and is 
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equivalent to cell averaging CFAR for this fixed threshold (W. Chen, 1991). Figure 1 shows the F T S N H  
implementation dramatically suppresses clutter to the extent that a potential target at range bin 285 is easily 
identified by a selected, fixed threshold, with a separation of nearly 10 dB from the highest clutter peak. On the 
other hand, there is no way to identify this potential target with the FTS method without nonhomogeneity detection. 
Likewise, Figure 2 shows the FTS-NH approach allows improved detection of the injected target at range bin 290, 
whereas FTS corrupted by nonhomogeneities fails in this regard. Finally, Figure 3 shows the output of DBF for both 
Doppler bins 6 and 10, excluding CFAR processing. It is apparent from Figure 3 that both the potential and injected 
targets will go undetected. 

Therefore, the preceding results show the nonhomogeneous features of actual airbome data may severely degrade 
STAP performance, as shown through a specific example using MCARM data. Furthermore, the results indicate that 
identification and excision of nonhomogeneous data leads to improved covariance estimation and a corresponding 
improvement in STAP detection potential. In the next section we discuss an approach for nonhomogeneity 
detection leading to the adaptive training strategy used to produce the FTS-NH results in this current section. 

3 .O NONHOMOGENEITY DETECTION 

The objective of nonhomogeneity detection is to identify data vectors which depart statistically in covariance 
structure from a reference vector, ideally taken from the CUT, and remove these data vectors from consideration in 
the sample covariance estimation of (2). Nonhomogeneity detection in this paper employs the generalized inner 
product as the distinguishing test statistic. The generalized inner product serves an over-all measure of the 
variability among the components available to estimate R, (P. Chen, 1995). It is a simple scalar measure of the 
covariance structure of a given data vector, X,, and is expressed as 

- - 
E,, = X,"R,'X, ; =,- 8, for R,- Rk (4) 

The preceding choice of the generalized inner product as a nonhomogeneity detector contrasts with the selection of a 
power-based measure, given as p, = X," X,, which only describes fust-order statistical behavior. Two data vectors 
may have very similar powers (inner products), and yet have dissimilar covariance matrices. Figure 4 shows a plot 
of the sample generalized inner product and inner product for Doppler bin 6, normalized by the mean and ranked in 
ascending order. It is observed from the figure that the well-behaved features of the generalized inner product, such 
as moderate dynamic range and an identifiable "homogeneous" region indicated by the flatter-sloped region, lends 
itself to use as a practical nonhomogeneity (or alternatively, homogeneity) detector. 

While the ultimate goal of this research is to select secondary data most homogeneous to the CUT for covariance 
training purposes, this preliminary version of nonhomogeneity detection merely uses (4) to identify the 2N most 
homogeneous secondary data vectors over a range interval. The initial assumption, based on the selected MCARM 
data file, postulates that a better estimation of the underlying clutter-plus-noise covariance suited to a majority of the 
range bins in the selected range interval, can dramatically improve STAP performance. Based on this fairly broad 
assumption, the performance improvement demonstrated in section 2.0 is both outstanding and likely can be 
improved upon fiu-ther. The procedure to implement FTSNH,  yielding the results of section 2.0, is summarized in 
pseudocode as follows: 

for Doppler = I:Nt, %in section 2.0, Nt = 128 -- choose 1 receive direction, eg., broadside 
for k = (rangestart - N):(range-stop + N), Yoneglecting guard cells 

- - 
@ Select range index, I, ,  corresponding to Yi satisfying p ,  < Y, s pz ,-where p, and p2 define the 

"homogeneityAwindow" for the normalized, sorted =:,defined by Y,, roughly centered about 1 .O 
@ Recompute R,using secondary data selected via the chosen range indices from the previous step 
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a Compute N,,, according to (4) for k = (rangestart):(rangestop), the desired range interval 
end; 

end; 

Note that the preceding nonhomogeneity detection scheme described for FTS-NH is applicable to other STAP 
architectures and algorithms. For example, JDL-NH, corresponding to the Joint Domain Localized architecture, is 
easily constructed from the FTS-NH pseudocode example above, and alternative adaptive algorithms such as Kelly's 
GLR are easily substituted for the MSMI algorithm (Wang, 1994). Also, it is noted that the nonhomogeneity 
detection scheme becomes more computationally efficient in light of the matrix inversion lemma (Haykin, 1984), 
allowing for a recursive formulation of the sample covariance matrix inverse. Thus, additional homo6eneous 
secondary data and detected nonhomogeneities may be efficiently added and subtracted to and from Rk' . 

4.0 CONCLUSION 

In this paper we demonstrate that the nonhomogeneous features of actual multichannel airborne data may 
seriously degrade the performance of STAP through a specific example using MCARM data. Degradation in 
performance results ftom poor sample covariance matrix estimates as shown in section 2.0, where it is also shown 
that an enhanced training strategy improves STAP effectiveness immensely. A good covariance estimate requires a 
sufficient quantity of iid secondary data with respect to the range cell being tested for a target. Traditional training 
strategies select secondary data by symmetrically windowing about the CUT, assuming nearest ranges will appear 
most similar in a second-order statistical sense. In section 3.0 we discuss the training approach used herein to better 
estimate the covariance matrix, leading to the dramatically improved STAP results of section 2.0. The superior 
training strategy described in section 3 .O selects secondary data nonconsecutively over a range interval, using the 
generalized inner product as a scalar measure of the variability of available secondary data vectors. Thus, data 
vectors most homogeneous in covariance structure, as measured by the generalized inner product, are selected to 
improve the estimation of the underlying clutter-plus-noise sample covariance matrix over an entire range interval. 
Use of this (non)homogeneity detection scheme is shown to greatly improve STAP performance potential for actual 
airbome data from the MCARM program and is considered an essential step in transitioning STAP to operational 
systems. Future work will concentrate on expanding the (non)homogeneity test to estimate a covariance matrix best 
matched to each individual range cell under test and iterative computation of selected training data. 
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6.0 FIGURES 
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Figure 1. N,,, Vs. Range, Doppler Bin 6, MCARM Data. 
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Figure 2. NMSM Vs. Range, Doppler Bin 10, Injected Target at Range Bin 290, MCARM Data. 

134 



20 

15 

10 

5 

% 
- 0  n 
U z 

-5 

-10 

-1 5 

-20 

Range Bin 

Figure 3. Digital Beamforming (DBF) Output Vs. Range, Doppler Bins 6 and 10, MCARM Data. 
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