
Original Investigation | Pediatrics

Assessment of Neighborhood Poverty, Cognitive Function,
and Prefrontal and Hippocampal Volumes in Children
Rita L. Taylor, MA; Shelly R. Cooper, PhD; Joshua J. Jackson, PhD; Deanna M. Barch, PhD

Abstract

IMPORTANCE The association between poverty and unfavorable cognitive outcomes is robust, but
most research has focused on individual household socioeconomic status (SES). There is increasing
evidence that neighborhood context explains unique variance not accounted for by household SES.

OBJECTIVE To evaluate whether neighborhood poverty (NP) is associated with cognitive function
and prefrontal and hippocampal brain structure in ways that are dissociable from household SES.

DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study used a baseline sample of the
ongoing longitudinal Adolescent Brain Cognitive Development (ABCD) Study. The ABCD Study will
follow participants for assessments each year for 10 years. Data were collected at 21 US sites, mostly
within urban and suburban areas, between September 2019 and October 2018. School-based
recruitment was used to create a participant sample reflecting the US population. Data analysis was
conducted from March to June 2019.

MAIN OUTCOMES AND MEASURES NP and household SES were included as factors potentially
associated with National Institutes of Health Toolbox Cognitive Battery subtests and hippocampal
and prefrontal (dorsolateral prefrontal cortex [DLPFC], dorsomedial PFC [DMPFC], superior frontal
gyrus [SFG]) volumes. Independent variables were first considered individually and then together in
mixed-effects models with age, sex, and intracranial volume as covariates. Structural equation
modeling (SEM) was used to assess shared variance in NP to brain structure and cognitive task
associations. The tested hypotheses were formulated after data collection.

RESULTS A total of 11 875 children aged 9 and 10 years (5678 [47.8%] girls) were analyzed. Greater
NP was associated with lower scores across all cognitive domains (eg, total composite: β = −0.18;
95% CI, −0.21 to −0.15; P < .001) and with decreased brain volume in the DLPFC (eg, right DLPFC:
β = −0.09; 95% CI, −0.12 to −0.07; P < .001), DMPFC (eg, right DMPC: β = −0.07; 95% CI, −0.09 to
−0.05; P < .001), SFG (eg, right SFG: β = −0.05; 95% CI, −0.08 to −0.03; P < .001), and right
hippocampus (β = −0.04; 95% CI, −0.06 to −0.01; P = .01), even when accounting for household
income. Greater household income was associated with higher scores across all cognitive domains
(eg, total composite: β = 0.30; 95% CI, 0.28 to 0.33; P < .001) and larger volume in all prefrontal and
hippocampal brain regions (eg, right hippocampus: β = 0.04; 95% CI, 0.02 to 0.07; P < .001) even
when accounting for NP. The SEM model was a good fit across all cognitive domains, with prefrontal
regions being associated with NP relations to language (picture vocabulary: estimate [SE], –0.03
[0.01]; P < .001; oral reading: estimate [SE], –0.02 [0.01]; P < .001), episodic memory (picture
sequence: estimate [SE], –0.02 [0.01]; P = .008), and working memory (dimensional card sort:
estimate [SE], –0.02 [0.01]; P = .001; flanker inhibitory control: estimate [SE], –0.01 [0.01]; P = .01;
list sorting: estimate [SE], –0.03 [0.01]; P < .001) and hippocampal regions being associated with NP
associations with language (picture vocabulary: estimate [SE], –0.01 [0.004]; P < .001) and episodic
memory (picture sequence: estimate [SE], –0.01 [0.004]; P < 0.001).
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Abstract (continued)

CONCLUSIONS AND RELEVANCE In this study, NP accounted for unique variance in cognitive
function and prefrontal and right hippocampal brain volume. These findings demonstrate the
importance of including broader environmental influences when conceptualizing early life adversity.

JAMA Network Open. 2020;3(11):e2023774. doi:10.1001/jamanetworkopen.2020.23774

Introduction

Early poverty has been consistently associated with cognitive function deficits and lower school and
standardized test performance.1 Furthermore, there is evidence that developmental differences in
brain maturation may mediate the association between socioeconomic status (SES) and cognitive
function and educational outcomes. Much of this research has centered on household SES. Less is
known about the unique association of broader neighborhood SES environments with cognitive
outcomes and brain maturation in children after accounting for individual household SES. Current
models indexing poverty and early life adversity do not commonly include neighborhood-level
measures, despite growing evidence that consideration of the neighborhood context is important for
gaining a comprehensive understanding of mechanisms associated with cognitive and educational
outcomes in children. As such, the goal of the current study was to examine whether neighborhood
poverty (NP) was associated with cognitive function and brain volume in regions thought to be
critical for a range of cognitive functions, even after accounting for household SES.

Numerous studies have demonstrated that children from households with lower SES score
significantly lower on memory, language, and cognitive control tasks,2 score lower on intelligence
tests and tests that measure academic achievement,3 and are more likely to fail courses, drop out of
school, and be put into special education classes.4 A potential pathway by which impoverished
environments could influence such outcomes is via maturation of brain structures important for
cognitive development. For example, the association between household poverty and reduced
hippocampal volume in children has been a robust finding in the literature.5-9 There are high
concentrations of glucocorticoid receptors in the hippocampus, a region that has been robustly
implicated in episodic memory and memory consolidation,10-12 which makes this region vulnerable
to chronic stress responses via the hypothalamic-pituitary-adrenal (HPA) axis.13,14 When stress is
chronic, glucocorticoid release can be maladaptive, resulting in desensitization of receptors and
damage to surrounding tissue.15 Thus, it is has been hypothesized that chronic stressors associated
with household poverty may be contributing to disruptions in hippocampal development, although
there are other possible pathways, such as emotional or material deprivation, disruptions in
parent-child relationship, nutrition, and exposure to toxins, that may also contribute to this
relation.16-19 Lower SES has also been implicated in impaired maturation of the prefrontal cortex,
whose protracted development may make it especially vulnerable to chronically stressful
environments.1,20,21 Chronic activation of the HPA axis might similarly affect tissue volume and
region function via glucocorticoid receptors. Reduced prefrontal volume and activity have been
found in individuals from lower SES households.22 Previous literature has demonstrated that reduced
volume and activity in prefrontal regions, like the dorsolateral prefrontal cortex (DLPFC), dorsal
medial PFC (DMPFC), and superior frontal gyrus (SFG), are associated with lower performance on
tasks indexing cognitive function.23-26

Although household-level SES is clearly important in understanding child development, some
research suggests that the neighborhood context may also be important, particularly in geographic
locations where structural and/or explicit racism may limit neighborhoods available to individuals
who belong to specific racial and minority groups regardless of their household SES (eg, redlining
practices).27 In a longitudinal study,28 individuals with higher neighborhood disadvantage were at
greater risk of coronary heart disease, controlling for individual SES and education. Accumulation of
neighborhood disadvantage between the ages of 16 and 43 years was associated with increased
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allostatic load (ie, the accumulation of chronic endocrine responses to stressful life events) in
adulthood, even after accounting for personal adverse living experiences.29 Furthermore, children
living in areas with large amounts of local violence had lower vocabulary and reading scores on an IQ
test, even after accounting for household SES.30 Similarly, children living in neighborhoods
containing more academically educated professionals had higher academic achievement and higher
scores on vocabulary and reading assessments. This association was not fully explained by household
income and other individual family factors.31

Given the literature outlined above, the goals of the current study were to test the following
hypotheses: (1) NP accounts for variance in cognitive performance and prefrontal and hippocampal
volumes in children, even when accounting for household SES variables, and (2) NP associations with
volumes of prefrontal and hippocampal regions share variance with NP associations with cognitive
function in school age children, providing evidence for the plausibility of the hypothesis that brain
volume mediates the association of NP with cognitive function.

Methods

Participants
The sample for this study consisted of baseline data from 11 875 children recruited as part of the
Adolescent Brain Cognitive Development (ABCD) Study, with recruitment across 21 sites designed to
mirror the demographic characteristics of the United States.32 Data were collected between
September 2019 and October 2018, using school-based recruitment to create a sample reflecting the
US population. Race and ethnicity are highly confounded with both household income and NP, as
they are in the US population, reflecting ongoing structural racism. Thus, we did not include race and
ethnicity as covariates in the analyses presented below. eAppendix 1 in the Supplement contains
analyses showing that most key findings hold when including race/ethnicity as a covariate. Data from
ABCD Release 2.0.1 were used for the current study. Informed written consent for child and parent
was obtained from parents, and child participants separately completed a written assent. This work
was reviewed and approved by the Washington University human participants committee. This study
followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting
guideline.

Participants who had missing data on some variables were not removed from the sample data
set, as multilevel models will allow estimation with missing cases as more waves of data are collected.
The sample sizes used for each analysis appear in eAppendix 2 in the Supplement. Analyses using the
GGally and finalfit packages indicated that missingness of key variables (household income and NP)
did suggest some association with missingness of other demographic variables (eg, race/ethnicity,
sex) but did not indicate that missingness of outcome variables was based on certain levels of NP and
household income (eAppendix 3 in the Supplement).

Measures
NP
Parents or guardians completed a residential history questionnaire, in which they provided the
participant’s current home address. The participant’s primary home address was used to generate
Area Deprivation Index (ADI) values,33 which were factor analyzed and used to create an aggregate
measure of standardized NP (median, −0.22; range, −1.49 to 3.91). The final NP aggregate consisted
of 9 of 17 ADI values, given that some variables with lower factor loadings seemed to reflect
geographical differences in cost of living across sites that were less indicative of objective
disadvantage (eg, median mortgage or rent costs) or less modern disadvantage indices (eg,
percentage of homes without a telephone). Higher scores on NP indicate increased neighborhood
disadvantage (eg, greater percentage of families living in poverty, increased unemployment, lower
percentage of educational attainment at the neighborhood level). More information regarding
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calculation and distribution appears in eAppendix 4 in the Supplement; results obtained using the
ADI sum score appear in eAppendix 5 in the Supplement.

Household SES
Household SES was measured using both household income and the Parent-Reported Financial
Adversity Questionnaire (PRFQ). Household income (median, 8; range, 1-10) was the combined
income of the primary caretaker and any additional household members.34 The PRFQ asked
questions designed to determine whether families generally have enough money to pay for basic life
expenses, such as food and health care.35 Household income and PRFQ scores were included as
separate indicators of household SES because household income is a more objective measure of SES,
while PRFQ indexes self-reported finances that may better account for the association of income
level with area cost-of-living.

National Institutes of Health Toolbox Cognitive Battery
The National Institutes of Health Toolbox Cognitive Battery (NIHTB-CB) was administered to each
participant.36 The NIHTB-CB is composed of tasks assessing 7 cognitive domains, as follows: picture
vocabulary as a measure of verbal ability; flanker inhibitory control and dimensional change card sort
as measures of attention and executive functioning; list sorting as a measure of working memory;
pattern comparison for processing speed; picture sequencing for episodic memory; and oral reading
recognition as a measure of reading ability.36 Scores used in the current study were age-corrected
and z scored.

Imaging Procedure and Brain Segmentation
As previously described,37,38 participants were scanned using similar sequences on either a 3T
Siemens, Phillips, or General Electric scanner with a 32-channel head coil. A 3-dimensional
T1-weighted image (1-mm voxel resolution) was acquired as participants viewed the child-
appropriate movie of their choice.37 Motion detection and correction software were used in real-time
at the Siemens and GE sites.39,40

Based on previous literature, the a priori regions of interest were the hippocampus and 3
regions in the prefrontal cortex (ie, DLPFC, DMPFC, and SFG). FreeSurfer version 5.3.0 was used for
cortical surface reconstruction and subcortical brain segmentation from the aseg atlas for
hippocampal and Desikan atlas for superior frontal regions.38 eAppendix 6 in the Supplement
describes quality control methods. DLPFC and DMPFC were parceled into genetically based
subdivisions.41 Participant scans that were rated as unusable were not included in the released data
set. As an additional follow-up to ensure that our results did not reflect T1 quality, we reran all
analyses using only those children with a 0 on the artifact score (eAppendix 7 in the Supplement).

Statistical Analysis
Mixed-Effects Models
Data analysis was conducted from March to June 2019. Mixed-effects models were computed using
the lmer function within the lme4 package in R version 3.6.2. (R Project for Statistical Computing).42

Calculation of intraclass correlation coefficient revealed that site did not account for a significant
amount of variance in these models (<0.01 for cognitive outcomes and approximately 0.04 for brain
outcomes). A more parsimonious model that included only a random effect of family was used for
the current analyses. NP and household SES variables (household income and PRFQ) were first
considered in separate models (models 1 and 2) and then were included together (model 3) to assess
shared vs unique variance. Age, sex, and intracranial volume (for hippocampal and prefrontal
analyses) were included as covariates. All variables were standardized for ease of comparison.
Estimates were chosen to optimize the restricted maximum likelihood criterion. We performed t
tests to look at each variable using the Sattherwaithe degrees of freedom method via the lmerTest
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package.43 Multiple comparisons were corrected using false discovery rate.44 Statistical significance
was set at P < .05, and all tests were 2-tailed.

Structural Equation Models
Causal mediation cannot be determined with cross-sectional data. Thus, we used the lavaan package
in R version 3.6.3 (R Project for Statistical Computing)45 to conduct structural equation models
(SEMs) of indirect associations to examine the plausibility of whether brain structure could mediate
the association between NP and cognitive function by assessing the shared variance in NP-to-brain
measures and NP-to–NIHTB-CB measures (Figure). First, an exploratory factor analysis (EFA) was
performed (psych package in R) for brain regions and NIHTB-CB scores to reduce data
dimensionality. The EFA suggested 2 brain factors (prefrontal and hippocampal) but indicated that
the NIHTB-CB tests should each be considered individually (eAppendix 8 in the Supplement).
Second, indirect-effects models were created, which set NP, prefrontal, and hippocampal factors as
free to vary and included household income, age, sex, and intracranial volume as covariates. Fit
indices (comparative fit index [CFI], root mean square error of approximation [RMSEA], and
standardized root mean square residual [SRMR]) assessed whether the indirect-effects model fit the
data well. Models were confirmed using a subset of the data that included only 1 child per family (ie,
children with no siblings; n = 9988) to rule out family dependency confounds.

Results

In this sample of 11 875 children, 5678 (47.8%) were girls. All participants were aged 9 or 10 years.
Table 1 presents sex and race/ethnicity proportions. Household income and PRFQ were negatively
correlated (r = −0.42; P < .001). NP was negatively correlated with household income (r = −0.56;
P < .001) and positively correlated with PRFQ (r = 0.27; P < .001).

Association of NP With NIHTB-CB Scores
eAppendix 9 in the Supplement presents results using unstandardized variables. As shown in
Table 2, without NP in the models (model 1), higher household income was associated with higher
scores across all measures of the NIHTB-CB (eg, total composite: β = 0.38; 95% CI, 0.36 to 0.40;
P < .001). Lower PRFQ was associated with higher scores on picture vocabulary, oral reading,
dimensional card sort, and picture sequencing tasks. Without household income or PRFQ in the
models (model 2), greater NP was also significantly associated with lower scores across all measures

Figure. Schematic of SEM With Neighborhood Poverty and Brain Region Associations
With Cognitive Performance

L DLF
L

DLF
R

Cognitive
domain

DMF
L

DMF
R

SF
L

SF
R

R

1

9

...

Hippocampus

NP

PFC

DLF indicates dorsolateral prefrontal cortex; DMF,
dorsomedial prefrontal cortex; L, left; NP,
neighborhood poverty; R, right; SF, superior
frontal gyrus.

JAMA Network Open | Pediatrics Neighborhood Poverty, Cognitive Function, and Prefrontal and Hippocampal Volumes in Children

JAMA Network Open. 2020;3(11):e2023774. doi:10.1001/jamanetworkopen.2020.23774 (Reprinted) November 3, 2020 5/14

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.23774&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.23774
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.23774&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.23774


of the NIHTB-CB (eg, total composite: β = −0.41; 95% CI, −0.44 to −0.39; P < .001). Importantly,
when household income, PRFQ, and NP were in the same model (model 3), both NP and household
income continued to be independently associated with each of the scores (total composite, NP:
β = −0.18; 95% CI, −0.21 to −0.15; P < .001; total composite, household income: β = 0.30; 95% CI,
0.28 to 0.33; P < .001), although PRFQ did not. Examination of unstandardized variables (eAppendix
9 in the Supplement) indicated that for every unit increase in NP, children scored 3.22 points lower
on the NIHTB-CB composite, even when accounting for household SES.

Association of NP With Hippocampal Volume
eAppendix 9 in the Supplement presents results using unstandardized variables. As shown in
Table 3, when NP was not in the models (model 1), higher household income was significantly
associated with increased volume in bilateral hippocampus (eg, right hippocampus: β = 0.06; 95%
CI, 0.05 to 0.08; P < .001). Lower PRFQ scores were significantly associated with increased volume
in right hippocampus (β = –0.02; 95% CI, –0.04 to –0.01; P = .01). In model 2, higher NP was
associated with decreased volume in both right and left hippocampus (right: β = –0.08; 95% CI,
–0.10 to –0.06; P < .001; left: β = –0.06; 95% CI, –0.08 to –0.05; P = .04). With both household SES
variables and NP included (model 3), both NP and household income continued to be independently
associated with right hippocampal volume (NP: β = –0.04; 95% CI, –0.06 to –0.01; P = .01;
household income: β = 0.04; 95% CI, 0.02 to 0.07; P < .001), while PRFQ was not. For left
hippocampal volume, household income was significantly associated (β = 0.06; 95% CI, 0.04 to
0.08; P < .001), but NP was not (β = –0.02; 95% CI, –0.04 to –0.01; P = .21).

Associations With Prefrontal Volumes
As shown in Table 3, when considered alone (model 1), greater household income was associated
with increased volume in right and left SFG (right: β = 0.10; 95% CI, 0.08 to 0.12; P < .001; left:
β = 0.09; 95% CI, 0.07 to 0.10; P < .001), DLPFC (eg, right: β = 0.12; 95% CI, 0.10 to 0.13; P < .001)
and DMPFC (eg, right: β = 0.10; 95% CI, 0.08 to 0.12; P < .001). Lower PRFQ was also associated with
increased volume in right DLPFC and both right and left DMPFC. When considered alone (model 2),
higher NP was associated with decreased volume in both right and left SFG (right: β = –0.11; 95% CI,
–0.12 to –0.09; P < .001; left: β = –0.10; 95% CI, –0.12 to –0.08; P < .001), DLPFC (eg, right: β = –0.15;
95% CI, –0.17 to –0.13; P < .001), and DMPFC (eg, right: β = –0.12; 95% CI, –0.13 to –0.10; P < .001.
When included together, NP and household income were each significantly independently

Table 1. Demographic Percentages in Current Sample

Demographic variable Children, No. (%) (N = 11 875)
Sex

Female 5678 (47.8)

Male 6184 (52.1)

NA 13 (0.1)

Racea

White 8803 (74.1)

Black 2515 (21.2)

Asian 822 (6.9)

Native American or Alaskan 411 (3.5)

Native Hawaiian or Pacific Islander 37 (0.3)

Other race 799 (6.7)

Did not know or did not disclose 163 (1.3)

Ethnicity

Hispanic or Latinx 2407 (20.3)
a Counts for race exceed total sample count (n = 11 875) because parents were

permitted to endorse multiple racial categories to describe child’s racial
identity.
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associated with volume in right and left hemispheres of each of the prefrontal regions. Greater NP
was associated with volume in the DLPFC (eg, right DLPFC: β = −0.09; 95% CI, −0.12 to −0.07;
P < .001), DMPFC (eg, right DMPC: β = −0.07; 95% CI, −0.09 to −0.05; P < .001), and SFG (eg, right
SFG: β = −0.05; 95% CI, −0.08 to −0.03; P < .001). Follow-up exploratory analyses were conducted
to determine whether NP’s association with brain volume extended to other prefrontal regions.

SEM Analyses
For each cognitive task, the model (which included both prefrontal and hippocampal regions
simultaneously) was supported as a good fit for the databased on CFI, RMSEA, and SRMR indices
(Table 4). Both the prefrontal and hippocampal factors were significantly associated with NP
associations with picture vocabulary (prefrontal: estimate [SE], –0.03 [0.01]; P < .001; hippocampal:
estimate [SE], –0.01 [0.004]; P < .001), oral reading (prefrontal: estimate [SE], –0.02 [0.01];
P < .001; hippocampal: estimate [SE], –0.01 [0.004]; P < .001), and picture sequence (prefrontal:
estimate [SE], –0.01 [0.004]; P = .008; hippocampal: estimate [SE], –0.01 [0.004]; P < 0.01) tasks
(Table 4). However, only the prefrontal factor was significantly associated with NP associations with
the dimensional card sort (estimate [SE], –0.02 [0.01]; P = .001), flanker inhibitory control (estimate
[SE], –0.01 [0.01]; P = .01), and list sorting (estimate [SE], –0.03 [0.01]; P < .001) tasks.

Table 2. Model Output for NIHTB-CB Measures

NIHTB-CB measures

Neighborhood poverty Household income PRFQ

β (95% CIs) t P value β (95% CIs) t P value β (95% CIs) t P value
Model 1a

Picture vocabulary NA NA NA 0.36 (0.34 to 0.38) 34.82 <.001 –0.04 (–0.06 to –0.02) –2.63 .01

Oral reading NA NA NA 0.28 (0.26 to 0.3) 25.89 <.001 –0.04 (–0.06 to –0.02) –3.52 <.001

Dimensional card sort NA NA NA 0.18 (0.16 to 0.2) 16.7 <.001 –0.03 (–0.06 to –0.01) –3.08 <.01

Flanker inhibitory
control

NA NA NA 0.16 (0.14 to 0.19) 15.18 <.001 0.00 (–0.02 to 0.02) –0.2 .84

List sorting NA NA NA 0.28 (0.26 to 0.31) 26.73 <.001 –0.02 (–0.04 to 0) –1.62 .11

Pattern comparison NA NA NA 0.11 (0.09 to 0.13) 9.93 <.001 –0.02 (–0.04 to 0) –1.95 .05

Picture sequencing NA NA NA 0.18 (0.16 to 0.2) 16.75 <.001 –0.03 (–0.05 to –0.01) –2.76 .01

Total composite NA NA NA 0.38 (0.36 to 0.4) 36.91 <.001 –0.05 (–0.07 to –0.03) –4.35 <.001

Model 2b

Picture vocabulary –0.4 (–0.42 to –0.38) –35.85 <.001 NA NA NA NA NA NA

Oral reading –0.27 (–0.29 to –0.24) –23.3 <.001 NA NA NA NA NA NA

Dimensional card sort –0.22 (–0.25 to –0.2) –19.65 <.001 NA NA NA NA NA NA

Flanker inhibitory
control

–0.19 (–0.21 to –0.16) –16.26 <.001 NA NA NA NA NA NA

List sorting –0.3 (–0.32 to –0.27) –26.11 <.001 NA NA NA NA NA NA

Pattern comparison –0.14 (–0.17 to –0.12) –12.71 <.001 NA NA NA NA NA NA

Picture sequencing –0.19 (–0.21 to –0.17) –16.66 <.001 NA NA NA NA NA NA

Total composite –0.41 (–0.44 to –0.39) –37.05 <.001 NA NA NA NA NA NA

Model 3c

Picture vocabulary –0.18 (–0.21 to –0.15) –12.43 <.001 0.28 (0.25 to 0.3) 21.98 <.001 –0.04 (–0.06 to –0.02) –3.63 .11

Oral reading –0.07 (–0.1 to –0.04) –4.58 <.001 0.25 (0.22 to 0.27) 18.72 <.001 –0.04 (–0.06 to –0.02) –3.44 .11

Dimensional card sort –0.12 (–0.15 to –0.09) –7.72 <.001 0.13 (0.1 to 0.15) 9.63 <.001 –0.03 (–0.05 to 0.01) –2.76 .21

Flanker inhibitory
control

–0.1 (–0.13 to –0.07) –6.32 <.001 0.12 (0.1 to 0.15) 9.19 <.001 NA NA NA

List sorting –0.13 (–0.16 to –0.1) –8.62 <.001 0.23 (0.2 to 0.25) 17.4 <.001 NA NA NA

Pattern comparison –0.09 (–0.12 to –0.06) –6.16 <.001 0.07 (0.04 to 0.09) 5.03 <.001 NA NA NA

Picture sequencing –0.07 (–0.1 to –0.04) –4.84 <.001 0.14 (0.12 to 0.17) 10.8 <.001 –0.03 (–0.05 to –0.01) –2.36 .12

Total composite –0.18 (–0.21 to –0.15) –12.44 <.001 0.3 (0.28 to 0.33) 23.92 <.001 –0.04 (–0.06 to –0.2) –3.71 .12

Abbreviation: NA, not applicable; NIHTB-CB, National Institutes of Health Toolbox–
Cognitive Measures; PRFQ, Parent-Reported Financial Adversity Questionnaire.
a Model 1 included household income and PRFQ as factors with age and sex included as

covariates.

b Model 2 included neighborhood poverty as a factor with age and sex included as
covariates.

c Model 3 included household income, PRFQ, and neighborhood poverty as factors with
age and sex included as covariates.
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Discussion

Consistent with our hypothesis, the results of this study indicated that NP was significantly
associated with a range of cognitive function domains as well as bilateral prefrontal and right
hippocampal volumes, even after accounting for individual household income and PRFQ.
Furthermore, the SEMs provided evidence that it is plausible that variation in prefrontal and
hippocampal brain volume may mediate the association between NP and cognitive outcomes, with
the relative contributions of prefrontal vs hippocampal volumes varying across cognitive domains.
The effect sizes for associations with household SES were generally stronger than those for NP;
therefore, we are not arguing that NP is more important than household SES. However, the fact that
NP accounted for variance in addition to household SES supports the idea that consideration of the
neighborhood context is important in conceptualizing the complex environment of the
developing brain.

Higher levels of NP were independently and significantly associated with lower scores on all
cognitive domains. Standardized effect sizes were conventionally small but nonetheless meaningful
in indicating the need to assess the ways in which neighborhood characteristics may contribute to
brain structure and cognitive development, as even small differences could build over time into
larger differences in functional outcomes. These findings are consistent with previous literature

Table 3. Model Output for Brain Regions of Interest

Brain ROIs

Neighborhood poverty Household income PRFQ

β (95% CIs) t P value β (95% CIs) t P value β (95% CIs) t P value
Model 1a

Right hippocampus NA NA NA 0.06 (0.05 to 0.08) 7.16 <.001 –0.02 (–0.04 to –0.01) –2.63 .01

Left hippocampus NA NA NA 0.07 (0.05 to 0.09) 7.73 <.001 –0.01 (–0.03 to 0.01) –1.32 .19

Right SFG NA NA NA 0.10 (0.08 to 0.12) 11.35 <.001 –0.02 (–0.03 to 0) –1.78 .09

Left SFG NA NA NA 0.09 (0.07 to 0.10) 10.22 <.001 –0.01 (–0.03 to 0) –1.73 .09

Right DLPFC NA NA NA 0.12 (0.10 to 0.13) 14.58 <.001 –0.02 (–0.03 to 0) –2.35 .03

Left DLPFC NA NA NA 0.11 (0.10 to 0.13) 14.39 <.001 –0.01 (–0.03 to 0) –1.93 .07

Right DMPFC NA NA NA 0.10 (0.08 to 0.12) 12.56 <.001 –0.02 (–0.04 to –0.01) –2.68 .01

Left DMPFC NA NA NA 0.10 (0.08 to 0.11) 12.25 <.001 –0.02 (–0.03 to 0) –2.5 .01

Model 2b

Right hippocampus –0.08 (–0.10 to –0.06) –8.35 <.001 NA NA NA NA NA NA

Left hippocampus –0.06 (–0.08 to –0.05) –6.77 .04 NA NA NA NA NA NA

Right SFG –0.11 (–0.12 to –0.09) –11.5 <.001 NA NA NA NA NA NA

Left SFG –0.10 (–0.12 to –0.08) –10.97 <.001 NA NA NA NA NA NA

Right DLPFC –0.15 (–0.17 to –0.13) –17.5 <.001 NA NA NA NA NA NA

Left DLPFC –0.13 (–0.15 to –0.12) –16.75 <.001 NA NA NA NA NA NA

Right DMPFC –0.12 (–0.13 to –0.1) –14.21 <.001 NA NA NA NA NA NA

Left DMPFC –0.11 (–0.12 to –0.09) –13.98 <.001 NA NA NA NA NA NA

Model 3c

Right hippocampus –0.04 (–0.06 to –0.01) –2.89 .01 0.04 (0.02 to 0.07) 4.14 <.001 –0.02 (–0.04 to –0.01) –2.6 .05

Left hippocampus –0.02 (–0.04 to –0.01) –1.29 .21 0.06 (0.04 to 0.08) 5.55 <.001 NA NA NA

Right SFG –0.05 (–0.08 to –0.03) –4.24 <.001 0.08 (0.06 to 0.1) 7.4 <.001 NA NA NA

Left SFG –0.05 (–0.07 to –0.03) –4.29 <.001 0.07 (0.05 to 0.09) 6.43 <.001 NA NA NA

Right DLPFC –0.09 (–0.12 to –0.07) –8.43 <.001 0.08 (0.06 to 0.1) 7.83 <.001 –0.01 (–0.03 to 0) –1.68 .09

Left DLPFC –0.08 (–0.1 to –0.06) –7.7 <.001 0.07 (0.06 to 0.09) 8.06 <.001 NA NA NA

Right DMPFC –0.07 (–0.09 to –0.05) –6.08 <.001 0.07 (0.05 to 0.09) 7.54 <.001 –0.01 (–0.03 to 0) –1.72 .12

Left DMPFC –0.06 (–0.08 to –0.04) –5.88 <.001 0.07 (0.05 to 0.08) 7.25 <.001 –0.01 (–0.03 to 0) –1.69 .12

Abbreviations: DLPFC, dorsal lateral prefrontal cortex; DMPFC, dorsal medial prefrontal
cortex; NA, not applicable; PRFQ, Parent-Reported Financial Adversity Questionnaire;
ROI, region of interest; SFG, superior frontal gyrus.
a Model 1 included household income and PRFQ as factors with age, sex, and intracranial

volume included as covariates.

b Model 2 included neighborhood poverty as a factor, with age, sex, and intracranial
volume included as covariates.

c Model 3 included household income, PRFQ, and neighborhood poverty as factors with
age, sex, and intracranial volume included as covariates.
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demonstrating poorer school and cognitive performance among children raised in impoverished
environments1,3,4,46 and provide further support for the importance of consideration of the
neighborhood context in understanding child outcomes. A key question is what aspects of NP are
critical for explaining cognitive function among children that are not fully accounted for by individual
household function. A possibility is that the neighborhood context might be associated with school
environment and/or funding, and the development of a range of cognitive processes are likely
sensitive to school context and resources. Future research should include indices of local school
context to investigate this hypothesis further. Importantly, the size and nature of the sample
(mirroring the US child population) suggest that these findings are likely to be generalizable to
broader normative populations.

Consistent with prior literature,6-12 higher household income was associated with increased
volumes in all hippocampal and prefrontal brain regions. Additionally, higher NP was significantly and
independently associated with reduced brain volume in DLPFC, DMPFC, SFG, and right hippocampal
regions. Interestingly, the effect sizes for both NP and household SES variables’ association with brain

Table 4. Model Output for SEM Analyses Investigating Plausibility of Mediationa

Factor

Path a, NP and brain factors
Path b, brain factors
and cognitive tasks Path a × b, indirect effect

Path c, NP and cognitive tasks
with brain factors in model

Estimate (SE) z P value Estimate (SE) z P value Estimate (SE) z P value Estimate (SE) z P value
Picture vocabulary

NP NA NA NA NA NA NA NA NA NA –0.15 (0.02) –10.26 <.001

Prefrontal factor –0.23 (0.01) –21.27 <.001 0.15 (0.02) 7.41 <.001 –0.03 (0.01) –7.02 <.001 NA NA NA

Hippocampal
factor

–0.19 (0.01) –16.15 <.001 0.07 (0.02) 3.87 <.001 –0.01 (0.004) –3.77 <.001 NA NA NA

Oral reading

NP NA NA NA NA NA NA NA NA NA –0.06 (0.02) –3.61 <.001

Prefrontal Factor –0.23 (0.01) –21.27 <.001 0.08 (0.02) 3.82 <.001 –0.02 (0.01) –3.75 <.001 NA NA NA

Hippocampal
factor

–0.19 (0.01) –16.15 <.001 0.07 (0.02) 3.68 <.001 –0.01 (0.004) –3.52 <.001 NA NA NA

Dimensional card sort

NP NA NA NA NA NA NA NA NA –0.1 (0.02) –6.75 <.001

Prefrontal factor –0.23 (0.01) –21.27 <.001 0.07 (0.02) 3.33 <.01 –0.02 (0.01) –3.27 .001 NA NA NA

Hippocampal
factor

–0.19 (0.01) –16.15 <.001 0.04 (0.02) 1.9 .06 –0.01 (0.004) –1.89 .06 NA NA NA

Flanker inhibitory control

NP NA NA NA NA NA NA NA NA NA –0.08 (0.02) –4.63 <.001

Prefrontal factor –0.23 (0.01) –21.27 <.001 0.06 (0.02) 2.64 .01 –0.01 (0.01) –2.62 .01 NA NA NA

Hippocampal
factor

–0.19 (0.01) –16.15 <.001 0.04 (0.02) 1.85 .06 –0.01 (0.004) –1.84 .07 NA NA NA

List sorting

NP NA NA NA NA NA NA NA NA NA –0.12 (0.02) –7.63 <.001

Prefrontal factor –0.23 (0.01) –21.27 <.001 0.12 (0.02) 5.73 <.001 –0.03 (0.01) –5.56 <.001 NA NA NA

Hippocampal
factor

–0.19 (0.01) –16.15 <.001 0.02 (0.02) 0.92 .36 –0.01 (0.004) –0.92 .36 NA NA NA

Pattern comparison

NP NA NA NA NA NA NA NA NA NA –0.07 (0.02) –4.5 <.001

Prefrontal factor –0.23 (0.01) –21.27 <.001 0.04 (0.02) 1.83 .07 –0.01 (0.01) –1.82 .07 NA NA NA

Hippocampal
factor

–0.19 (0.01) –16.15 <.001 0.02 (0.02) 1.16 .25 –0.01 (0.004) –1.15 .25 NA NA NA

Picture sequence

NP NA NA NA NA NA NA NA NA NA –0.07 (0.02) –4.32 <.001

Prefrontal factor –0.23 (0.01) –21.27 <.001 0.06 (0.02) 2.97 .008 –0.02 (0.01) –2.93 <.001 NA NA NA

Hippocampal
factor

–0.19 (0.01) –16.15 <.001 0.07 (0.02) 3.49 <.001 –0.01 (0.004) –3.42 <.001 NA NA NA

Abbreviations: NA, not applicable; NP, neighborhood poverty.
a Covariates included: age, sex, household income, and intracranial volume. Fit indices

suggest that models were a good fit for the data: Prefrontal models (CFI = 0.936,

RMSEA = 0.087, SRMR = 0.071); Hippocampal models (CFI = 0.940, RMSEA = 0.084,
SRMR = 0.053). NP was modeled as the predictor with prefrontal and hippocampal
factors as mediators, with separate cognitive tasks as the outcome (7 models total).
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volume were smaller than those for the cognitive measures. It is possible that the bigger effect sizes
for cognitive function reflect a strong association between NP and school funding and quality, which
may have a stronger association with cognitive function than brain metrics. In contrast, our NP
measure may not be as strongly associated with other potential correlates, which may be more
directly related to brain development. For example, individuals living in poverty are more likely to be
exposed to lead and air pollutants in childhood.47-49 As such, it will be important to look at lead (and
other toxin) exposure to determine whether it might be associated with brain volume in ways not
captured by the current measure of NP. Additionally, NP was not independently associated with
orbitofrontal cortex volume, suggesting that some specificity in NP relations to prefrontal regions
(eAppendix 10 in the Supplement).

The SEM results provided evidence that prefrontal and hippocampal brain volumes explained
variance in the association between NP and cognitive task performance, even when controlling for
household income. Interestingly, the relative associations of prefrontal cortex and hippocampal
volumes varied across cognitive measures. Both prefrontal and hippocampal volumes were
significantly associated with the associations between NP and tasks indexing language ability and
crystallized intelligence.50,51 The hippocampus is important for the consolidation of long-term
information, and the role of the prefrontal cortex in language processing and production has been
well-established.52-54 Similarly, both prefrontal and hippocampal volumes were significantly
associated with the association between NP and episodic memory. This is consistent with a large
body of literature identifying the hippocampus as critical for consolidation of episodic memories with
prefrontal regions providing organizational support for encoding.11,12,55 In contrast, only prefrontal
volumes were significantly associated with the association between NP and executive function and
working memory tasks. This finding is consistent with literature suggesting that prefrontal regions
support the top-down processing of stimuli, allowing for flexible and nonautomatic behavioral
responses.56 These results provide evidence supporting the plausibility of a mediation, which can be
assessed in subsequent studies as additional waves of data are collected.

Limitations
This study has limitations. All of the neighborhood variables were focused on SES. The inclusion of
other neighborhood characteristics that may not directly index SES (physical or social factors such as
number of grocery stores, green space, amount of litter, air pollution)47-49 might further elucidate
associations between environmental context and various outcomes.57 Another limitation is that the
current data set is cross-sectional, which means that direction of association cannot be determined.
As additional waves of ABCD data accrue, the models tested here should be extended longitudinally
to make a more compelling case for mediation and direction of effect.

Conclusions

This study found evidence for independent associations of household and neighborhood
environment with brain and cognitive outcomes in preadolescent children. The study also provided
evidence consistent with a pathway wherein variation in prefrontal and hippocampal volume
partially explains the association between NP and scores on cognitive tests. The differential
prefrontal and hippocampal associations are consistent with what would be expected for the
different cognitive domains. These results provide evidence that the inclusion of neighborhood
variables is a warranted addition in models of how early lived environments are associated with brain
maturation and cognitive outcomes, which may inform the types of interventions offered to children
from disadvantaged backgrounds.
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