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Abstract. Modern-Era Retrospective analysis for Research
and Applications v.2 (MERRA-2), Copernicus Atmosphere
Monitoring Service Operational Analysis (CAMS-OA), and
a high-resolution regional Weather Research and Forecasting
model coupled with chemistry (WRF-Chem) were used to
evaluate natural and anthropogenic particulate matter (PM)
air pollution in the Middle East (ME) during 2015–2016.
Two Moderate Resolution Imaging Spectrometer (MODIS)
retrievals – combined product Deep Blue and Deep Target
(MODIS-DB&DT) and Multi-Angle Implementation of At-
mospheric Correction (MAIAC) – and Aerosol Robotic Net-
work (AERONET) aerosol optical depth (AOD) observations
as well as in situ PM measurements for 2016 were used for
validation of the WRF-Chem output and both assimilation
products.

MERRA-2 and CAMS-OA assimilate AOD observations.
WRF-Chem is a free-running model, but dust emission in
WRF-Chem is tuned to fit AOD and aerosol volume size dis-
tributions obtained from AERONET. MERRA-2 was used
to construct WRF-Chem initial and boundary conditions
both for meteorology and chemical and aerosol species. SO2
emissions in WRF-Chem are based on the novel OMI-HTAP
SO2 emission dataset.

The correlation with the AERONET AOD is highest for
MERRA-2 (0.72–0.91), MAIAC (0.63–0.96), and CAMS-
OA (0.65–0.87), followed by MODIS-DB&DT (0.56–0.84)
and WRF-Chem (0.43–0.85). However, CAMS-OA has a rel-
atively high positive mean bias with respect to AERONET

AOD. The spatial distributions of seasonally averaged AODs
from WRF-Chem, assimilation products, and MAIAC are
well correlated with MODIS-DB&DT AOD product. MA-
IAC has the highest correlation (R = 0.8), followed by
MERRA-2 (R = 0.66), CAMS-OA (R = 0.65), and WRF-
Chem (R = 0.61). WRF-Chem, MERRA-2, and MAIAC un-
derestimate and CAMS-OA overestimates MODIS-DB&DT
AOD.

The simulated and observed PM concentrations might dif-
fer by a factor of 2 because it is more challenging for the
model and the assimilation products to reproduce PM con-
centration measured within the city. Although aerosol fields
in WRF-Chem and assimilation products are entirely con-
sistent, WRF-Chem is preferable for analysis of regional
air quality over the ME due to its higher spatial resolu-
tion and better SO2 emissions. The WRF-Chem’s PM back-
ground concentrations exceed the World Health Organiza-
tion (WHO) guidelines over the entire ME. Mineral dust is
the major contributor to PM (≈ 75 %–95 %) compared to
other aerosol types. Near and downwind from the SO2 emis-
sion sources, nondust aerosols (primarily sulfate) contribute
up to 30 % to PM2.5. The contribution of sea salt to PM
in coastal regions can reach 5 %. The contributions of or-
ganic matter, black carbon and organic carbon to PM over
the Middle East are insignificant. In the major cities over the
Arabian Peninsula, the 90th percentile of PM10 and PM2.5
(particles with diameters less than 10 and 2.5 µm, respec-
tively) daily mean surface concentrations exceed the corre-
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sponding Kingdom of Saudi Arabia air quality limits. The
contribution of the nondust component to PM2.5 is < 25 %,
which limits the emission control effect on air quality. The
mitigation of the dust effect on air quality requires the de-
velopment of environment-based approaches like growing
tree belts around the cities and enhancing in-city vegetation
cover. The WRF-Chem configuration presented in this study
could be a prototype of a future air quality forecast system
that warns the population against air pollution hazards.

1 Introduction

Particulate matter (PM) is a complex mixture of sea salt,
sulfate, black carbon, organic matter, and mineral dust, sus-
pended in the air. The dramatic increase in the level of air pol-
lution in developing countries over the last decades is forced
by rapid economic and population growth, burning of fos-
sil fuels, construction, and agricultural activities (Janssens-
Maenhout et al., 2015). However, the primary cause of air
pollution in the Middle East (ME) is mineral dust, and it is
on the rise (Klingmüller et al., 2016). Along with Asia and
Africa, the ME significantly contributes to global dust emis-
sions, which are in the range of 1000–2000 Tg yr−1 (Zen-
der et al., 2004). According to Prospero et al. (2002), the
Middle East and North Africa (MENA) regions account for
about half of global dust emissions. By integrating surface
emissions in MERRA-2 reanalysis, we found that the total
global dust emission averaged over the 2015–2016 period is
about 1600 Tg yr−1, right in the middle of the Zender et al.
(2004) estimate. The dust emission from our simulation do-
main (see Fig. 1) that covers the ME and nearby areas is
about 500 Tg yr−1, contributing ≈ 30 % to the global dust
emission budget. Furthermore, frequent inflows of pollutants
from Europe, Africa, and India worsen the air quality over
the Arabian Peninsula (Jish Prakash et al., 2015; Kalender-
ski et al., 2013; Notaro et al., 2013; Reid et al., 2008; Mo-
halfi et al., 1998; Kalenderski and Stenchikov, 2016; Parajuli
et al., 2019). Because of the large amount of dust, the ME
is one of the most polluted areas in the world. Located in
the center of the northern subtropical dust belt, the Arabian
Desert is the third-largest (after the Sahara and the East Asian
deserts) region of dust generation, where dust plays a signif-
icant role in controlling regional climate (Cahill et al., 2017;
Banks et al., 2017; Jish Prakash et al., 2016; Farahat, 2016;
Kalenderski and Stenchikov, 2016; Munir et al., 2013; Al-
ghamdi et al., 2015; Lihavainen et al., 2016; Anisimov et al.,
2017; Osipov and Stenchikov, 2018).

In addition to natural dust aerosols, the ME receives high
concentrations of anthropogenic PM (Karagulian et al., 2015;
Al-Taani et al., 2019; Alharbi et al., 2015; Khodeir et al.,
2012). The most important anthropogenic aerosol in ME is
sulfate, with SO2 as a precursor; the contributions of other
types of aerosols in PM – sea salt, organic matter, and black

Figure 1. Simulation domain with marked locations of the air qual-
ity monitoring stations (AQMSs) and Aerosol Robotic Network
(AERONET) sites.

carbon – are of lesser importance in the ME (Randles et al.,
2017). The ME emits about 10 % of the total global anthro-
pogenic SO2 (Klimont et al., 2013). SO2 produced in the
course of power generation, water desalination, and oil re-
covery operations (Al-Jahdali and Bisher, 2008) is converted
photochemically into sulfate aerosol, which contributes to
PM and has significant adverse effects on human health
(Lelieveld et al., 2015). Ukhov et al. (2020b) simulated SO2
transport and distribution over the Middle East using the
high-resolution WRF-Chem (Weather Research and Fore-
casting model coupled with chemistry) model and demon-
strated high surface concentrations of SO2 along the west and
east coasts of the Arabian Peninsula.

The impact of aerosols on air quality is characterized
by near-surface concentrations of PM, which comprise both
PM10 and PM2.5 (particles with diameters less than 10 and
2.5 µm, respectively). Extended exposure to PM may cause
cardiovascular and respiratory disease, lung cancer, and pre-
mature mortality on a global scale (Lelieveld et al., 2015).
According to the WHO, outdoor air pollution caused 4.2 mil-
lion premature deaths worldwide in 2016 (WHO, 2018). To
protect human health and the environment, the WHO (WHO,
2006) and the National Agencies, e.g., the United States En-
vironmental Protection Agency (US EPA; USEPA, 2010),
European Commission (EC; EUEA, 2008), and Kingdom of
Saudi Arabia Presidency of Meteorology and Environment
(KSA-PME; PME, 2012), issued the air quality regulations
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Table 1. Air quality regulations for PM2.5 and PM10 prescribed by
the WHO, US EPA, EC, and KSA-PME (µg m−3).

Aver. WHO US EPA EC KSA-PME
period

PM2.5 24 h 25 351 – 35
1 year 10 152 25 15

PM10 24 h 50 1504 503 340
1 year 20 – 40 80

1 98th percentile, averaged over 3 years. 2 Annual mean, averaged over
3 years. 3 35 permitted exceedances per year. 4 Not to be exceeded more than
once per year on average over 3 years.

for PM that are presented in Table 1. The WHO regulations
are the strictest, while the KSA-PME regulations are the soft-
est.

Global satellite observations of aerosol optical depth
(AOD) inform about vertically integrated aerosol loading in
an entire atmospheric column. But the near-surface PM con-
centration cannot be observed from space. These measure-
ments could be conducted only in situ in a limited num-
ber of locations. Along with instrumental observations, mod-
ern data assimilation products provide valuable information
about AOD and near-surface PM concentration even in areas
where satellite sensors are unreliable due to factors such as
the high reflectivity of land surfaces (Shi et al., 2011). As-
similation products improve the aerosol total column load-
ings through the assimilation of observed AOD but are not
capable of assimilating the aerosol vertical structure and
chemical composition. There are two well-known data as-
similation products that assimilate atmospheric constituents:
MERRA-2 (Randles et al., 2017; Buchard et al., 2017) from
the National Aeronautics and Space Administration (NASA)
Goddard Space Flight Center (GSFC), and the Coperni-
cus Atmosphere Monitoring Service Operational Analysis
(CAMS-OA; Inness et al., 2019a; Flemming et al., 2015; In-
ness et al., 2015), from the European Centre for Medium-
Range Weather Forecasts (ECMWF). These data assimila-
tion products adequately reproduce AOD and PM concen-
trations in different regions of the world (Provençal et al.,
2017; Buchard et al., 2017; Cesnulyte et al., 2014; Cuevas
et al., 2015). Provençal et al. (2017), for example, tested PM
surface concentrations from the MERRA Aerosol Reanal-
ysis (predecessor of MERRA-2) against observations over
Europe. Buchard et al. (2017) evaluated MERRA-2 surface
PM2.5 on the global scale and over the continental United
States. Excessive validation of the Monitoring Atmospheric
Composition and Climate (MACC) reanalysis (predecessor
of CAMS) has been conducted by Cesnulyte et al. (2014),
who compared the model AOD with the Aerosol Robotic
Network (AERONET) observations. Cuevas et al. (2015)
evaluated atmospheric mineral dust from the MACC reanaly-
sis over the MENA region for 2007–2008 using satellite and

ground-based observations. MERRA-2 and CAMS-OA are
global and have a relatively low spatial resolution (in com-
parison with the regional models), which diminishes their
ability to resolve fine-scale regional spatial features. Like
any other model, MERRA-2 and CAMS-OA use emission
inventories of anthropogenic pollutants that may be outdated
and incomplete, especially in rapidly developing parts of the
world, like the ME region (McLinden et al., 2016). SO2 emis-
sions used in MERRA-2 and CAMS-OA, for example, differ
by 45 %–50 % in some ME regions (Ukhov et al., 2020b).

In this study, we evaluate aerosol outputs from MERRA-
2, CAMS-OA, and WRF-Chem over the ME against satellite
and ground-based AOD observations as well as in situ PM2.5
and PM10 measurements during the 2015–2016 period, and
we assess air pollution over the ME focusing on the following
science questions:

1. How accurately do WRF-Chem, MERRA-2, and
CAMS-OA capture the abundance of dust aerosol, its
volume size, and its spatial distributions over the ME in
comparison with AERONET and satellite observations?

2. How accurately do WRF-Chem, MERRA-2, and
CAMS-OA capture PM surface concentrations com-
pared with in situ measurements?

3. What are the contributions of dust, sea salt, sulfate,
black carbon, and organic matter in PM surface concen-
trations?

4. What is the overall impact of PM pollution on air quality
over the ME region and in the major ME cities?

The paper is organized as follows: Sect. 2 describes the
observational datasets used in this study. Section 3 character-
izes data assimilation products. In Sect. 4, the WRF-Chem
model setup is described. In Sect. 5, the capabilities of WRF-
Chem, MERRA-2, and CAMS-OA to simulate dust aerosol
abundance over the ME are compared; the PM spatial distri-
butions and PM air pollution in the major ME cities obtained
from the WRF-Chem simulations are also discussed. Con-
clusions are presented in Sect. 6.

2 Observational datasets

To evaluate the data assimilation products and WRF-Chem
output, we use Moderate Resolution Imaging Spectrometer
(MODIS) AOD retrievals, ground-based AERONET AOD
observations, and aerosol volume size distribution retrievals
as well as in situ measurements of PM surface concentra-
tions.

2.1 AERONET

AERONET comprises more than 1000 observation sites
equipped with CIMEL sunphotometers and PREDE skyra-
diometers manufactured in France by CIMEL and in Japan
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by PREDE. They measure direct sun and sky radiances at
eight wavelengths (340, 380, 440, 500, 670, 870, 940, and
1020 nm) every 15 min during daylight (Holben et al., 1998).
In 2012 we established the KAUST Campus site, which
is currently the only permanently operational AERONET
site in Saudi Arabia. For this study we have chosen three
AERONET sites (KAUST Campus, Mezaira, and Sede
Boker; see Fig. 1) that routinely collected data in 2015–2016
and are located within our domain. We utilized level 2.0
(cloud-screened and quality-assured) AERONET AOD data.
To facilitate comparison with the model output, the 550 nm
AOD is calculated using the following relation:

τλ

τλ0

=

(

λ

λ0

)−α

, (1)

where α is the Ångström exponent for the 440–675 nm wave-
length range provided by AERONET, τλ is the optical thick-
ness at wavelength λ, and τλ0 is the optical thickness at the
reference wavelength λ0. From here forward, we presume
that AOD is given or calculated at 550 nm.

In addition to direct observations of AOD, the AERONET
retrieval algorithm provides column-integrated aerosol vol-
ume size distribution (AVSD) dV/dlnr (µm3 µm−2) on 22
logarithmically equidistant discrete points in the range of
radii between 0.05 and 15 µm (Dubovik and King, 2000).
We use these retrievals to evaluate the AVSDs calculated by
WRF-Chem, CAMS-OA, and MERRA-2.

2.2 MODIS

MODIS instruments on-board the NASA TERRA and
AQUA satellites provide aerosol properties over both land
and ocean with near-daily global coverage. The standard
MODIS AOD aerosol product combines two retrieval algo-
rithms: (1) the MODIS Dark Target (DT) algorithm (Kauf-
man et al., 1997) is used over the ocean and dark areas with
sufficient vegetation; (2) the Deep Blue (DB) algorithm is
used over bright desert surfaces of the Sahara and the ME.
From this combined product (MODIS-DB&DT v6.1), we use
level 2 data for AOD at 550 nm from the daily dataset at
10 km spatial resolution, downloaded from https://ladsweb.
modaps.eosdis.nasa.gov/about/purpose (last access: 5 Jan-
uary 2020) (Levy and Hsu, 2015).

Recently, a new MODIS AOD product became avail-
able that was obtained using the Multi-Angle Implementa-
tion of Atmospheric Correction (MAIAC) algorithm (Lya-
pustin et al., 2018). This algorithm uses time series analysis
and image processing to derive the surface bidirectional re-
flectance function at fine spatial resolution. MAIAC uses em-
pirically tuned, spatially varying aerosol properties derived
from the AERONET climatology and provides AOD at 470
and 550 nm with 1 km spatial resolution over land globally.
We include the new MAIAC product (version 6, level 2) in
the comparison between simulated and retrieved AODs.

2.3 Surface in situ PM observations

To test the model-produced PM concentrations, we use
observations conducted by the air quality monitoring sta-
tions (AQMSs) that measure surface concentrations of PM2.5
and PM10 in Riyadh, Jeddah, and Dammam (megacities of
Saudi Arabia; see Fig. 1). Observations are available start-
ing from 2016. The measurements were conducted by the
Saudi Authority for Industrial Cities and Technology Zones
(MODON). MODON uses an MP101M analyzer to contin-
uously detect PM2.5 and PM10 concentrations by measuring
the absorption of low-energy β radiation that is proportional
to the mass of aerosol particles independently of their physic-
ochemical nature (measurement method ISO 10473). The
PM2.5 and PM10 measurement error is ±5 %. The system sat-
isfies the European Standard EN 12341 and US EPA 40CFR
part 53 for the continuous monitoring of PM10 and EN 14907
for the continuous monitoring of PM2.5. The PM measure-
ments are conducted every 15 min, and collected data are
transmitted in real-time to servers at MODON for process-
ing and storage. To provide confidence in the operational sta-
tus of each AQMS, a comprehensive physical audit is con-
ducted quarterly by Ricardo-AEA Ltd, (https://www.ctc-n.
org/network/network-members/ricardo-aea-ltd, last access:
5 January 2020).

3 Data assimilation products

MERRA-2 and CAMS-OA assimilate satellite observations
to provide aerosol abundance and air quality data globally.
MERRA-2 also assimilates AERONET AODs. In contrast,
WRF-Chem is a free-running model and does not assimilate
observations.

3.1 MERRA-2

MERRA-2 (https://gmao.gsfc.nasa.gov/reanalysis/
MERRA-2, last access: 5 January 2020) provides meteoro-
logical and atmospheric composition fields on 0.625◦ × 0.5◦

latitude–longitude grids and 72 terrain-following hybrid σ–p

model layers (Randles et al., 2017; Buchard et al., 2017).
The pressure at the model top equals 0.01 hPa. MERRA-2
uses the Goddard Earth Observing System version 5 (GEOS-
5) atmospheric model (Rienecker et al., 2008), which is
interactively coupled to the Goddard Global Ozone Chem-
istry Aerosol Radiation and Transport (GOCART) model
Chin et al., 2002, 2014; i.e., it takes into account the effects
of aerosols on radiation and model dynamics. This model
simulates dust and sea salt in five size bins (see Table 2),
SO2, sulfate, organic and black carbon (hydrophobic and
hydrophilic), O3, CO, dimethyl sulfide (DMS), and methane
sulfonic acid (MSA). The dust density is 2600 kg m−3 for all
sizes. Dust and sea salt emissions are calculated in the model
depending on the near-surface wind. The dust source func-
tion is taken from Ginoux et al. (2001). For anthropogenic
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emissions, MERRA-2 employs the EDGAR-4.2 (Janssens-
Maenhout et al., 2013) emission inventory available on a
0.1◦ × 0.1◦ grid. MERRA-2 assimilated AOD at 550 nm
from the Advanced Very High-Resolution Radiometer
(AVHRR; Heidinger et al., 2014) over the oceans until 2002.
Since 2000 MERRA-2 has been assimilating MODIS and
Multiangle Imaging Spectroradiometer (MISR; Kahn et al.,
2005) data over land and ocean. Both instruments are on
the TERRA satellite, which has an equatorial overpass at
10:30 UTC, while the AVHRR has mostly orbited with an
afternoon equatorial crossing time. Therefore MERRA-2
continued using AVHRR data over the ocean until 2002,
when the AQUA satellite was launched. Since AQUA has an
orbit with the Equator overpass at 14:30 UTC, AVHRR data
were no longer needed for coverage. We have to mention
that MERRA-2 assimilates specially processed MODIS
observations, not the standard MODIS-DB&DT aerosol
product. It also assimilates AERONET AODs (Randles
et al., 2017).

3.2 CAMS-OA

CAMS-OA (https://atmosphere.copernicus.eu/, last access:
5 January 2020) has been conducted in almost real time
since July 2012. The CAMS-OA product had a resolution
of 0.8◦ ×0.8◦ before 21 June 2016 and 0.4◦ ×0.4◦ after that,
with 60 vertical levels. It employs the ECMWF aerosol data
assimilation system developed within the Integrated Forecast
System (IFS; Morcrette et al., 2009; Benedetti et al., 2009).
The extended version of the Carbon Bond chemical mecha-
nism 5 (CB05; Yarwood et al., 2005) is implemented in the
IFS (Flemming et al., 2015). CB05 describes tropospheric
chemistry with 54 species and 126 reactions. The chemistry
scheme is coupled with the aerosol module.

CAMS-OA simulates five aerosol species: dust, sea salt,
sulfate, organic carbon, and black carbon. To calculate dust
and sea salt, it uses three dust bins (see Table 2). The dust
density is 2600 kg m−3 for all bins. Emissions of mineral dust
and sea salt depend on simulated near-surface wind speed.
Dust emission is parameterized following Marticorena and
Bergametti (1995), with the source function adopted from
Ginoux et al. (2001). SO2 oxidation into sulfate aerosol is pa-
rameterized using a prescribed latitude-dependent e-folding
timescale ranging from 3 d at the Equator to 8 d at the poles.
The anthropogenic emissions for the chemical species are
taken from the MACCity inventory (Granier et al., 2011),
which is available on a 0.5◦ × 0.5◦ grid and covers the pe-
riod 1960–2010. CAMS-OA assimilates MODIS AQUA and
TERRA AODs. It has been using observations from Collec-
tion 5 since 2009 and Deep Blue since 2015.

4 WRF-Chem

To calculate fine-resolution PM and sulfate fields, we
use the Weather Research and Forecasting (WRF) model
(Skamarock et al., 2005) coupled with chemistry (WRF-
Chem v3.7.1; Grell et al., 2005). The WRF-Chem is used
for prediction and simulation of weather, air quality, and
dust storms, accounting for the aerosol effect on radiation.
WRF-Chem can be configured with one of the few gas-
phase chemical mechanisms, photolysis, and aerosol param-
eterization models. WRF-Chem has been widely used for
air quality simulations in different parts of the globe: East
Asia (Wang et al., 2010), North America (Kim et al., 2006;
Chuang et al., 2011), Europe (Forkel et al., 2012; Ritter et al.,
2013), South America (Archer-Nicholls et al., 2015), and the
Middle East (Parajuli et al., 2019). To reduce the clock time
of our 2-year calculations, we simulated each month of the
2015–2016 period separately. Each simulation starts from the
last week of the previous month. This time is considered a
spin-up and is excluded from postprocessing. The simula-
tion domain, shown in Fig. 1, is centered at 28◦ N, 42◦ E,
and a 10km × 10km horizontal grid (450 × 450 grid nodes)
is employed. The vertical grid comprises 50 vertical levels
with enhanced resolution closer to the ground, comprising 11
model levels within the near-surface 1 km layer. The model
top boundary is set at 50 hPa.

To improve the representation of the meteorological fields,
we apply spectral nudging (Miguez-Macho et al., 2004)
above the planetary boundary layer (PBL; > 5.0 km) to hor-
izontal wind components (U and V ) toward the MERRA-2
wind field. The nudging coefficient for U and V is set to be
0.0001 s−1. We only nudge waves with wavelengths longer
than 450 km. This allows us to keep the large-scale motions
close to reanalysis and leave the resolved small-scale, high-
frequency features unaffected.

The aerosol and chemistry initial and boundary conditions
(IC&BC) are calculated using MERRA-2 output using the
newly developed Merra2BC interpolation utility (Ukhov and
Stenchikov, 2020). To be consistent with aerosol and chem-
istry IC&BC, we also define the meteorological IC&BC us-
ing MERRA-2 output (see Appendix A1).

The following set of physical parameterizations was used
in WRF-Chem runs. The Unified Noah land surface model
(sf_surface_physics = 2) and the Revised MM5 Monin-
Obukhov scheme (sf_sfclay_physics = 1) are chosen to rep-
resent land surface processes and surface layer physics. The
Yonsei University scheme is chosen for PBL parameteriza-
tion (bl_pbl_physics = 1). The WRF single-moment micro-
physics scheme (mp_physics = 4) is used for the treatment of
cloud microphysics. The New Grell scheme (cu_physics =

5) is used for cumulus parameterization. The Rapid Ra-
diative Transfer Model (RRTMG) for both shortwave
(ra_sw_physics = 4) and longwave (ra_lw_physics = 4) ra-
diation is used for radiative transfer calculations. Only the
aerosol direct radiative effect is accounted for. More details
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Table 2. Radii ranges (µm) of dust and sea salt bins used in the GOCART model (WRF-Chem, MERRA-2) and in CAMS-OA.

Bin

1 2 3 4 5

CAMS-OA dust 0.03–0.55 0.55–0.9 0.9–20.0 – –
CAMS-OA sea salt 0.03–0.5 0.5–5.0 5.0–20.0 – –

GOCART dust 0.1–1.0 1.0–1.8 1.8–3.0 3.0–6.0 6.0–10.0
GOCART sea salt 0.03–0.1 0.1–0.5 0.5–1.5 1.5–5.0 5.0–10.0

on the physical parameterizations used can be found at http:
//www2.mmm.ucar.edu/wrf/users/phys_references.html (last
access: 5 January 2020).

4.1 Gas-phase chemistry and aerosols

To calculate the atmospheric chemistry within WRF-Chem,
we employ the Regional Atmospheric Chemistry Mechanism
(RACM; Stockwell et al., 1997), containing 77 species and
237 reactions, which include 23 photolysis reactions but no
heterogeneous chemistry. The RACM chemical module is
embedded into WRF-Chem using the Kinetic PreProcessor
(KPP; Damian et al., 2002). The role of the KPP is to inte-
grate the system of stiff, nonlinear ordinary differential equa-
tions, which represents the specified set of chemical reac-
tions. The photolysis rates are calculated on-line according
to Madronich (1987; phot_opt = 1). Similar to MERRA-2,
the GOCART chemistry module is used to calculate SO2 to
sulfate oxidation (Chin et al., 2002, 2014) by the hydroxyl
radical OH, whose abundance is interactively simulated by
the RACM.

We use the novel OMI-HTAP SO2 emission dataset (Liu
et al., 2018) based on the combination of distributed SO2
emissions from residential and transportation sectors, taken
from the HTAP-2.2 inventory (Janssens-Maenhout et al.,
2015) with the catalog of the strong (> 30 kt yr−1) SO2 point
emissions (Fioletov et al., 2016) built using satellite obser-
vations by the Ozone Monitoring Instrument (OMI; Levelt
et al., 2006; Li et al., 2013). The catalog contains more than
500 point sources of industrial origin, some of which are not
present in the widely used EDGAR-4.2 and HTAP-2.2 emis-
sion datasets. For example, 14 SO2 point emissions located
in the ME that were previously unaccounted for (mostly
in the Arabian Gulf) were detected, most of which are re-
lated to the oil and gas industry. OMI-HTAP divides SO2
emissions into surface and elevated ones. We distribute the
surface SO2 emissions with a constant mixing ratio in the
0–1000 m layer and elevated emissions in the 120–1000 m
layer. All other constituents (other PM from biogenic and
fossil components, black and organic carbon, etc.), includ-
ing SO2 shipping emissions, are taken from the HTAP-2.2
inventory and are treated as surface emissions. OMI-HTAP
SO2 emissions are provided on a 0.1◦ × 0.1◦ grid (Liu et al.,
2018). We conservatively interpolated them on the WRF-

Chem 10km × 10km grid. See Ukhov et al. (2020b) for de-
tails.

To calculate aerosols we employ the GOCART (Chin
et al., 2002) aerosol model (chem_opt = 301). It is the
same microphysical model as that used in MERRA-2 (see
Sect. 3.1). Dust and sea salt size distributions in WRF-Chem
are approximated by the same five dust and sea salt size bins
as those in MERRA-2 (Table 2). However, only the last four
“salt” bins in Table 2 are used in WRF-Chem as the first bin
appears to be very poorly populated. Dust density is assumed
to be 2500 kg m−3 for the first dust bin and 2650 kg m−3 for
dust bins 2–5. Emission of sea salt is calculated according to
Gong (2003). Dust emission from the surface is calculated
using the GOCART emission scheme Ginoux et al. (2001;
dust_opt = 1). Dust emission mass flux, Fp (µg m−2 s−1), in
each dust bin p = 1,2, . . .,5 is defined by the relation

Fp =

{

CSspu2
10 m (u10 m − ut) , if u10 m > ut

0, otherwise
(2)

where C (µg s2 m−5) is a spatially uniform factor which con-
trols the magnitude of dust emission flux; S is the spatially
varying topographic source function (Ginoux et al., 2001)
that characterizes the spatial distribution of dust emissions;
u10 m is the horizontal wind speed at 10 m height; ut is the
threshold velocity, which depends on particle size and sur-
face wetness; and sp is a fraction of dust mass emitted into
dust bin p,

∑

sp = 1.
To avoid natural dust emission in urban areas, we use the

built-in WRF-Chem of the U.S. Geological Survey (USGS)
24-category land use dataset (Anderson, 1976). We modify
the source function S using the following expression:

S′ = (1.0 − URBAN_MASK) · S, (3)

where S′ is the modified topographic source function, and
URBAN_MASK is the USGS “Urban and Built-up Land”
mask field. It has the sense of a fraction of urban area
in a grid cell and ranges from 0 to 1. Grid cells with
URBAN_MASK = 1 do not produce natural dust emissions.
We do not account for anthropogenic dust emissions within
cities, and we therefore potentially underestimate urban dust
pollution.

As in our previous studies (Kalenderski et al., 2013;
Jish Prakash et al., 2015; Anisimov et al., 2017), we tune
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dust emissions to fit the AOD from the AERONET stations
located within the domain. For this purpose, the factor C

from Eq. (2) has been adjusted to achieve the best agreement
between simulated and observed AOD at the KAUST Cam-
pus, Mezaira, and Sede Boker AERONET sites (see Fig. 1).
Assuming that factor C does not depend on time and geo-
graphical coordinates, we can only tune the annual average
AOD bias. Both simulations and observations represent the
total AOD with contributions from all types of aerosols. Be-
cause dust dominates all other aerosols in the ME, we choose
to tune only the dust emissions. Obtained during test runs,
a C value of 0.5 is kept constant in all subsequent produc-
tion runs. We also tune sp from Eq. (2) to better reproduce
the AVSDs provided by the AERONET inversion algorithm.
This tuning and the comparisons of AOD and AVSDs from
the assimilation products and WRF-Chem simulations are
discussed in detail below.

In situ air quality observations in the Middle East are
scarce. It is one of the known problems for air quality re-
search in this area. Things are simplified a bit by the fact
that in the ME, dust dominates aerosol pollution. Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO; Vaughan et al., 2004), for example, records
dust in 95 % of the profiles (Osipov et al., 2015). The ef-
fect of nitrates, ammonia, and organics on AOD and PMs
is insignificant; therefore, the employed aerosol–chemical
scheme (GOCART-RACM) is adequate for the ME condi-
tions. To support this conclusion, we have conducted labo-
ratory analysis of the chemical composition of soil and dust
deposition samples that show little presence of organics and
ammonium (Jish Prakash et al., 2016; Engelbrecht et al.,
2017). According to Engelbrecht et al. (2017), in 2015, the
annual average weight percentages of soluble ions of ammo-
nium (NH4) and sulfate in deposition samples taken at four
sites at the KAUST Campus are 0.05 % and 2.513 %, respec-
tively. This means that available ammonium may neutralize
at a maximum of 5 % of sulfate mass. The actual contribu-
tion of ammonium sulfate should be lower as some ammo-
nium may also be bound as ammonium nitrate, ammonium
phosphate, or ammonium chloride.

4.2 WRF-Chem code modification

We have corrected the source code of the WRF-Chem v3.7.1
with the GOCART aerosol module in several places. These
corrections were implemented in the WRF-Chem v4.1.3 of-
ficial release. We evaluate how they change the results in
Ukhov et al. (2020a). Here we only briefly discuss the intro-
duced changes and their effects. Firstly, the diagnostic output
of PM concentrations was corrected because contributions
of the individual dust and sea salt bins were incorrectly cal-
culated. Therefore, PM2.5 surface concentrations were erro-
neously underestimated by 7 %, while PM10 surface concen-
trations were overestimated by 5 %. Secondly, we found that
the contribution of fine dust particles with radii < 0.46 µm

was omitted in the calculation of AOD; AOD was conse-
quently underestimated by 25 %–30 %. This led to an overes-
timation of the dust emission flux because we force the sim-
ulated AOD to match the AERONET observations. Thirdly,
we fixed the dust and sea salt gravitational settling subroutine
since the calculations of mass fluxes of settling particles did
not initially account for changes in air density. Due to this
error, the total mass of dust and sea salt aerosols increased,
violating mass conservation.

5 Results

5.1 Regional climate and circulation

The ME is one of the hottest and driest regions on the Earth.
Summer in the ME is long and hot with little precipitation.
Precipitation mainly occurs in the southwest of the Arabian
Peninsula. Winter is mild, with rainfall being mostly associ-
ated with cold fronts and cyclones propagating from the east-
ern Mediterranean (Climate.com, 2018). Emission and trans-
port of dust are driven by winds. Emission and deposition of
dust are also sensitive to soil moisture and precipitation (Fur-
man, 2003; Shao, 2008; Yu et al., 2015). However, because
the ME is an arid region, the soil moisture and precipitation
effects are insignificant.

Figure 2 shows contours of sea level pressure, topographic
source function S (Ginoux et al., 2001), and seasonally
(2015–2016) averaged wind speed barbs at 10 m height over
the ME during winter (DJF) and summer (JJA) from WRF-
Chem simulations. Over northeast Africa in winter (see
Fig. 2a), the strong pressure gradient between the Red Sea
trough and the stationary high-pressure system over Egypt
predominantly generates moderate northeasterly winds (up
to 10 m s−1). Therefore in winter, dust storms occur more
frequently in the west of the Arabian Peninsula. Over the
central and eastern Arabian Peninsula and the eastern part
of the ME, winds are relatively weak and do not have a clear
direction. However, cold fronts generated by Mediterranean
cyclones can cause dust storms and dust transport to central
regions of the Arabian Peninsula.

In summer (see Fig. 2b) the high-pressure system over
the eastern Mediterranean and low-pressure system over the
Arabian Gulf promote moderate north-northwesterly winds
known as shamals (Yu et al., 2016; Hamidi et al., 2013),
which dominate over the central part of the Arabian Penin-
sula. Shamals are the primary drivers of dust storm events
over this area (Yu et al., 2016; Shao, 2001; Middleton, 1986;
Goudie and Middleton, 2006; Notaro et al., 2015). Shamals
bring dust to the Arabian Gulf and the north and central part
of Saudi Arabia from the Tigris–Euphrates basin of Syria and
Iraq (Anisimov et al., 2018).

Figure 3 shows wind speed seasonally averaged for 2015–
2016 at 10 m from MERRA-2, CAMS-OA, and WRF-Chem
during winter (DJF) and summer (JJA). WRF-Chem spatial
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Figure 2. Seasonally averaged (2015–2016) wind barbs (m s−1) at 10 m, sea level pressure (contours), and erodibility function (shading;
Ginoux et al., 2001). (a) Winter (DJF), (b) Summer (JJA).

Figure 3. Seasonally averaged (2015–2016) wind speed at 10 m from WRF-Chem, MERRA-2, and CAMS-OA during winter (DJF) and
summer (JJA).

distributions of wind speed agree well with MERRA-2 and
CAMS-OA, but due to the higher spatial resolution, WRF-
Chem better resolves the fine-scale spatial structures of the
10 m wind field over complex terrain. All panels have sim-
ilar seasonal variations of wind speed. In winter, maximum

winds are stronger over the southeast of the domain. In the
central and northern parts of the domain winds are weak. In
summer, wind speed increases in the northern and central
parts of the ME. Somali jets produce strong (10–15 m s−1)
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winds in the Arabian Sea along the coasts of Somalia and
Oman.

To conduct the statistical analysis, we interpolated the
seasonally averaged 2015–2016 zonal and meridional wind
components (U and V ) at 10 m from WRF-Chem and
CAMS-OA on a MERRA-2 grid and calculated the Pear-
son correlation coefficient (R) and root mean square dif-
ferences (RMSDs) between each pair (see Table 3), respec-
tively. RMSD is calculated using the same formula as the root
mean square error (RMSE). The procedure of calculation of
these parameters is given in Appendix A2. Pearson correla-
tion coefficients provided in Table 3 are close to 1. The high-
est correlation is achieved between MERRA-2 and CAMS-
OA. WRF-Chem’s correlation coefficient with respect to
MERRA-2 is smaller but exceeds that of the WRF-Chem–
CAMS-OA pair. The WRF-Chem and MERRA-2 wind fields
are close partly because WRF-Chem boundary conditions are
built using MERRA-2 reanalysis, and the large-scale winds
are nudged (see Sect. 4) to the ones from MERRA-2 over the
PBL.

The RMSDs (see Table 3) are lower in winter than in sum-
mer. All RMSDs are in the range of 0.45–0.85 m s−1. The
lowest RMSDs are between MERRA-2 and CAMS-OA. No-
tably, the correlation coefficients for the meridional compo-
nent V are higher, and the RMSDs are lower when com-
pared with the zonal wind component U . This is because
the northern winds are stable since they are maintained by
the large-scale processes. In contrast, the zonal wind com-
ponent, which is affected by small-scale processes like sea
breezes, is variable. The results of the statistical analysis in
Table 3 and the clear similarity of the spatial patterns (among
all products) of the averaged 10 m wind fields presented in
Fig. 3 suggest that WRF-Chem captures the magnitude and
spatial distribution of the 10 m wind. Thus, we conclude that
WRF-Chem with the selected set of physical parameteriza-
tions satisfactorily simulates both the large- and mesoscale
atmospheric processes in the ME.

5.2 AOD

In this section, we evaluate the ability of WRF-Chem,
CAMS-OA, and MERRA-2 to reproduce the aerosol con-
tent in the atmosphere accurately. This content is character-
ized by AOD. In the ME, mineral dust contribution to the to-
tal AOD is dominant (≈ 87 %; Kalenderski and Stenchikov,
2016; Osipov et al., 2015). The treatment of optically active
dust within the model is therefore vitally important. AOD is
calculated based on aerosol concentrations and aerosol opti-
cal properties, which depend upon aerosol size distribution.
We therefore evaluate how well WRF-Chem and assimilation
products reproduce aerosol volume size distribution.

5.2.1 Aerosol volume size distributions

Dust particles are emitted into the lower atmospheric layer
with some predominant size distribution (Martin and Kok,
2017; Kok, 2011). Emitted dust is processed by the atmo-
sphere to produce the atmospheric dust size distribution that
is retrieved by the AERONET inversion algorithm (Dubovik
and King, 2000) and reported as column-integrated AVSD.
Strictly speaking, AERONET AVSD incorporates contribu-
tions from all types of aerosols. But the size distribution of
emitted dust has the strongest effect on column-integrated
AVSD because dust dominates all other aerosols in the ME.
Therefore, we have to tune the dust emission parameters in
the first place.

Equation (2) assumes that emission mass fluxes into five
dust size bins are controlled by the sp fractions. In WRF-
Chem the default values of sp fractions for the five dust
bins (see Table 2) are 0.1, 0.25, 0.25, 0.25, and 0.25. We
found that with these default sp fractions, WRF-Chem un-
derestimated the volume of fine dust particles in the first
bin, 0.1µm < r < 1µm, compared with AERONET AVSD,
whereas the volume of the second bin, 1µm < r < 1.8µm,
was overestimated. In combination with fitting the observed
AOD by tuning of factor C, this led to an increase in the
total emitted dust mass since fine particles are optically
more efficient per unit mass than coarse particles. To achieve
a better agreement between the simulated and AERONET
AVSDs, we adjusted the fractions sp to be 0.15, 0.1, 0.25,
0.4, and 0.1. A similar approach was implemented in Khan
et al. (2015) using the Modal Aerosol Dynamics Model
for Europe (MADE) and Secondary Organic Aerosol Model
(SORGAM) chemistry–aerosol scheme. This sp modifica-
tion is in line with (Adebiyi and Kok, 2020) as it effectively
decreased emission of dust particles with radii r < 2.5 µm
and increased emission of coarse particles with radii r >

2.5 µm (see Appendix A3). We use the updated sp values in
all our WRF-Chem simulations.

Figure 4 shows seasonally averaged 2015–2016 volume
size distributions obtained from MERRA-2, CAMS-OA,
AERONET, and WRF-Chem with updated sp fractions. The
comparison is conducted for the KAUST Campus, Mezaira,
and Sede Boker AERONET sites (see Fig. 1) since only these
sites have information on AVSDs during the 2015–2016 pe-
riod. The effect of sp modification could be seen in Fig. 4
by comparing AVSDs from WRF-Chem with an updated set
of sp and MERRA-2 that uses the default sp set. A direct
comparison of AVSDs from the WRF-Chem runs with the
updated and default sp sets is shown in Appendix A3.

Both MERRA-2 and WRF-Chem use the GOCART
aerosol scheme with the same five dust bins, and they ap-
proximate the shape of the AERONET AVSD relatively well.
CAMS-OA uses only three dust bins (see Table 2) and fails to
reproduce the AERONET AVSD even qualitatively. It over-
estimates the volume of particles with radii of 0.55–0.9 µm
and underestimates the volume of particles with radii of 0.9–
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Figure 4. Seasonally averaged 2015–2016 AVSDs (µm3 µm−2) obtained from MERRA-2, CAMS-OA, WRF-Chem, and the AERONET
inversion algorithm at the (a) KAUST Campus, (b) Mezaira, and (c) Sede Boker AERONET sites. Winter (DJF), spring (MAM), summer
(JJA), and autumn (SON).
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Table 3. Pearson correlation coefficient R and root mean square difference (RMSD; m s−1) for the seasonally averaged 2015–2016 wind
components U and V at 10 m.

Season WRF-Chem wrt∗ CAMS-OA WRF-Chem wrt MERRA-2 CAMS-OA wrt MERRA-2

R RMSD R RMSD R RMSD

U V U V U V U V U V U V

Winter (DJF) 0.918 0.954 0.716 0.593 0.954 0.963 0.572 0.537 0.954 0.974 0.558 0.449
Summer (JJA) 0.929 0.981 0.853 0.704 0.938 0.982 0.833 0.669 0.965 0.986 0.636 0.593

Annual mean 0.924 0.968 0.785 0.649 0.946 0.973 0.703 0.603 0.960 0.980 0.597 0.521

∗ wrt – with respect to.

20 µm. With the latest system upgrade in 2019, this weakness
of CAMS-OA has been corrected by introducing a new dust
scheme (Nabat et al., 2012).

The volume size distributions from the model and assimi-
lation products demonstrate pronounced seasonal variability
with the increased amount of dust in the atmosphere during
spring and summer. Since the KAUST Campus and Mezaira
sites are located in the vicinity of strong dust sources, the
coarse mode at these sites is more pronounced than at the
Sede Boker site, which is farther from the strong dust emis-
sion sources.

The fine mode in the AERONET AVSD is more pro-
nounced at the KAUST Campus site in comparison with the
other AERONET sites due to its proximity to strong SO2
sources located along the west coast of Saudi Arabia (Ukhov
et al., 2020b). This proximity leads to a higher contribution
of fine sulfate particles to the fine mode. The smaller volume
of fine particles in the WRF-Chem and MERRA-2 simulated
AVSD (see Fig. 4) is in part because the simulated AVSDs
show only dust omitting the contributions of sulfate and sea
salt. Sea salt particles and droplets are relatively large and
mostly contribute to the coarse mode.

Figure 5 shows the contributions of dust, sea salt, and
sulfate aerosols into the AVSD at the KAUST Campus
AERONET site in the WRF-Chem simulation averaged
for two summer seasons (JJA) in the 2015–2016 period.
In WRF-Chem, sulfate aerosol is computed using a bulk
approach. For calculating aerosol optical properties, it is
assumed that sulfate aerosol comprises two log-normal
modes: nuclei and accumulation. According to the WRF-
Chem source code, the nuclei mode median radius µnuc is
0.005 µm, and the geometric width σnuc is 1.7; the accumula-
tion mode median radius µacc is 0.035 µm, and the geomet-
ric width σacc is 2.0. The nuclei mode comprises 25 % of the
sulfate aerosol mass and accumulation mode −75 %. It is as-
sumed that sulfate aerosol density is 1800 kg m−3, and sea
salt density is 2200 kg m−3. Figure 5 demonstrates that the
contribution of the sulfate nuclei mode in the aerosol volume
is almost negligible, while the sulfate accumulation mode
adds in the volume of aerosol particles with radii < 1 µm.

Figure 5. Summer (JJA) averaged 2015–2016 AVSD (µm3 µm−2)
at the KAUST Campus AERONET site obtained from the
AERONET inversion algorithm and from WRF-Chem.

The contribution of the sea salt aerosol into AVSD in WRF-
Chem simulations is very little.

5.2.2 Comparison with AERONET AOD

The comparison of the daily averaged AOD time series and
corresponding scatter plots calculated using WRF-Chem,
MERRA-2, CAMS-OA, MODIS-DB&DT, and MAIAC data
with AERONET AOD observations conducted at KAUST
Campus, Mezaira and Sede Boker during the 2015–2016 pe-
riod is presented in Fig. 6. Because AERONET conducts ob-
servations only during the daylight, we interpolated WRF-
Chem, MERRA-2, and CAMS-OA AODs to the AERONET
measurement times and then conducted time averaging to
make simulated and observed AODs consistent. AODs from
MODIS-DB&DT and MAIAC are provided as a daily aver-
age. Although MODIS routinely provides observations only
twice a day during daylight, up to four observations might
be collected on some days due to overlap of the TERRA and
AQUA orbits at some locations.
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Figure 6. Daily averaged AOD at three AERONET sites (KAUST Campus, Mezaira, Sede Boker) and corresponding scatter plots computed
for WRF-Chem, AERONET, MERRA-2, CAMS-OA, MODIS-DB&DT, and MAIAC: (a) 2015, (b) 2016.

The scatter plots show that the model and assimilation
products are capable of reproducing the magnitude and tem-
poral evolution of the observed AERONET AOD at all
sites. During both years, KAUST Campus and Mezaira sites
show higher AOD in summer and lower AOD in winter. To
quantify the capability of the WRF-Chem, MERRA-2, and
CAMS-OA models as well as the MODIS-DB&DT and MA-
IAC products to reproduce the AERONET AOD, we calcu-
late the Pearson correlation coefficient R and mean bias (see
Appendix A2) with respect to the AERONET AOD obser-
vations for the 2015–2016 period (see Table 4). The corre-

lation coefficients are the highest for MERRA-2 and MA-
IAC. MAIAC shows better correlation than MERRA-2 dur-
ing 2015 (0.88–0.96), but MERRA-2 is better correlated with
AERONET (0.85–0.91) than MAIAC in 2016. CAMS-OA,
despite the fact that it does not assimilate AERONET, shows
better correlations (0.65–0.87) than MODIS-DB&DT (0.56–
0.84). However, CAMS-OA overestimates AOD, particularly
during acute dust events, and has a relatively high posi-
tive mean bias. The R coefficient for the WRF-Chem AOD
is 0.43–0.85. MERRA-2 and WRF-Chem have the lowest
mean bias in comparison with the other models and products.
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Table 4. Pearson correlation coefficient R and mean bias calculated for daily averaged AOD time series from WRF-Chem, CAMS-OA,
MERRA-2, MODIS-DB&DT, and MAIAC with respect to AERONET AOD observations.

WRF-Chem CAMS-OA MERRA-2 MODIS- MAIAC
DB&DT

Bias R Bias R Bias R Bias R Bias R

2015

KAUST Campus −0.04 0.74 0.01 0.86 −0.05 0.85 0.06 0.81 −0.08 0.89
Mezaira 0.07 0.73 0.11 0.81 0.04 0.83 0.07 0.79 −0.07 0.88
Sede Boker −0.01 0.43 0.07 0.65 0.02 0.72 0.06 0.84 0.04 0.96

2016

KAUST Campus −0.01 0.75 0.01 0.76 −0.03 0.88 0.06 0.73 −0.05 0.74
Mezaira 0.09 0.62 0.12 0.87 0.06 0.85 0.08 0.77 −0.04 0.83
Sede Boker 0.03 0.85 0.09 0.83 0.04 0.91 0.08 0.56 0.05 0.63

MODIS-DB&DT mean bias is positive in 2015 and 2016,
while MAIAC mean bias is negative for KAUST Campus
and Mezaira and positive for Sede Boker during both years.

We have to mention here that the satellite retrievals
and MERRA-2 use AERONET observations for calibration.
WRF-Chem is tuned to reduce the annual mean bias with
respect to AERONET observations. CAMS-OA does not as-
similate AERONET AODs. In WRF-Chem, we did not tune
the temporal correlation between the model and AERONET
AOD. In this sense, the correlation coefficient between WRF-
Chem and AERONET AOD provides an independent evalu-
ation of the model performance (see Table 4). It is expected
that the temporal correlation for the assimilation products
and satellite retrievals will be higher than for the free-running
WRF-Chem.

5.2.3 Comparison of spatial AOD distributions

We also examine how well MERRA-2, CAMS-OA, MAIAC,
and WRF-Chem reproduce spatial patterns and seasonal vari-
ability of the AOD in comparison with the conventional
MODIS-DB&DT retrievals. The seasonally and annually av-
eraged 2015–2016 AOD fields from WRF-Chem, CAMS-
OA, MERRA-2, and the two MODIS retrievals DB&DT and
MAIAC are presented in Fig. 7. The seasonally averaged
AODs from WRF-Chem, MERRA-2, and CAMS-OA are
shown at their original spatial resolution and were calculated
using only daytime (06:00–14:00 UTC or 09:00–17:00 LT)
output. The AODs were sampled under all-sky conditions,
which in the ME does not make much of a difference as
cloud fraction is low. For statistical comparison, we inter-
polated AOD fields (preserving the area’s average AODs) on
the MERRA-2 grid and calculated the Pearson correlation
coefficient R root mean square error RMSE and mean bias
with respect to MODIS-DB&DT AOD (see Table 5). When
conducting statistical analysis, the grid cells with undefined

pixels in MODIS-DB&DT and MAIAC retrievals were ex-
cluded.

The statistical scores provided in Table 5 show that the
annual mean AOD from MAIAC has the highest correla-
tion (R = 0.796) but also the highest RMSE (0.123) and
the biggest bias (−0.095) with respect to MODIS-DB&DT
AOD. MERRA-2 annual mean AOD has R = 0.663 with re-
spect to MODIS-DB&DT AOD, CAMS-OA has R = 0.650),
and WRF-Chem has R = 0.609 with RMSEs of 0.116 for all
of them. WRF-Chem, MERRA-2, and CAMS-OA demon-
strate similar AOD patterns, but WRF-Chem and MERRA-
2 underestimate and CAMS-OA overestimates MODIS-
DB&DT AOD during all seasons, with annual mean biases of
= −0.009, −0.042, and 0.039, respectively. MAIAC under-
estimates AOD in comparison with MODIS-DB&DT, which
is consistent with the MAIAC and MODIS-DB&DT AOD
comparison with AERONET AOD (see Table 4 and Fig. 6).

Based on the comparison of WRF-Chem AOD with the
AOD from MODIS and AERONET observations, we con-
clude that spatial and temporal WRF-Chem’s AOD distri-
bution is in good agreement with the available satellite and
ground-based observations, i.e., annual mean correlation R

exceeds 0.6 (see Table 5), and correlation with AERONET is
0.43–0.85 (see Table 4).

5.3 PM air pollution

To test the ability of the data assimilation products and mod-
els to characterize PM air pollution in the ME, we com-
pare surface daily mean PM2.5 and PM10 concentrations
from WRF-Chem, MERRA-2, and CAMS-OA with daily av-
eraged measurements conducted by the three AQMSs (see
Figs. 8 and 9). The AQMSs are installed in Jeddah, Riyadh,
and Dammam (Fig. 1), the Saudi Arabian megacities. PM
measurements conducted by MODON (see Sect. 2.3) are
available starting from 2016. The modeled PM2.5 and PM10
concentrations were sampled from the model fields at the
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Figure 7. Seasonally averaged 2015–2016 AOD. The right column is annual mean AOD. Rows: (a) WRF-Chem, (b) MERRA-2, (c) CAMS-
OA, (d) MODIS-DB&DT, and (e) MAIAC. Winter (DJF), spring (MAM), summer (JJA), and autumn (SON). White dots are undefined
pixels. Black triangles denote locations of the KAUST Campus, Mezaira, and Sede Boker AERONET stations.
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Table 5. Pearson correlation coefficient (R), root mean square error (RMSE), and mean bias calculated for seasonally and annually averaged
2015–2016 AOD geographic distributions from CAMS-OA, MAIAC, MERRA-2, and WRF-Chem with respect to MODIS-DB&DT AOD.

CAMS-OA MAIAC MERRA-2 WRF-Chem

R RMSE bias R RMSE bias R RMSE bias R RMSE bias

Winter (DJF) 0.599 0.084 0.019 0.794 0.092 −0.072 0.569 0.090 −0.033 0.473 0.092 −0.008
Spring (MAM) 0.700 0.129 0.052 0.802 0.142 −0.107 0.717 0.127 −0.047 0.661 0.124 −0.007
Summer (JJA) 0.702 0.152 0.069 0.782 0.160 −0.117 0.742 0.133 −0.050 0.685 0.148 0.000
Autumn (SON) 0.559 0.111 0.027 0.717 0.111 −0.084 0.595 0.108 −0.027 0.497 0.116 −0.015

Annual mean 0.650 0.116 0.039 0.796 0.123 −0.095 0.663 0.116 −0.042 0.609 0.116 −0.009

exact AQMS locations. The following formulas were used
to calculate PM2.5 and PM10 surface concentrations using
WRF-Chem and MERRA-2 output:

PM2.5 = DUST1 + DUST2 × 0.38 + SEAS1 + SEAS2

+ SEAS3 × 0.83 + sulfate

+ (OC1 + OC2) × OCmfac + BC1 + BC2

PM10 = DUST1 + DUST2 + DUST3 + DUST4 × 0.74

+ SEAS1 + SEAS2 + SEAS3 + SEAS4 + sulfate

+ (OC1 + OC2) × OCmfac + BC1 + BC2, (4)

where DUST1,2,3,4, SEAS1,2,3,4, OC1,2, BC1,2, and sulfate
are respectively the concentrations of the dust and sea salt
in the first four bins, organic and black carbon (hydrophobic
and hydrophilic), and sulfate ion (SO2−

4 ). As was mentioned
in Sect. 4.1, SEAS1 is not present in the WRF-Chem out-
put. So for WRF-Chem we assume SEAS1 = 0. The factor
OCmfac = 1.8 accounts for the conversion of organic carbon
into organic matter.

CAMS-OA PM2.5 and PM10 were calculated us-
ing the following relations (https://confluence.ecmwf.int/
display/CUSF/PM10+and+PM25+global+products, last ac-
cess: 5 January 2020):

PM2.5 = DD1 + DD2 + SS1/4.3 + 0.5 × SS2/4.3

+ 0.7 × (OM1 + OM2 + sulfate) + BC1 + BC2

PM10 = DD1 + DD2 + DD3 × 0.4 + SS1/4.3

+ SS2/4.3 + OM1 + OM2 + sulfate + BC1

+ BC2, (5)

where DD1,2,3, SS1,2, sulfate, BC1,2, and OM1,2 are surface
concentrations of dust in three bins, sea salt in two bins,
sulfate, black carbon, and organic matter (hydrophobic and
hydrophilic). The size ranges of dust and sea salt bins from
CAMS-OA are presented in Table 2.

The histograms in the right-side panels in Figs. 8 and 9
show the annual mean PM concentrations from WRF-Chem,
MERRA-2, and CAMS-OA split into the dust and nondust
components. The dashed and dash-dotted horizontal lines
correspond to KSA-PME limits and WHO air quality guide-
lines for daily (in the left-side panels) and annual mean (in

the right-side panels) PM concentrations. We also calculated
the separate contributions of sulfate, sea salt, organic mat-
ter, and black carbon to the nondust PM2.5 and PM10 (see
Tables 6 and 7, respectively).

The sporadic peaks in the observations, which are not cap-
tured by the model and assimilation products, are due to un-
accounted factors, such as nearby traffic, construction work,
and local anthropogenic or natural emissions, which are not
present in the emission inventories, or they are due to me-
teorological fluctuations that are not resolved in the models.
Talking about extreme dust pollution cases, we analyzed dust
surface concentrations using WRF-Chem output during the
dust storm that took place in the Jeddah region on 8 July
2016. The calculated surface concentrations in all dust bins
DUST1,2,3,4,5 at the peak of the storm were 55, 58, 63, 111,
and 11 µg m−3, respectively. The sum of all dust bins yields
a total dust concentration of 298 µg m−3.

5.3.1 PM2.5

Figure 8 shows that the daily averaged PM2.5 concentrations
observed by MODON AQMSs at all locations never drop
below the WHO limit of 25 µg m−3. During the severe dust
events, this limit is exceeded in 2016 by a factor of 10–15.
The less restrictive KSA-PME limit of 35 µg m−3 is exceeded
by a factor of 7–11 during the dust outbreaks. Annually av-
eraged MODON measurements are 8–18 times higher than
the 10 µg m−3 WHO limit and 5–12 times higher than the
15 µg m−3 KSA-PME limit for annual mean PM2.5 concen-
trations.

Both data assimilation products and WRF-Chem under-
estimate annual mean PM2.5 concentrations by a factor of
≈ 3 in Jeddah and Riyadh and slightly overestimate (though
WRF-Chem slightly underestimates) PM2.5 in Dammam in
comparison with observed concentrations during 2016. The
CAMS-OA annual mean surface PM2.5 concentrations in
Jeddah and Riyadh are higher than those from WRF-Chem
and MERRA-2, providing the best fit for MODON observa-
tions, at least on an annual mean (during 2016) basis.

Annual mean PM2.5 concentrations from WRF-Chem and
MERRA-2 exceed the WHO limit of 10 µg m−3 by a fac-
tor of ≈ 4–7 and ≈ 6–10, respectively, in all locations. The
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Figure 8. Left: WRF-Chem daily averaged PM2.5 surface concentrations (µg m−3) with MODON observations, MERRA-2, and CAMS-OA
at Jeddah, Riyadh, and Dammam. The dash-dotted line corresponds to the 25 µg m−3 WHO daily average guideline. Right: stacked bars show
the decomposition of the PM2.5 annual mean surface concentrations into dust and nondust components. The dash-dotted line corresponds
to the 10 µg m−3 WHO annual guideline. Numbers on the right-hand side of the WRF-Chem, CAMS-OA, and MERRA-2 bars show the
contribution (%) of the dust and nondust components to the total PM2.5 concentration. (a) 2015, (b) 2016.

KSA-PME limit of 15 µg m−3 for annual average PM2.5 con-
centrations is exceeded by a factor of ≈ 2.5–4.5 and ≈ 4–6.5,
respectively, for WRF-Chem and MERRA-2.

In Jeddah and Dammam, WRF-Chem and MERRA-2
show similar relative contributions of nondust components to
PM2.5 (30 %–34 % in Jeddah and 12 %–14 % in Dammam),

but in MERRA-2 sea salt is a major contributor to nondust
PM2.5, while in WRF-Chem it is sulfate (see Table 6). This
difference between WRF-Chem and MERRA-2 is mainly be-
cause MERRA-2 generates more sea salt but also because
MERRA-2 underestimates SO2 emissions located in the Ara-
bian Gulf and along the west coast of Saudi Arabia (Ukhov
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Figure 9. Left: WRF-Chem daily averaged PM10 surface concentrations (µg m−3) with the MODON observations as well as MERRA-2
and CAMS-OA at Jeddah, Riyadh, and Dammam. The dash-dotted line corresponds to the 50 µg m−3 WHO daily guideline. Right: stacked
bars show the decomposition of the PM10 annual mean surface concentrations into dust and nondust components. The dash-dotted line
corresponds to the 20 µg m−3 WHO annual guideline. Numbers on the right-hand side of the WRF-Chem, CAMS-OA, and MERRA-2 bars
show the contribution (%) of the dust and nondust components to the total PM10 concentration. (a) 2015, (b) 2016.

et al., 2020b) and hence underestimates sulfate concentra-
tions, as discussed in Sect. 4.1. In Riyadh, the contribution
of the nondust component to PM2.5 is ≈ 9 %–12 % for both
MERRA-2 and WRF-Chem. In CAMS-OA, the contribution
of nondust particulates to PM2.5 in Jeddah and Dammam is
≈ 7 %–10 %, and the contribution of sea salt is little. Accord-

ing to Table 6, in all considered cities, the contribution of
black carbon (BC) to PM2.5 is not significant for all mod-
els. In MERRA-2, the contribution of organic matter (OM)
to PM2.5 is more substantial (but still minor) in compari-
son with WRF-Chem and CAMS-OA. In general, among
all models the contribution of dust to PM2.5 in Jeddah is
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9298 A. Ukhov et al.: Natural and anthropogenic air pollution in the Middle East

Table 6. Contributions (%) of dust and nondust components to PM2.5 for Jeddah, Riyadh, and Dammam during 2015–2016.

Jeddah Riyadh Dammam

WRF-Chem1 CAMS-OA2 MERRA-21 WRF-Chem1 CAMS-OA2 MERRA-21 WRF-Chem1 CAMS-OA2 MERRA-21

2015

Dust 68.6 90.9 70.6 88.1 96.8 90.8 87.0 93.0 88.1
Sulf 19.9 5.1 6.1 9.0 2.1 5.0 10.0 3.9 3.6
BC 2.1 0.7 0.6 0.1 0.2 0.3 0.1 0.7 0.3
OM 4.0 3.1 5.1 1.8 0.8 2.7 1.5 2.3 3.1
Salt 5.5 0.1 17.6 0.8 0.1 1.3 1.3 0.1 4.9

2016

Dust 65.4 89.9 66.8 87.4 96.8 89.6 85.3 90.9 85.5
Sulf 23.2 5.7 6.8 9.5 1.9 5.7 11.3 4.7 4.3
BC 2.1 0.8 0.7 0.2 0.3 0.3 0.2 0.9 0.4
OM 4.0 3.4 5.4 2.1 0.9 2.9 1.8 3.4 4.1
Salt 5.4 0.1 20.4 0.9 0.1 1.4 1.5 0.1 5.7

1 For WRF-Chem and MERRA-2: dust = DUST1 + DUST2 × 0.38, BC = BC1 + BC2, sulf = sulfate, OM = (OC1 + OC2) × OCmfac, salt = SS1 + SS2 + SS3 × 0.83. 2 For
CAMS-OA: Dust = DD1 + DD2, Sulf = 0.7 × sulfate, BC = BC1 + BC2, OM = 0.7 × (OM1 + OM2), Salt = SS1/4.3 + 0.5 × SS2/4.3.
Abbreviations of the aerosols’ names correspond to those given in Sect. 5.3.

Table 7. Contributions (%) of dust and nondust components to PM10 for Jeddah, Riyadh, and Dammam during 2015–2016.

Jeddah Riyadh Dammam

WRF-Chem1 CAMS-OA2 MERRA-21 WRF-Chem1 CAMS-OA2 MERRA-21 WRF-Chem1 CAMS-OA2 MERRA-21

2015

Dust 87.5 89.2 75.6 96.6 96.2 96.5 96.2 91.6 92.2
Sulf 6.3 6.2 1.7 2.4 2.6 1.4 2.6 4.8 0.9
BC 0.7 0.6 0.2 0.0 0.2 0.1 0.0 0.6 0.1
OM 1.3 3.8 1.4 0.5 1.0 0.7 0.4 2.8 0.8
Salt 4.2 0.2 21.2 0.5 0.1 1.4 0.8 0.2 6.0

2016

Dust 85.8 87.8 71.7 96.4 96.2 96.1 95.7 89.1 90.8
Sulf 7.8 7.0 1.9 2.5 2.3 1.6 2.9 5.7 1.1
BC 0.7 0.7 0.2 0.0 0.2 0.1 0.0 0.8 0.1
OM 1.3 4.2 1.5 0.5 1.1 0.8 0.5 4.2 1.1
Salt 4.4 0.2 24.8 0.5 0.1 1.5 0.9 0.2 6.8

1 For WRF-Chem and MERRA-2: dust = DUST1 + DUST2 + DUST3 + DUST4 × 0.74, sulf = sulfate, BC = BC1 + BC2, OM = (OC1 + OC2) × OCmfac, salt = SS1 + SS2 + SS3
+SS4. 2 For CAMS-OA: Dust = DD1 + DD2 + DD3 × 0.4, Sulf = sulfate, BC = BC1 + BC2, OM = OM1 + OM2, Salt = SS1/4.3 + SS2/4.3.
Abbreviations of the aerosols’ names correspond to those given in Sect. 5.3.

65 %–90 %, while in Riyadh and Dammam this contribution
is 85 %–95 % (see Table 6).

5.3.2 PM10

Daily averaged MODON measurements almost continuously
exceed the WHO guideline of 50 µg m−3 at all locations
(see Fig. 9). In Riyadh and Dammam, PM10 concentra-
tion is higher than in Jeddah, where the KSA-PME limit of
340 µg m−3 for daily averaged PM10 is exceeded in 2016 by
a factor of about a dozen. In Dammam, this limit is more fre-
quently exceeded, especially during the summer period. Dur-
ing acute dust events in Dammam, daily averaged PM10 con-
centrations can exceed the WHO guideline limit by a factor

of more than 10–20. Annually averaged MODON measure-
ments are 7–11 times higher than the 20 µg m−3 WHO guide-
line and 2–3 times higher than the 80 µg m−3 KSA-PME lim-
its for annual mean PM10 concentrations.

In contrast with MERRA-2 and CAMS-OA, WRF-Chem
compares better with PM10 observations by MODON in all
locations. MERRA-2 overestimates by a factor of ≈ 1.2–
1.8 and CAMS-OA underestimates by a factor of ≈ 1.5–2
annual mean PM10 MODON observations in all locations.
This is in agreement with Cuevas et al. (2015), who stated
that MACC (the predecessor of CAMS-OA) underestimates
PM10 daily and monthly means all year long, and with our
findings in Sect. 5.2.1, where we have shown that CAMS-
OA underestimates the volume of particles with radii of 0.9–
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20 µm. Annual mean PM10 concentrations from WRF-Chem
and MERRA-2 exceed the WHO limit of 20 µg m−3 by fac-
tors of ≈ 6–15 and ≈ 10–20, respectively, in all locations.
The KSA-PME limit of 80 µg m−3 for annual average PM10
concentrations is exceeded by factors of ≈ 1.5–4 and ≈ 1.5–
5, respectively, for WRF-Chem and MERRA-2.

According to Table 7, MERRA-2 shows the highest con-
tribution of sea salt to PM10 in the coastal cities of Jed-
dah (≈ 21 %–25 %) and Dammam (≈ 6 %–7 %). MERRA-
2 demonstrates the lowest (≈ 1 %–2 %) contribution of sul-
fate to PM10, while WRF-Chem and CAMS-OA contribute
a similar amount of sulfate to PM10 in Jeddah (≈ 7 %) and
Riyadh (≈ 2.4 %). MERRA-2 also shows the lowest contri-
bution (≈ 0.1 %–0.2 %) of black carbon (BC) to PM10 in all
considered cities. The CAMS-OA organic matter (OM) con-
tribution to PM10 is in 2–8 times greater than the WRF-Chem
and MERRA-2 contributions. CAMS-OA demonstrates the
lowest (0.1 %–0.2 %) contribution of sea salt to PM10. The
contribution of dust to PM10 in Jeddah is 70 %–90 %, while
in Riyadh and Dammam this contribution is 90 %–96 %.
Minimal contribution (≈ 3.5 %–4 %) of nondust components
to PM10 is observed among all models in Riyadh.

5.3.3 Spatial patterns of PM air pollution

In this section we use the WRF-Chem output averaged for
2015–2016 to discuss the spatial patterns of aerosol pollu-
tion and partial contributions from natural and anthropogenic
aerosols to PM over the ME.

Figure 10a, b, c show the spatial distributions of the PM2.5
and PM10 surface concentrations and the PM2.5 / PM10 ra-
tio. The left limits of the color bars for PM2.5 and PM10 are
set to be equal to the corresponding WHO annual guideline
concentrations. Over the whole domain, the annual mean sur-
face concentrations of PM2.5 and PM10 exceed WHO guide-
lines of 10 and 20 µg m−3, respectively. The regions of high
surface concentrations coincide with the main dust sources,
which span from northern Iraq to Oman, and include Sudan,
Egypt, Libya, and Turkmenistan. PM concentrations in these
regions exceed even the less restrictive KSA-PME air quality
limit for annual mean PM2.5 and PM10 concentrations by a
factor of more than 5.

In the entire domain, the maximum, minimum, and mean
values of the PM2.5 / PM10 ratio (see Fig. 10c) are 0.73, 0.20,
and 0.31, respectively. As expected, lower PM2.5 / PM10 ra-
tios (0.2–0.3) are observed over the dust source regions
(i.e., along the eastern Arabian Peninsula, Iraq, and northern
Africa), where both coarse and fine particles are generated.
However, large particles cannot be transported as far from
source regions as small particles due to the shorter lifetime
of large particles compared with small particles with respect
to deposition processes. The higher values (0.4–0.6) of the
PM2.5 / PM10 ratio are observed over southeastern Europe,
Turkey, Ethiopia, and western parts of the Arabian Peninsula
that are farther from the main dust sources.

Figure 10d shows the sum of surface concentrations of
organic matter and black carbon, (OC1 + OC2) × OCmfac +

BC1 + BC2). Their maximum, minimum, and mean concen-
tration values are 31.8, 0.2, and 1.3 µg m−3, respectively.
Their contribution to aerosol pollution over the Arabian
Peninsula in WRF-Chem simulations is insignificant. Fig-
ure 10e shows the surface concentration of sea salt calculated
as a sum of concentrations in each bin SEAS2 + SEAS3 +

SEAS4. Over the seas and coastal areas, the average concen-
tration of sea salt is 3–12 µg m−3. In summer, strong winds in
Somali jets (see Fig. 3b) intensify sea salt emission over the
Arabian Sea, creating high surface concentrations of sea salt
(27–42 µg m−3) along the coasts of Somalia and Oman. Due
to prevailing northern winds, the transport of sea salt from
the Mediterranean Sea to Egypt and Libya is observed.

The relatively high sulfate surface concentration (see
Fig. 10f) is observed in the vicinity of the strong SO2 sources
located along the west and east coast of Saudi Arabia and
over the Arabian Gulf as well as downwind from those
sources (see Ukhov et al., 2020b, for details). Figure 10f
also denotes the locations of the AERONET stations, as in
Fig. 1. The sulfate concentration at the KAUST Campus site
is higher than at the Mezaira and Sede Boker AERONET
sites (see Sect. 5.2.1), so it experiences a more pronounced
contribution of sulfate particulates to the fine mode of the
AVSD (see Figs. 4a and 5). Due to the prevailing northern
winds along the Red Sea, sulfate aerosols originating from
SO2 emissions along the Red Sea coast spread along the west
coast of the Arabian Peninsula towards Yemen. The drift of
sulfate from the Arabian Gulf into the interior of the eastern
part of the Arabian Peninsula is also seen. The sulfate annual
mean background surface concentration over the US for the
period 2003–2012, obtained in Buchard et al. (2016), is 2–
3 µg m−3, similar to the background concentrations we see in
the ME. But downwind or in the vicinity of strong SO2 point
emissions, sulfate concentrations are 3–4 times higher. Sim-
ilar sulfate surface concentrations for the period 2000–2016
over the US were obtained in van Donkelaar et al. (2019),
where the concentrations reach ≈ 10 µg m−3 over the eastern
part of the US during summer. In Al-Taani et al. (2019) the
average 1980–2016 sulfate concentration computed for the
UAE is 2.5–3 times lower. This difference is caused by the
fact that Al-Taani et al. (2019) took the sulfate fields from
MERRA-2 reanalysis, which underestimates the SO2 emis-
sions as shown in Ukhov et al. (2020b).

Contributions of dust to PM2.5 and PM10 calculated as ra-
tios of dust PM2.5 to total PM2.5 and dust PM10 to total PM10
are shown in Fig. 10g and h, respectively. Due to relatively
low dust surface concentrations over the eastern Mediter-
ranean, Turkey, and southeastern Europe, the contribution of
dust to PM2.5 and PM10 is 20 %–50 % and 50 %–80 %, re-
spectively. In other areas that are closer to the dust source
regions, the contribution of dust to PM is above 80 %.

Figure 10i shows the ratio between the concentration of
sulfate aerosol with respect to the total concentration of
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Figure 10. WRF-Chem’s average 2015–2016 surface concentrations (µg m−3): (a) PM2.5; (b) PM10; (c) PM2.5 / PM10 ratio; (d) black
carbon and organic matter, (OC1 + OC2) × OCmfac + BC1 + BC2, (µg m−3); (e) sea salt, SEAS2 + SEAS3 + SEAS4, (µg m−3); (f) sulfate
(µg m−3) and locations of AERONET stations; (g) dust PM2.5 / (total PM2.5) ratio; (h) dust PM10 / (total PM10) ratio; (i) sulfate / (PM2.5
total nondust) ratio. Abbreviations of the aerosols’ names correspond to those given in Sect. 5.3.
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PM2.5 nondust aerosols. The maximum, minimum, and mean
values of this ratio are 0.84, 0.07, and 0.52, respectively. This
ratio is low over the seas, where sea salt is prevalent but con-
sistently exceeds 0.6 over land. Sulfate, therefore, is the pri-
mary anthropogenic pollutant over land. In the central and
southern parts of Saudi Arabia and over Iran, sulfate con-
tributes 60 %–90 % to the total PM2.5 nondust aerosol con-
centration. Over the other parts of the Arabian Peninsula, the
northern part of Sudan, Libya, and Egypt, sulfate contributes
approximately 40 %–60 % to the total PM2.5 nondust aerosol
concentration.

5.3.4 PM air pollution in the major ME cities

To evaluate the air quality in the ME’s major cities, we cal-
culate for their locations the average 2015–2016 daily PM2.5
and PM10 surface concentrations, their 90th percentiles, and
the contribution of the dust and nondust components to PM
(see Fig. 11). We calculate the number of days during the
2015–2016 period when the daily PM2.5 and PM10 surface
concentrations exceed the US EPA air quality limit of 35 and
150 µg m−3, respectively.

Figure 11 shows that the annually averaged PM2.5 and
PM10 exceed the WHO air quality guidelines by factors of
2–9 and 3–20, respectively in all major cities of the ME
except Ankara. The KSA-PME air quality limit for annual
mean PM2.5 is exceeded by a factor of up to 6 and by a
factor of up to 5 for PM10. Due to the lack of strong dust
sources nearby, air quality conditions in the cities in the east-
ern Mediterranean are more favorable when compared with
those in the Arabian Peninsula. In these cities, the air pol-
lution shifts from natural to anthropogenic as the contribu-
tion of nondust aerosols to PM2.5 increases up to 30 %–45 %,
in contrast with the cities located in the Arabian Peninsula,
where this contribution is up to 8 %–25 %. Sulfate aerosol is
the major contributor to nondust PM2.5.

The cities at the eastern coast of the Arabian Peninsula
have the highest 90th percentiles of daily mean PM concen-
trations. For example, in Dammam, Abu Dhabi, Doha, and
Kuwait City, the 90th percentiles of daily mean surface con-
centration of PM10 and PM2.5 are in the range of 400–740
and 130–180 µg m−3, respectively. This is above the KSA-
PME air quality limits for daily mean PM10 and PM2.5.

In eastern Mediterranean cities, within the 2015–2016 pe-
riod, the US EPA air quality daily mean limits are exceeded
on 40–75 d for PM10 and 60–100 d for PM2.5. In the cities of
the Arabian Peninsula, Iraq, and Iran, the US EPA PM daily
mean limits are exceeded on 94–627 d for PM10 and 213–
640 d for PM2.5 during the same period.

6 Conclusions

This study evaluates MERRA-2 and CAMS-OA data assimi-
lation products and high-resolution WRF-Chem simulations
aimed at assessing the impact of aerosols on PM air pollu-
tion over the Middle East for the 2015–2016 period. It also
compares the new MODIS AOD retrieval, MAIAC, with the
conventional MODIS-DB&DT and AERONET AOD over
the Middle East’s major dust source regions. MERRA-2 and
WRF-Chem use the five-bin dust aerosol model and demon-
strate a better agreement with the AERONET-retrieved size
distribution than CAMS-OA, which uses a three-dust-bin mi-
crophysical model. CAMS-OA overestimates the volume of
fine dust particles with radii of 0.55–0.9 µm and underesti-
mates the volume of coarse dust particles with radii of 0.9–
20 µm in comparison with the AERONET aerosol volume
size distribution.

At all considered AERONET sites, WRF-Chem, CAMS-
OA, MERRA-2, MODIS-DB&DT, and MAIAC are ca-
pable of reproducing the magnitude and temporal evolu-
tion of the AERONET AOD time series during the whole
period. MAIAC and MERRA-2 have the highest correla-
tion to AERONET AOD. CAMS-OA tends to overestimate
AERONET AOD, especially during severe dust events. The
MODIS-DB&DT and MAIAC AOD mean biases with re-
spect to AERONET observations are of the same magnitude
(slightly larger than that of MERRA-2), but the MODIS-
DB&DT AOD is biased positively, and the MAIAC AOD
is biased negatively except for Sede Boker for both years.
The AOD fields from WRF-Chem and assimilation prod-
ucts exhibit similar spatial patterns, but WRF-Chem, MA-
IAC, and MERRA-2 underestimate and CAMS-OA overesti-
mates MODIS-DB&DT AOD. MAIAC has the highest spa-
tial correlation to the conventional MODIS-DB&DT AOD,
followed by MERRA-2, CAMS-OA, and WRF-Chem.

The capability of WRF-Chem, MERRA-2, and CAMS-
OA to reproduce PM air pollution over the Middle East
was tested against in situ measurements. These PM mea-
surements are conducted in the industrial regions of Jed-
dah, Riyadh, and Dammam, which complicates one-to-one
comparison with the output from global and regional mod-
els. Annual mean PM concentrations from WRF-Chem and
MERRA-2 exceed the WHO limit by a factor of almost
20. The KSA-PME limit for annual average concentrations
is also exceeded by a factor of more than 6. MERRA-2
and WRF-Chem underestimate the observed annual mean
PM2.5 concentrations during 2016 in Jeddah and Riyadh al-
most 3 times. CAMS-OA and MERRA-2 overestimate and
WRF-Chem underestimates observed annual mean PM2.5 in
Dammam. CAMS-OA underestimates (by a factor of 1.5–
2) annual mean PM10 observations in all locations primarily
due to its deficient dust size distribution. The CAMS-OA an-
nual mean PM2.5 fits the PM observations better than other
products.
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Figure 11. Annual mean 2015–2016 PM surface concentrations (µg m−3) calculated for the major ME cities and PM decomposition into
dust and nondust (sulfate, sea salt, black carbon, and organic matter) components (stacked bars). Abbreviations of the aerosols’ names
correspond to those given in Sect. 5.3. Hatched bars denote 90th percentiles (µg m−3) calculated using daily mean PM concentrations. WHO
guidelines and KSA-PME air quality limits for annually averaged PM are shown by dash-dotted and dashed lines. Numbers over the stacked
bars correspond to the number of days during 2015–2016 when daily averaged PM surface concentration exceeded the US EPA air quality
limit. (a) PM2.5; the daily averaged US EPA air quality limit is 35 µg m−3, and the annual WHO guideline and KSA-PME limit are 10 and
15 µg m−3, respectively. (b) PM10; the daily averaged US EPA air quality limit is 150 µg m−3, and the annual WHO and KSA-PME limits
are 20 and 80 µg m−3, respectively.

The PM composition analysis over rural areas shows that
in WRF-Chem, the annual average PM2.5/PM10 ratio over
the ME is about 0.3. It decreases to 0.25 over the major dust
source regions, i.e., in the eastern Arabian Peninsula, Iraq,
and northern Africa. In most parts of the Middle East, dust is
the major contributor to PM. The sulfate aerosol contribution
to PM2.5 is essential in the areas where strong SO2 sources
are present, i.e., on the west and east coasts of Saudi Ara-
bia and over the Arabian Gulf. In these areas sulfate surface
concentration reaches 8–11 µg m−3, while the “clean” back-
ground level is 2–4 µg m−3. High sulfate content along the
west coast of Saudi Arabia is consistent with the increased
volume of the fine mode at the KAUST Campus AERONET

site in comparison with the Mezaira and Sede Boker sites. In
WRF-Chem, sulfate is the major nondust pollutant over the
Middle East. Sulfate aerosols contribute 60 %–90 % to the
total PM2.5 nondust aerosols over the central and southern
parts of Saudi Arabia and Iran. Over the other parts of the
Arabian Peninsula, northern Sudan, Libya, and Egypt, sul-
fate contributes approximately 40 %–60 % to the total PM2.5
nondust aerosol concentration.

The analysis of the annually averaged PM2.5 and PM10
surface concentrations in the Middle East’s major cities
shows a very high PM pollution level. In Dammam, Abu
Dhabi, Doha, and Kuwait City, the 90th percentile of PM10
and PM2.5 annual mean surface concentrations exceeds 400–
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740 and 130–180 µg m−3, respectively, which is above the
KSA-PME air quality limit. In the eastern Mediterranean,
dust concentration drops, and nondust aerosols’ contribution
to PM2.5 increases up to 30 %–45 %. In the cities located on
the Arabian Peninsula, the contribution of the nondust com-
ponent to PM2.5 is 8 %–25 %, which limits the effect of the
emission control on air quality. In the eastern Mediterranean
cities, the daily mean surface PM concentrations exceed the
US EPA air quality daily mean limit on 40–75 d for PM10
and 60–100 d for PM2.5 during the 2015–2016 period. In the
major cities over the Arabian Peninsula, Iraq, and Iran, the
US EPA air quality daily mean limit is exceeded on 94–627 d
for PM10 and 213–640 d for PM2.5. In Jeddah and Dammam,
WRF-Chem and MERRA-2 show similar relative contribu-
tions of the nondust component to PM2.5 (30 %–34 % in Jed-
dah and 12 %–14 % in Dammam). But in MERRA-2, sea salt
is a major contributor to nondust aerosol concentration, while
in WRF-Chem, it is a sulfate. This difference is because
MERRA-2 both generates more sea salt and underestimates
SO2 emissions and, consequently, sulfate concentrations. In
CAMS-OA, the contribution of nondust particulates to PM2.5
in Jeddah and Dammam is ≈ 7 %–10 %, and the contribution
of sea salt is little. In Riyadh, the contribution of the nondust
component to PM2.5 is ≈ 9 %–12 % for both MERRA-2 and
WRF-Chem. In Jeddah, Dammam, and Riyadh, the contribu-
tion of black carbon to PM2.5 is insignificant for all products.
MERRA-2 shows the highest contribution of sea salt and the
lowest contribution of black carbon and sulfate to PM10 in
all locations. CAMS-OA demonstrates the lowest contribu-
tion of sea salt to PM10. The minimum contribution of non-
dust components to PM10 is observed in Riyadh among all
models.

Thus, in this study, we found that MERRA-2 and CAMS-
OA assimilation products as well as WRF-Chem output, de-
spite some intrinsic uncertainties, could be used for evalua-
tion of the PM air pollution over the ME. All products show
the dominant contribution of mineral dust to PM. However,
in the Arabian coastal areas, where SO2 emissions are high,
contributions of both sulfate and sea salt could be signifi-
cant. The broad effect of natural aerosols on air quality in
the ME puts stricter requirements on anthropogenic pollution
control. The impact of dust could be alleviated by employ-
ing architectural solutions that are specific to desert areas,
increasing in-city vegetation cover, and providing air qual-
ity forecasts to alarm the population of hazardous air quality.
The developed WRF-Chem modeling framework can be used
to simulate other pollutants like NOx and O3. The results of
the current research could serve as a basis for an improved
air quality forecast system that interactively calculates high-
resolution, radiative, dynamical, atmospheric chemistry and
aerosol processes, driven by natural and anthropogenic emis-
sions. This system will be especially valuable for the predic-
tion of extreme pollution events. It will also improve under-
standing of the impact of anthropogenic and natural pollution
on air quality and human health in the ME region.
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Appendix A

A1 Meteorological boundary and initial conditions

To be consistent with IC&BC for chemical species and
aerosols, we developed a procedure to build meteorological
IC&BC from MERRA-2 reanalysis for all required by WRF-
Chem meteorological parameters. In particular, the follow-
ing 3D parameters were processed: pressure (Pa), geopoten-
tial height (m), temperature (K), meridional and zonal wind
components (m s−1), and relative humidity (%). The 2D pa-
rameters include the following: surface pressure (Pa); sea
level pressure (Pa); meridional and zonal wind components
at 10 m (m s−1); temperature at 2 m (K); relative humidity at
2 m (%); skin temperature (K); ice mask (0/1); terrain height
(m); land/sea mask (1/0); soil temperature at 0–10 (cm), 10–
40 (cm), 40–100 (cm), and 100–200 (cm); soil moisture at
0–10 (cm), 10–40 (cm), 40–100 (cm), and 100–200 (cm);
snow depth (m); and snow water equivalent (kg m−2).

A2 Statistics

We calculated the following statistical parameters to quantify
the level of agreement between estimations and observations.

Pearson correlation coefficient (R):

R =

N
∑

i=1

(

Fi − F
)(

Oi − O
)

√

N
∑

i=1

(

Fi − F
)2 N

∑

i=1

(

Oi − O
)2

; (A1)

root mean square error (RMSE):

RMSE =

√

√

√

√

1
N

N
∑

i=1

(Fi − Oi)
2; (A2)

mean bias:

bias =
1
N

N
∑

i=1

(Fi − Oi) ; (A3)

Fi is the estimated value, Oi is the observed value, F =

1
N

N
∑

i=1
Fi and O = 1

N

N
∑

i=1
Oi are their averages, and N is the

number of data.

A3 Comparison of AERONET and WRF-Chem

volume size distributions

The GOCART dust emission formula (2) calculates dust
mass flux into the atmosphere within five dust bins. In this
formula the factor C controls the total dust emission mass
flux, and the sp fractions split this flux into five differ-
ent dust bins. We assume that

∑

sp is 1. To match the
observed AERONET AVSD, we changed the default sp =

{0.1,0.25,0.25,0.25,0.25} to {0.15,0.1,0.25,0.4,0.1}. This
means that 15 % of the total dust mass flux comes as clay and
85 % as silt.

In the original formulation the fractions sp are not normal-
ized, and

∑

sp is 1.1. This is not essential as the total flux
is multiplied by the factor C that is tuned to fit the observed
AOD. So we can normalize the original sp fractions by di-
viding them by 1.1 and multiplying factor C by 1.1. This
will not change any results in Eq. (2) but gives the sp set of
{0.09,0.2275,0.2275,0.2275,0.2275} that is normalized to
1 consistently with our approach. Figure A1 compares the
AVSDs calculated with the updated and default sp fractions
for summer (JJA) of 2015.
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Figure A1. Volume size distributions at KAUST Campus, Mezaira and Sede Boker AERONET sites averaged for JJA of 2015 from
WRF-Chem (bars) and from AERONET (solid line): (a) updated sp fractions = {0.15,0.1,0.25,0.4,0.1}, (b) default sp fractions =

{0.1,0.25,0.25,0.25,0.25}.

https://doi.org/10.5194/acp-20-9281-2020 Atmos. Chem. Phys., 20, 9281–9310, 2020



9306 A. Ukhov et al.: Natural and anthropogenic air pollution in the Middle East
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https://doi.org/10.5281/zenodo.3695911 (Ukhov and Stenchikov,
2020).
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sion inventory is available at http://edgar.jrc.ec.europa.eu/htap_v2/
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