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[1] We propose a methodology to assess the noise characteristics in time series of
position estimates for permanent Global Positioning System (GPS) stations. Least squares
variance component estimation (LS-VCE) is adopted to cope with any type of noise
in the data. LS-VCE inherently provides the precision of (co)variance estimators. One can
also apply statistical hypothesis testing in conjunction with LS-VCE. Using the w-test
statistic, a combination of white noise and flicker noise turns out in general to best
characterize the noise in all three position components. An interpretation for the colored
noise of the series is given. Unmodelled periodic effects in the data will be captured
by a set of harmonic functions for which we rely on the least squares harmonic estimation
(LS-HE) method and parameter significance testing developed in the same framework
as LS-VCE. Having included harmonic functions into the model, practically only
white noise can be shown to remain in the data. Remaining time correlation, present
only at very high frequencies (spanning a few days only), is expressed as a first-order
autoregressive noise process. It can be caused by common and well-known sources
of errors like atmospheric effects as well as satellite orbit errors. The autoregressive noise
should be included in the stochastic model to avoid the overestimation (upward bias)
of power law noise. The results confirm the presence of annual and semiannual signals
in the series. We observed also significant periodic patterns with periods of 350 days
and its fractions 350/n, n = 2, . . ., 8 that resemble the repeat time of the GPS constellation.
Neglecting these harmonic signals in the functional model can seriously overestimate
the rate uncertainty.
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1. Introduction

[2] Continuous Global Positioning System (GPS) meas-
urements have been used now nearly 15 years for estimation
of crustal deformation. Station positions are determined
with respect to an earth-fixed terrestrial reference system.
Geophysical studies using geodetic measurements of surface
displacement or strain require not only accurate estimates
of these parameters but also accurate error estimates. The
precision of these estimates is often assessed by their repeat-
ability defined by the mean squared error of individual
coordinate components (i.e., north, east, and vertical) about
a linear trend. Except for the significant episodic defor-
mation, such as large earthquakes, a linear trend can be
a good representative of the deformation behavior. The
site velocities are usually determined by linear regression
of individual coordinate components. The least squares

technique is used to estimate the line parameters, i.e., the
intercept and the slope (site velocity).
[3] In the ideal case, it is desired that the time series

possess only white noise and all functional effects are fully
understood. The noise in GPS coordinate time series turns
out not to be white. Several geodetic data sets have provided
evidence for error sources that introduce large temporal
correlations into the data. The ultimate goal of noise studies
is to come up with a stochastic model that allows one to
process the coordinate time series such that the ‘‘best’’
solution (most precise solution together with proper preci-
sion description) of the station positions and site velocities
can be determined. An intermediate goal is therefore to
better understand and to identify the various noise compo-
nents of the stochastic model.
[4] Two techniques have generally been employed to

assess the noise characteristics of geodetic time series,
namely, the power spectral method and the maximum
likelihood estimation (MLE) method. The former is aimed
to examine the data in the frequency domain while the latter
is used to examine the data covariance matrix in the time
(space) domain. The MLE can estimate the parameters of a
noise model effectively in contrast to the classical power
spectra techniques. In this contribution, we will not make
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use of the spectral techniques. The MLE method is gener-
ally used to compute the amount of white noise, flicker
noise, and random walk noise in the time series [see, e.g.,
Zhang et al., 1997; Langbein and Johnson, 1997; Mao et
al., 1999; Williams et al., 2004; Langbein, 2004]. In this
paper, we introduce and use a different variance component
estimation method based on the least squares principle. Our
motivation is given in the next section.

2. Previous Work and Outline

[5] Zhang et al. [1997] processed 19 months of continu-
ous GPS coordinates from 10 sites in southern California.
Using MLE with integer spectral indices, they found that the
noise in the GPS time series was best described as a
combination of white noise and flicker noise. This combina-
tion suggested that the velocity uncertainties should be three
to six times larger than those obtained from a pure white
noise model. Using the power spectra, the noise was char-
acterized by a fractal noise process with a spectral index of
�0.4. Neglecting this fractal white noise model, site velocity
uncertainties could be underestimated by a factor of 2–4.
In an analogous way, Calais [1999], Mao et al. [1999], and
Williams et al. [2004] found that GPS position time series
best fitted a noise model consisting of both white noise and
flicker noise. Higher frequency (1–30 s) GPS position time
series have also been shown to contain white plus flicker
noise [Bock et al., 2000; Langbein and Bock, 2004].
[6] Several studies have also recognized random walk

noise in geodetic data. Random walk noise was detected in
continuous measurements of strainmeters as well as very
short baseline GPS data at Piñon Flat Observatory in
southern California [Wyatt, 1982, 1989; Wyatt et al., 1989;
Johnson and Agnew, 2000]. Langbein and Johnson [1995,
1997] showed that the noise in the electronic distance
measuring (EDM) data is well characterized by a combina-
tion of white and random walk noise. The random walk
amplitude for a very short baseline at Piñon Flat Observa-
tory is only 0.4 mm/year1/2 [Johnson and Agnew, 2000].
Beavan [2005] shows that the noise properties of GPS time
series for concrete pillar monuments are very similar to
those of deeply drilled braced monuments. Using two-color
EDM measurements in California, Langbein [2004] shows
that the random walk noise model is valid for about 30% of
the data. In some cases, a combination of random walk and
band-pass-filtered noise best characterizes the data.
[7] Site position time series obtained from continuous

GPS arrays show significant seasonal variations with annual
and semiannual periods. Such seasonal deformation is
present in both global and regional GPS coordinate time
series [see van Dam et al., 2001; Dong et al., 2002]. Kusche
and Schrama [2005] show that after removing the atmo-
spheric pressure loading effect, estimated annual variations
of continental scale mass redistribution exhibit patterns
similar to those obtained with Gravity Recovery and Climate
Experiment (GRACE). Ding et al. [2005] used time series
of daily positions of eight colocated GPS and very long
baseline interferometry (VLBI) stations to assess the seasonal
signals using the wavelet transform. Blewitt and Lavallée
[2002] showed that annual signals can significantly bias the
site velocity if they are not estimated in the model. Another
important systematic error in GPS time series is the presence

of offsets (jumps). Williams [2003b] and Perfetti [2006]
discuss offset detection and estimation strategies. Kenyeres
and Bruyninx [2004] estimate offsets for coordinate time
series in the EUREF permanent network.
[8] This study differs in several ways from previous

work. We use the least squares variance component estima-
tion (LS-VCE) method, which has attractive and unique
features that we point out in this paper. First, LS-VCE is
generally applicable and can cope with any type of noise
(and with any number of noise components) in the data
series. The method can be implemented in a relatively
simple and straightforward manner. Second, using LS-VCE
one can obtain the covariance matrix of the estimators
describing the uncertainty of the (co)variance components.
Third, the general formulation of LS-VCE is applied to a
special case to estimate time correlation assuming that the
time series are stationary in time. Fourth, we introduce the
w-test statistic with which one can simply test the ‘‘contri-
bution’’ of single noise components. One can determine
which noise combination best characterizes the noise of GPS
position time series. In the same framework as LS-VCE,
we then introduce the least squares harmonic estimation
(LS-HE) method. The goal is to introduce harmonic
functions to capture unmodelled effects in the time series.
It is shown that practically only white noise remains, which
is attractive from the data processing point of view. Such a
duality between the stochastic and the functional model is
useful to be able to correctly judge on the amount and the
behavior of noise.

3. Variance Component Estimation (VCE)

[9] In this section, we briefly explain the power spectrum
of a power law noise process, the maximum likelihood
estimation (MLE) of variance components, the least squares
variance component estimation (LS-VCE), and the model-
ing approach and misspecification of a noise process.

3.1. Introduction to Noise Process

[10] The power spectra, Py, of many geophysical pheno-
mena, including the noise in GPS position time series, are
well approximated by a power law process [Mandelbrot,
1983; Agnew, 1992; Mao et al., 1999; Williams, 2003a;
Williams et al., 2004]. The one-dimensional time behavior
of the stochastic process is such that its power spectrum has
the form

Py fð Þ ¼ P0

f

f0

� �k

ð1Þ

where f is the temporal frequency, P0 and f0 are the
normalizing constants, and k is the spectral index [see, e.g.,
Mandelbrot and van Ness, 1968]. Typical spectral index
values lie within [�3, 1]; for stationary processes�1 < k < 1
and for nonstationary processes �3 < k < �1. A smaller
spectral index implies a more correlated process and a more
relative power at lower frequencies. Special cases within this
stochastic process occur at the integer values for k. Classical
white noise has a spectral index of 0, flicker noise has a
spectral index of �1, and random walk noise has a spectral
index of�2. The power spectral method can be employed to
assess the noise characteristic of GPS time series.
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[11] The second way is to use (co)variance component
estimation (VCE) methods. The role of the data series
covariance matrix is considered to be an important element
with respect to the quality criteria of the unknown param-
eters. Therefore VCE methods are of great importance.
There are many VCE methods, a review of which is out
of the scope of this contribution. For more information on
VCE methods and their applications to GPS data, refer to
Crocetto et al. [2000], Wang et al. [2002], Tiberius and
Kenselaar [2003], Amiri-Simkooei and Tiberius [2004],
Zhang et al. [2004], and Bischoff et al. [2005].
[12] The noise components of GPS coordinate time

series, i.e., white noise, flicker noise, and random walk
noise, are usually estimated by the MLE method, which is a
well-known estimation principle. The MLE problem can be
solved in several ways [see Kubik, 1970; Koch, 1986; Ou,
1989; Yu, 1996; Grodecki, 1999, 2001]. In time series
analysis of GPS coordinates, the MLE is described by
Langbein and Johnson [1997], Zhang et al. [1997], Calais
[1999], Mao et al. [1999], and Williams et al. [2004]. They
all selected the downhill simplex method developed by
Nelder and Mead [Press et al., 1992]. Using expressions
given by Sahin et al. [1992], some authors used a simplified
algorithm for VCE [see Davies and Blewitt, 2000; Altamimi
et al., 2002].

3.2. Least Squares Variance Component Estimation

[13] Least squares variance component estimation (LS-
VCE) was developed by Teunissen [1988]. For a review, see
Teunissen and Amiri-Simkooei [2006, 2007] and Amiri-
Simkooei [2007]. Consider the linear model of observa-
tion equations with p-number of unknown (co)variance
components

E y
� �

¼ Ax; D y
� �

¼ Qy ¼ Q0 þ
X

p

k¼1

skQk ð2Þ

where an underscore indicates that a quantity is a random
variable and E and D are the expectation and dispersion
operators, respectively. In the preceding functional model,
y is the m-vector of observables, x is the n-vector of
parameters of interest, and the m � n design matrix A is to
be of full column rank. The data covariance matrix Qy is
expressed as an unknown linear combination of known
m � m cofactor matrices Qk’s. Q0 is the known part (if
any) of the stochastic model; it also allows one to use a
nonlinear stochastic model (see section 6.5). The unknown
(co)variance components sk, k = 1, . . ., p are to be estimated.
[14] To apply the least squares method to (co)variance

component model, one can reformulate the second part of
equation (2) in terms of a model of observation equations as
E(vh(ttT � BTQ0B)) = Avhs, where s = [s1, � � �, sp]

T, t =
BTy, and Avh = [vh(BTQ1B), . . ., vh(B

TQpB)] in which vh
(vector-half) operator applies to symmetric matrices and B
is an m � (m � n) matrix of which the m � n linearly
independent columns span the null-space of AT, i.e., AT

B = 0
or BT

A = 0.
[15] The least squares estimator for the p-vector of

unknown (co)variance components can then be obtained as

ŝ ¼ AT
vhQ

�1
vh Avh

� ��1
AT

vhQ
�1
vh vh ttT � BTQ0B

� �

¼ N�1l ð3Þ

where Qvh is the covariance matrix of the observables
vh(ttT). One can show that the entries of the p � p normal
matrix N and of the p-vector l are obtained as

nkl ¼
1

2
tr Q�1

y P?
AQkQ

�1
y P?

AQl

� �

; k; l ¼ 1; 2; . . . ; p ð4Þ

and

lk ¼
1

2
êTQ�1

y QkQ
�1
y ê�

1

2
tr QkQ

�1
y P?

AQ0Q
�1
y P?

A

� �

ð5Þ

where k = 1, 2, . . ., p and the least squares residual vector
ê = PA

?y in which the orthogonal projector PA
? is given as

P?
A ¼ I� A ATQ�1

y A
� ��1

ATQ�1
y ð6Þ

with I an identity matrix. Since the estimators ŝ are based
on the least squares method, the inverse of the normal
matrix N automatically gives the covariance matrix of the
estimated (co)variance components

Qŝ ¼ N�1 ð7Þ

Therefore this equation offers us measures of precision for
the estimators.
[16] To implement the method, one starts with an initial

guess for the (co)variance components (sk
0, k = 1, . . ., p).

Using these values, one computes Qy = Q0 +
Pp

k¼1sk
0
Qk.

Equation ŝ = N
�1l with equations (4) and (5) gives

estimates for the sk, k = 1, . . ., p, which in the next cycle
are considered as an improved initial guess for those (co)-
variance components. This iterative procedure is repeated
until the estimated (co)variance components do not change
with further iterations. In this section, we considered a linear
stochastic model. LS-VCE can also be applied to a non-
linear stochastic model, namely, Qy = Q(s). To overcome
the nonlinearity, one can expand the model into a Taylor
series for which one needs the initial values of the unknown
vector s, namely, s0. After linearization, one obtains a
linear form of the (co)variance component model and thus
equation (3) can be used [see Amiri-Simkooei, 2007].
[17] In contrast to MLE which gives biased estimators,

LS-VCE provides unbiased and minimum variance estima-
tors. The unbiasedness property is independent of the
(unspecified) distribution of the data. LS-VCE is also faster
than MLE since it iterates in a Newton–Raphson scheme
toward a solution rather than using the downhill simplex
which can be extremely slow [see Press et al., 1992]. With
LS-VCE one can thus efficiently incorporate any number of
noise components in the stochastic model. Using hypothesis
testing, one can also simply judge in an objective manner
which noise components are likely to be present in the series
(see section 5.2).

3.3. Misspecification in Functional and
Stochastic Model

[18] Misspecifications (errors) in the functional model
and/or stochastic model will, in general, affect the optimal-
ity properties of the estimators. This also holds true for
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variance component estimation. It is therefore of interest to
understand how such misspecifications affect the result of
estimation. Without treating this topic in detail, it is relevant
to briefly mention some of these effects. Concerning the
number of parameters in the model E(y ) = Ax and Qy =
Q0 +

Pp
k¼1skQk, two types of misspecifications can occur:

overparametrization and underparametrization.
[19] Underparametrization in the functional model E(y ) =

Ax will generally lead to biases in the estimation of x and
thus also in the results of variance component estimation
(aliasing). Such biases in the results of VCE may have the
side effect, that they become misinterpreted as an under-
parametrization of the stochastic model (see section 5.3). In
contrast to underparametrization, overparametrization in the
functional model does not lead to biases in the estimation of
x. Here, however, one has to be aware that overparame-
trization reduces the redundancy and therefore also the
precision with which the results can be obtained. This is true
for the estimation of x, as well as for the estimation of the
(co)variance components.
[20] Misspecifications in the stochastic model will not

lead to biases in the estimation of x. However, under-
parametrization in the stochastic model will lead to biases
in the estimation of the (co)variance components, as a
consequence of which an incorrect precision description
is obtained for the estimator of x. To discuss this effect, let
Qy be the correct covariance matrix and Q0

y be the
incorrect one. The least squares estimator of x, based on
Q0

y, is then given as x̂ = (ATQ0�1
y A)�1ATQ0�1

y y. This
estimator is still unbiased [see Teunissen et al., 2005]. Its
covariance matrix follows from an application of the error
propagation law as

Qx̂ ¼ ATQ0�1
y A

� ��1

ATQ0�1
y QyQ

0�1
y A ATQ0�1

y A
� ��1

ð8Þ

If one believes that Q0
y is the correct covariance matrix,

while it is not, one will use the matrix Q0
x = (ATQ0�1

y A)�1

to describe the precision of x̂. This matrix, however, gives
an incorrect precision description, which can either be too
optimistic (Qx̂ 
 Q0

x) or too pessimistic (Qx̂ � Q0
x).

Comparisons of precision descriptions for different stochas-
tic models are given in section 6.6.

4. GPS Coordinate Time Series

[21] This section demonstrates how to estimate the time
correlation of GPS coordinate time series using LS-VCE.
We rely on a commonly accepted structure of the functional
and stochastic model and eventually arrive at a simple
expression.

4.1. Functional Model

[22] We restrict ourselves to the problem of time correla-
tion estimation for an individual component of GPS coor-
dinate time series. In equation (2), y is the m-vector of time
series observations, for example, daily GPS positions of one
component. Hereinafter it is denoted by y(t) where t refers to
the time instant. When a linear trend describes the defor-
mation behavior, the functional model will read: E(y(t)) =

y0 + rt. When there are in addition q periodic signals in the
data series, the functional model is extended to

E y tð Þð Þ ¼ y0 þ r t þ
X

q

k¼1

ak coswk t þ bk sinwk t ð9Þ

Two trigonometrical terms cos and sin together represent a
sinusoidal wave with in general a nonzero initial phase. The
structure introduced above has the advantage of being
linear. The unknown vector x consists of the intercept y0, the
slope r, and the coefficients ak and bk. In case of a linear
trend and annual and semiannual signals (q = 2), the design
matrix A is of size m � 6. Its ith row at time instant ti is
given as

ai ¼ 1 ti cos 2pti sin 2pti cos 4pti sin 4pti½  ð10Þ

where ti is expressed in terms of year. In section 5.1, we
show how to obtain an appropriate functional model.

4.2. Stochastic Model

[23] If the time series of GPS coordinates is composed of
white noise, flicker noise, and random walk noise with
variances sw

2 , sf
2, and srw

2 , respectively, the covariance
matrix of the time series can then be written as (Q0 = 0)

Qy ¼ s2
wIþ s2

fQf þ s2
rwQrw ð11Þ

where I is the m � m identity matrix and Qf and Qrw are
the cofactor matrices relating to flicker noise and random
walk noise, respectively. The structure of Qy matrix is
known through I, Qf, and Qrw, but the contributions through
sw, sf, and srw are unknown. In section 5.2, we show how
to improve an existing stochastic model.
[24] The elements of the flicker noise cofactor matrix Qf

can be approximated by [Zhang et al., 1997]

q
fð Þ

ij ¼

9

8
if t ¼ 0

9

8
1�

log t= log 2þ 2

24

� �

if t 6¼ 0

8

>

<

>

:

ð12Þ

where t = jtj � tij. For evenly spaced data, the matrix Qf is
a symmetric Toeplitz matrix that contains constant values
along negative-sloping diagonals. It is important to note that
the Hosking flicker noise covariance matrix, which was
introduced and used by Williams [2003a], Langbein [2004],
Williams et al. [2004], and Beavan [2005], can also be used.
The main difference is a scaling of the amplitudes. Therefore
the flicker noise variances we use here are roughly one half
the size of those quoted in these papers.
[25] A random walk process is derived by integrating

white noise. Random walk noise is supposed to be zero at
initial time t0. For evenly spaced data, the random walk
cofactor matrix Qrw is expressed as

Qrw ¼ f �1
s

1 1 � � � 1

1 2 � � � 2

..

. ..
. . .

. ..
.

1 2 � � � m

2

6

6

4

3

7

7

5

; fs ¼
m� 1

T
ð13Þ
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where fs is the sampling frequency in year�1, and T is the
total observation span [Johnson and Wyatt, 1994; Zhang et
al., 1997; Mao et al., 1999].
[26] The variance components sw

2 , sf
2, and srw

2 can now
be estimated using the LS-VCE method.

4.3. Estimation of Time Correlation

[27] Let us now consider a stationary noise process. This
process does not contain the random walk noise, i.e., srw =
0 in equation (11). We consider a side-diagonal structure for
the covariance matrix Qy. This implies that the correlation
between time series observations is only a function of time-
lag t = jtj � tij, i.e., sij = st. This structure is in fact similar
to that of flicker noise introduced in equation (12). The only
difference is that for flicker noise we have one variance as a
scale, namely, sf

2, but here we employ one (unknown)
covariance for each time-lag, namely, m components all
together. The covariance matrix can then be written as a
linear combination of m cofactor matrices

Qy ¼ s2Iþ
X

m�1

t¼1

stQt ð14Þ

where, for each value of t, the m � m cofactor matrix Qt

has only two parallel side-diagonals of ones located on both
sides of the main diagonal and t steps away.
[28] We can now apply the general LS-VCE approach to

the special case of estimating time correlation in the time
series. If we measure a functionally known quantity (E(y) =
my in equation (2)), it can be shown that the (co)variances
are simply estimated as [Teunissen and Amiri-Simkooei,
2007]

ŝt ¼

Pm�t
i¼1 êiêiþt

m� t
; t ¼ 0; 1; . . . ;m� 1 ð15Þ

where the scalar êi is the ith element of the residual vector
ê = PA

?y. When t = 0, the preceding equation gives the well-
known expression for the estimator of the variance ŝ0 = ŝ2.
Equation (15) is identical to the so-called unbiased estimator
for the autocorrelation function (ACF) of stationary zero-
mean least squares residuals [Priestley, 1981]. The biased
estimate obtained from MLE uses m instead of m � t in the
denominator of equation (15).
[29] One can also compute the correlation coefficients

that together represent the empirical autocorrelation func-
tion (ACF)

r̂
t
¼

ŝt

ŝ2
; t ¼ 1; 2; . . . ;m� 1 ð16Þ

Application of the error propagation law to the linearized
form of the preceding equation gives

s2
r̂t

¼
1

m� t
þ
2r2t
m

ð17Þ

which shows that the precision of the autocorrelation
function gets poorer when t increases. This means that the

correlation of long-memory processes is poorly estimable
for large time-lags t. Therefore when there exists a
predefined noise process like power law noise, one may
however still prefer to use that structure which is also
readily possible with LS-VCE, and the above formulation of
time correlation remains to get a general impression of the
noise behavior (see section 6.3.1).

5. Model Identification

5.1. Least Squares Harmonic Estimation (LS-HE)

[30] In this section, we aim to determine an adequate
design matrix, A, for the functional model through param-
eter significance testing. For a time series yT = [y1, y2, . . .,
ym] defined on Rm, we assume that it can be expressed as a
linear trend plus a sum of q individual trigonometric terms,
i.e., E(y(t)) = y0 + rt +

Pq
k¼1 ak cos wkt + bk sin wkt (see

equation (9)). In matrix notation, we may write

E y
� �

¼ Axþ
X

q

k¼1

Akxk ; D y
� �

¼ Qy ð18Þ

where the design matrix A contains two columns of the
linear regression terms and the matrix Ak consists of two
columns corresponding to the frequency wk of the sinusoidal
function

Ak ¼

coswk t1 sinwk t1
coswk t2 sinwk t2

..

. ..
.

coswk tm sinwk tm

2

6

6

6

4

3

7

7

7

5

and xk ¼
ak
bk

� �

ð19Þ

with ak, bk, and wk being (un)known real numbers. On the
one hand, if the frequencies wk are known, one will deal
with the most popular (linear) least squares problem to
estimate amplitudes ak and bk’s. Petrov and Ma [2003]
studied harmonic position variations of 40 VLBI stations at
32 known tidal frequencies. They found that the estimates
of station displacements generally agree with the ocean
loading computed on the basis of modern ocean tide models
for the main diurnal and semidiurnal tides. On the other
hand, if the frequencies wk are unknown, the problem of
finding these unknown parameters is the task of least
squares harmonic estimation.
[31] The problem now is to find the set of frequencies w1,

� � �, wq, and in particular the value q, in equation (18). The
following null and alternative hypotheses are put forward
(to start, set i = 1):

H0 : E y
� �

¼ Axþ
X

i�1

k¼1

Akxk ð20Þ

versus

Ha : E y
� �

¼ Axþ
X

i

k¼1

Akxk ð21Þ

The detection and validation of wi is completed through the
following two steps:
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[32] Step I: The goal is to find the frequency wi (and
correspondingly Ai) by solving the following minimization
problem:

wi ¼ argmin
wj

P?
A Aj½ y

�

�

�

�

�

�

�

�

2

Q�1
y

¼ argmin
wj

êak k2Q�1
y

ð22Þ

where k.k2
Q�1

y
= (.)TQy

�1(.), A = [A A1 . . . Ai�1] and êa is the
least squares residuals under the alternative hypothesis. The
matrix Aj has the same structure as Ak in equation (19); the
one that minimizes the preceding criterion is set to be Ai.
The above minimization problem is equivalent to the
following maximization problem [Teunissen, 2000, p. 96]:

wi ¼ argmax
wj

P
Aj
y

�

�

�

�

�

�

2

Q�1
y

; with Aj ¼ P?
A
Aj ð23Þ

where P
A
? = I � A(AT

Qy
�1
A)�1

A
T
Qy

�1 and P
Aj

=

Aj(Aj
T
Qy

�1
Aj)

�1
Aj
T
Qy

�1. The preceding equation simplifies to

wi ¼ argmax
wj

êT0Q
�1
y Aj AT

j Q
�1
y P?

A
Aj

� ��1

AT
j Q

�1
y ê0 ð24Þ

with ê0 = P
A
?y the least squares residuals under the null

hypothesis. In case that the time series contains only white
noise, namely, Qy = s2I, it follows that

wi ¼ argmax
wj

êT0Aj AT
j P

?
A
Aj

� ��1

AT
j ê0 ð25Þ

[33] Analytical evaluation of the above maximization
problem is complicated. In practice, one has to be satisfied
with numerical evaluation. A plot of spectral values
kP

A jyk
2
Q�1

y

versus a set of discrete values for wj can be
used as a tool to investigate the contribution of different
frequencies in the construction of the original time series.
That is, we can compute the spectral values for different
frequencies using equations (24) or (25). The frequency at
which kP

Aj
yk2

Q�1
y

achieves its maximum value is used to
construct Ai.
[34] Step II: To test H0 against Ha in equation (21), we

consider Qy = s2 I, with s2 unknown. The following test
statistic can be used [see Teunissen et al., 2005]

T2 ¼

P
Ai
y

�

�

�

�

�

�

2

Q�1
y

2ŝ2
a

¼
êT0Ai AT

i P
?
A
Ai

� ��1

AT
i ê0

2ŝ2
a

ð26Þ

where Ai = P
A
?
Ai and the estimator for the variance, ŝa

2, has
to be computed under the alternative hypothesis. Under H0,
the test statistic has a central Fisher distribution

T2 � F 2;m� n� 2ið Þ ð27Þ

The above hypothesis testing is in fact the parameter
significance test because the test statistic T2 can also be
expressed in terms of x̂i in equation (21) and its covariance
matrix. If the null hypothesis is rejected, we can increase i
by one step and perform the same procedure for finding yet

another frequency. As a generalization of the Fourier
spectral analysis, the method is neither limited to evenly
spaced data nor to integer frequencies.
[35] When measuring a functionally known quantity,

equation (25) reads wi = arg maxwj
ê0
TAj(Aj

T Aj)
�1Aj

T ê0,
which is identical to the least squares spectral analysis
(LSSA) method developed by Vanı́ček [1969]. For some
applications, refer to Craymer [1998], Abbasi [1999],
Asgari and Harmel [2005], and Amiri-Simkooei [2005].
Amiri-Simkooei and Tiberius [2007] assess the noise charac-
teristics of GPS receivers using zero-baseline time series
and arrive at the same conclusions using short baseline
time series when multipath effects were captured by a set
of harmonic functions. With equations (18)–(21) and (24),
we now have a formulation for LSSA even when an initial
design matrix A is present in the model and the covariance
matrix Qy, in general, is not a scaled identity matrix.
[36] Our application of harmonic estimation, in the first

place, is to find any potential periodicities in the series. The
remaining unmodelled effects (for example, power law
noise) will also be interpreted and captured by a set of
harmonic functions. Once we compensate for these effects
in the functional model, the remaining noise characteristics
of the series will be assessed. A nearly white noise com-
bined with autoregressive noise can be shown to remain in
the data series.

5.2. The w-Test Statistic

[37] Here we aim to determine the appropriate covariance
matrix Qy through significance testing of the stochastic
model. One advantage of LS-VCE over other methods is
that one can use statistical hypothesis testing in the stochas-
tic model (similar as done with the functional model). When
there is no misspecification in the functional part of the
model E(y) = Ax, the following two hypotheses, as an
example, are considered:

H0 : Qy ¼ s2
wI versus Ha : Qy ¼ s2

wIþ Cyd ð28Þ

where Cy is a known cofactor matrix, for example, Qf or
Qrw, and d is an unknown (co)variance parameter. We can
use the generalized likelihood ratio test for testing H0

against Ha. If we do so, the following w-test statistic can be
obtained [Amiri-Simkooei, 2007]:

w ¼
b êTCyê� tr CyP

?
A

� �

êT ê

s2
w 2b2 tr CyP

?
ACyP

?
A

� �

� 2b tr CyP
?
A

� �2
h i1=2

ð29Þ

with b = m � n the redundancy of the functional model and
ê the least squares residuals under the null hypothesis. The
orthogonal projector PA

? is also given under the null
hypothesis.
[38] The expectation and the variance of the w-test

statistic are 0 and 1, respectively. The distribution of this
statistic, for large m, can be approximated by the standard
normal distribution. The goal now is to compute the w-test
statistic values for different alternative hypotheses, i.e.,
different Cy’s in the preceding equation, and to select the
one that gives the maximum value for the w-test. In fact,
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equation (29) provides us with an objective measure to
judge, whether or not (or which), additional noise processes
are likely to be present in the data at hand. Because of the
special structure of the above hypotheses, the numerical
evaluation of the preceding test statistic is very simple. We
do not need for instance to invert a full covariance matrix
since it is diagonal under the (assumed) null hypothesis,
namely, Qy = sw

2 I.

5.3. Demonstration Using Simulated Data

[39] To illustrate how the proposed LS-HE and LS-VCE
work, we simulated a 10-year time series (daily samples)
containing only white noise with a standard deviation of
5 mm. Two sinusoidal functions with amplitude of 2 and
1 mm, respectively, for the annual and semiannual term,
have then been added to the data. We now use LS-HE to
find the frequencies (or periods) of these signals. This was
repeated 100 times and it follows that the empirical standard
deviation of the detected periods is 1.4 and 0.7 days for the
annual and semiannual term, respectively. Figure 1 shows
one typical example of application of the method to find the
periods of harmonic functions. In the first step, the annual
term is detected and in the second step the semiannual term.
[40] A correlogram portrays the autocorrelation versus

time-lag t. Figure 2 shows the typical example of the
simulated data corresponding to Figure 1. In each graph,
the top window is the time series itself, the middle shows
the running averages, and the bottom gives the autocorrela-
tion coefficients obtained from LS-VCE using equation (16).
In case of pure white noise, the autocorrelation function
behaves randomly around zero. When both annual and
semiannual terms are added, the autocorrelation function
(ACF) shows a periodic behavior that resembles the period-
icity of the annual signal. This makes sense because the
ACF of a sinusoidal wave is again a sinusoidal wave with
the same frequency. But the amplitude is proportional to the
square of the amplitude of the original signal [Priestley,
1981]. If one removes the annual term, the ACF will still

show a periodicity which is due to the presence of the
semiannual signal. When one also removes this signal, the
ACF becomes very similar to the case of pure white noise.
[41] One can also compute the values of the w-test

statistic using equation (29) for the different cases men-
tioned above. The cofactor matrix is chosen as that of flicker
noise Cy = Qf. Based on the simulation of 20 data sets, the
w-test values on average become as follows: in presence of
annual and semiannual signals w = 15.3; removed annual
signal w = 1.9; and removed both annual and semiannual
signals w = 0.3. Using LS-VCE, white and flicker noise
amplitudes were estimated. The amplitudes on average are
as follows: in presence of both signals sw = 4.85 mm and
sf = 2.84 mm; removed annual term sw = 4.98 mm and sf =
1.35 mm; and removed both terms sw = 5.00 mm and sf =
0.07 mm. These all together simply express that if there
exist unmodelled effects in data, they can be misinterpreted
as time correlation (here flicker noise). One should therefore
take care of these signals in the functional model.

6. Numerical Results and Discussions

6.1. Data and Model Description

[42] Global time series of site positions are supposed to
have more noise than those from a regional solution
[Williams et al., 2004]. In this study, the daily GPS global
solutions of different stations processed by the GPS Anal-
ysis Center at JPL are adopted. The data were processed
using the precise point positioning method in the GIPSY
software [Zumberge et al., 1997]. The satellite orbits,
satellite clocks, and Earth rotation parameters (ERP) used
for the daily solutions were estimated with data from 42
globally distributed IGS tracking stations [see Beutler et al.,
1999]. In addition, corrections for geophysical effects such
as pole and ocean tide effects have been applied. The reader
is referred to the JPLWeb site [http://sideshow.jpl.nasa.gov/
mbh/series.html].
[43] The estimated coordinates of a site are uncorrelated

with those of the other sites if the effects of the common
errors in the satellite orbits and clocks and ERP on the
estimated coordinates are insignificant. To make a proper
statement, one can rely on multivariate time series analysis
methods. The time series are processed on a component-by-
component basis in this study.
[44] Most of the results given are based on five stations,

namely, KOSG, WSRT, ONSA, GRAZ, and ALGO. Four
stations are in Europe of which KOSG and WSRT in the
Netherlands, ONSA in Sweden, and GRAZ in Austria.
ALGO is in Canada. We have used 10 years of daily solu-
tions for all sites except WSRT, which covers only 6.5 years.
To justify some of the statements that we will make, 71
globally distributed GPS stations were also processed.
Our point of departure is the original time series and its
linear model of observation equations yt = y0 + rt. In most
cases, the annual and semiannual signals have been consid-
ered as well. At times, we have included a set of harmonic
functions to compensate for (parts of) unmodelled effects in
the series.

6.2. Variance Component Analysis

[45] Three stochastic models have been chosen to
describe the noise characteristics of GPS coordinate time

Figure 1. Estimated spectral values, equation (25), of simu-
lated data series to detect annual and semiannual signals;
top gives annual term (364.7 days), bottom semiannual term
(182.4 days).
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series. They include the pure white noise model (I), the
white plus flicker noise model (IIa), and the white plus
random walk noise model (III). We employed LS-VCE to
estimate the white noise, flicker noise, and random walk

noise amplitudes (see equation (11)). Williams’ investiga-
tions (S. D. P. Williams, Proudman Oceanographic Labora-
tory, personal communication, 2006) show that LS-VCE
gives the same results as MLE. This holds in fact if m � n,

Figure 2. Simulated data series with their running averages (over 1 week, 1 month, and 1 year) as well
as their autocorrelation coefficients for white noise only (top-left); added two sinusoidal functions with
annual and semiannual periods and amplitudes of 2 and 1 mm, respectively (top-right); removed annual
term obtained from LS-HE method (bottom-left); and removed both annual and semiannual terms
obtained from LS-HE method (bottom-right).

Table 1. White Noise, Flicker Noise, and Random Walk Noise Amplitude Estimates for North, East, and Vertical Components of Site

Time Series in Three Different Stochastic Models (White Noise Only (Model I); White Noise Plus Flicker Noise (Model IIa); and White

Noise Plus Random Walk Noise (Model III)); Functional Model Is Linear Regression Model

Site Code

I: WN (mm) IIa: WN (mm) + FN (mm) III: WN (mm) + RW (mm/year1/2)

N E V N E V N E V N E V N E V

KOSG 3.34 3.44 7.45 2.45 2.54 5.21 3.41 3.67 8.82 2.79 2.89 6.17 7.96 9.06 23.4
StDa 0.04 0.04 0.09 0.05 0.05 0.12 0.18 0.18 0.40 0.04 0.04 0.08 0.51 0.56 1.31
WSRT 2.76 2.82 7.12 2.12 2.35 5.08 2.58 2.37 8.24 2.32 2.52 5.95 6.21 5.11 21.3
StDa 0.04 0.04 0.11 0.05 0.05 0.14 0.18 0.19 0.47 0.04 0.04 0.10 0.51 0.48 1.52
ONSA 3.35 3.65 7.85 2.54 2.70 5.28 3.39 3.45 9.62 2.85 3.02 6.29 8.25 7.50 27.6
StDa 0.04 0.04 0.10 0.05 0.05 0.13 0.18 0.19 0.42 0.04 0.04 0.09 0.53 0.52 1.45
GRAZ 3.74 4.75 9.12 2.81 3.62 6.53 3.62 4.16 9.90 3.14 3.97 7.51 8.26 9.12 25.7
StDa 0.05 0.06 0.11 0.06 0.07 0.15 0.20 0.25 0.49 0.04 0.05 0.10 0.55 0.65 1.52
ALGO 3.62 3.60 8.22 2.32 2.77 5.20 3.87 3.67 9.71 2.74 3.08 6.29 9.53 9.38 25.6
StDa 0.04 0.04 0.10 0.05 0.06 0.13 0.17 0.19 0.40 0.04 0.04 0.09 0.55 0.58 1.37
aStandard deviation of estimate.

B07413 AMIRI-SIMKOOEI ET AL.: NOISE IN GPS COORDINATE TIME SERIES

8 of 19

B07413



which is usually the case in time series analysis. Table 1
gives the noise amplitudes of different components for differ-
ent stochastic models. The table also provides the precision
(standard deviation) of the estimates using equation (7). We
find, for different noise components, that the horizontal
components are less noisy than the vertical components by a
factor of 2–4. Compared to the white noise model only, the
amplitude of white noise for the white plus flicker noise model
is 30% smaller, while this reduction for white plus random
walk noise model is about 20%.
[46] In a similar manner to Zhang et al. [1997] andWilliams

et al. [2004], we produced the difference in the log likelihood
values for each site, each component, and each error model.
The results are given in Table 2. The values given in this table
are normalized such that the pure white noise model has a log
likelihood of zero. These results confirm that the white noise
plus flicker noise model seems to be preferred over the pure
white noise model or the white noise plus random walk noise
model, which coincide with the findings of Williams et al. for
global solutions. We will give the results of the w-test statistic
in section 6.4.2 and show to which extent they are different
from those obtained by MLE.
[47] The number of iterations in VCE methods is in fact an

indication of (the lack of) appropriateness of the selected
stochastic model. Figure 3 gives typical examples of estimated
variance components at each iteration step for two variance

component models. The graphs show that the flicker and
random walk noise variances systematically converge to their
final estimates from one side. This confirms the presence of
misspecification in the model, which will in fact result in
overestimated (biased upward) flicker and random walk noise
variances. This coincides with the findings of Langbein [2004]
on EDM data (conversely white noise is biased downward).
This is mainly due to the presence of ignored noise at high
frequencies which leaks, in a systematic way, into lower
frequencies (see section 6.4).
[48] The overestimation can also be verified when we

compute the position errors and compare them with the
scatter of the time series themselves (see section 6.6). The
overestimation of random walk noise is more significant
than that of flicker noise. This also means that the white
plus flicker noise model is the preferred model in these
circumstances. In other words, if the correlated noise in the
time series is flicker noise and one tries to estimate the
amplitude of the random walk noise, then the result will be
biased (Williams, personal communication, 2006; see also
section 3.3).
[49] These discussions essentially mean that there are still

misspecifications (in fact underparameterization) in the
model. In the functional model for instance, one should
take care of any potential periodicities in the series (see
section 6.3). Also, a better stochastic model may include in
addition to power law noise other noise models like autor-
egressive noise (see section 6.4). For EDM observations,
Langbein [2004] proposed to use a combination of power
law noise and band-pass-filtered noise. The upward bias of
power law noise and downward bias of white noise can thus
be circumvented by introducing a more sophisticated func-
tional and stochastic model.

6.3. Functional Model

6.3.1. Simple and Intuitive Technique
[50] Seasonal variations in site positions consist of signals

from various geophysical sources and systematic modeling
errors [Dong et al., 2002]. The weekly, monthly, and yearly
mean residuals calculated from averaging the daily residuals
are shown in Figure 4 (left) for ALGO. Running averages

Table 2. Difference in Log-Likelihood Values for Model With

White Noise Plus Flicker Noise (WN + FN) Versus White Noise

Plus Random Walk Noise (WN + RW), Both Compared With Pure

White Noise (Log = 0)

Site Code

Error Model

IIa: WN + FN III: WN + RW

North East Vertical North East Vertical

KOSG 382 326 351 332 277 277
WSRT 229 138 227 213 129 182
ONSA 310 423 396 264 392 328
GRAZ 368 399 376 331 371 320
ALGO 682 290 598 620 253 535
Mean 394 315 390 352 284 328

Figure 3. Estimated variance components at each iteration step for KOSG; combination of white plus
flicker noise (left); and combination of white plus random walk noise (right).
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naturally remove the high-frequency noise and leave the
lower frequency signals. Annual and seasonal variations
can be observed in the running averages. For example, the
vertical component shows a clear annual signal. They
should be eliminated from the time series in order to obtain
a more realistic assessment of the noise behavior. We can
also see some high- and low-frequency fluctuations, which
can likely be captured by flicker noise and random walk
noise, respectively (see east and north components, respec-
tively). When parts of these variations have a deterministic
behavior, they should be compensated for in the functional
rather than the stochastic model. Ding et al. [2005] tried to
interpret this behavior as some interannual signals.
[51] We now focus on time correlation in the series

and estimate one covariance for each time-lag t using
equations (15) and (16). Figure 5 (top) shows the autocor-
relation coefficients for the time series of the each compo-
nent of two sites. The annual and seasonal variations as well
as long-term fluctuations can be seen in the correlograms.
The variations are clearer here than those for the running
averages in Figure 4. For example, the periodic behavior in
the ALGO vertical correlogram shows the annual signal in
the series. When the annual signal was included in the
functional model, the annual periodicity of the correlogram
disappeared. However, this was not the case for KOSG
and ALGO east components, which show an annual-like
signal. This implies that there might still be some hidden
periodicities in the data series.
6.3.2. Harmonic Estimation
[52] Figure 6 (left) shows the test statistic values given by

equation (26) to find the first 15 frequencies. The step size
used for Tj =

2p
wj

is taken small at high frequencies and gets
larger at lower frequencies. We can see that the value for the
test statistic levels off quickly. With 6–10 harmonic func-
tions, it gets close to the critical value. In all subsequent
results, the number of harmonic functions q in equation (18)
was set to 10 starting with just the offset and slope model.
The combination of all 10 harmonic functions included in
the functional model of the series is given in Figure 6
(right). The periods of 10 harmonic functions are given in

Table 3. Our opinion is that the periodic functions detected
by the LS-HE method are due to the following four reasons:
[53] 1. Unmodelled periodic ground motion: The site is

actually moving periodically in this case. Annual and semi-
annual signals, for instance, can be specified into this
category. Except for a few components, both annual and
semiannual signals can be seen in the series. A good example
is the first period obtained for ALGO vertical component
(366 days) that reveals the annual signal.
[54] 2. Periodic variation of the estimated time series: The

site is apparently moving periodically. This is known as the
aliasing effect. Unmodelled periodic systematic (for exam-
ple, tidal) errors present at a station will result in spurious
longer periodic systematic effects in the resultant time series
[see Penna and Stewart, 2003; Stewart et al., 2005]. A
harmonic function with a period of 13.63 days is detected in
the north components of WSRT and ALGO. In the east
component of KOSG and WSRT, a period of 14.2 days is
seen. There are also periods ranging from 170 to 180 days
that coincide with those given by Penna et al. [2007] for
unmodeled S2 ocean tide loading effect at different globally
distributed sites.
[55] 3. Aliased multipath effect (still a challenging prob-

lem): We observe periodic patterns with periods of roughly
350, 175, 117, 88, 70, 59, 50, and 44 days. To justify this,
the time series of 71 GPS stations were processed. Figure 7
shows the stacked (weighted) power spectra for these
stations after including the annual and the semiannual
signals. The peaks shown in the spectrum coincide well
with the numbers given above. The set of stations was split
into two parts and the same conclusion could again be
drawn. The results also confirm Ray’s [2006] findings. Two
possibilities which may lead to this effect are as follows:
Agnew and Larson [2007] show that the repeat time of the
GPS constellation, through which multipath can repeat at
permanent stations, averages at 247 s less than a solar day
(24 h). However, daily GPS position estimates are based
on a full solar day. The difference will alias to a frequency
of 0.0028565 cycles/day or 1.04333 cycles/year (350 days
period). The periods found fit with this frequency and its

Figure 4. Weekly, monthly, and yearly mean residual series of north, east, and vertical components for
two functional models (site ALGO); linear trend only (left); and linear trend plus 10 harmonic functions
(right).
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harmonics. Periodic variations of the range residuals with
maximum at the eclipse seasons indicate orbit modeling
deficiencies for the GPS satellites [Urschl et al., 2005,
2006]. The periods found above also coincide with the

period of one draconitic GPS year (about DJ = 351 days)
and fractions DJ/n, n = 2, . . ., 8 [see Beutler, 2006].
[56] 4. Presence of power law noise: There are still many

numbers in the table (about 50%) that do not fit into the

Figure 5. Autocorrelation coefficients for time series of north, east, and vertical components before
(top) and after (middle) removing 10 harmonic functions; graphs in bottom provides a ‘‘zoom in’’ over
the first 100 days for both before (+) and after (o) removing 10 harmonic functions.
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previous categories. Williams (personal communication,
2006) argues that the 10 harmonic functions uniformly
distributed in log-frequency space would be sufficient to
simulate power law noise. The higher frequency effects are
likely due to flicker noise. Long-term period (for example,
larger than 1000 days) effects are observed for most of the
series. Parts of these effects can likely be considered as

random walk noise. Note also that undetected offsets in
the time series can mimic random walk noise [Williams,
2003b]. We used so far equation (25) based on the pure
white noise model to detect the frequencies. Therefore some
of the detected periods are most likely due to the presence of
colored noise in the data that has been ignored in the results
of Table 3 and Figure 7 (left). The graph shows that white

Figure 6. The first 15 test statistic values obtained from equation (26) as well as its critical value
(dashed line) from equation (27) with type I error of � = 0.0001 (left); combination of 10 harmonic
functions (unmodelled effects) as removed from original coordinate component time series (right).

Table 3. Periods (Days) of the First Ten Harmonic Functions Obtained from Least Squares Harmonic Estimation for North, East, and

Vertical Components Using Equation (25) With Qy = sw
2 I and a Linear Regression Model

Number

KOSG WSRT ONSA GRAZ ALGO

N E V N E V N E V N E V N E V

1 2620 354 885 1586 349 2035 3154 1418 337 2349 3651 910 2772 332 366
2 1256 384 377 354 168 863 1307 343 1467 175 1274 2505 378 177 3651
3 315 862 2782 171 265 712 235 2698 522 187 393 370 783 1483 1566
4 187 176 334 292 533 210 50.4 121 927 1282 792 325 1459 86.9 307
5 579 116 94.5 841 115 150 145 756 296 361 171 697 122 108 161
6 145 248 1401 71.0 59.3 114 278 260 215 387 180 117 13.6 74.5 88.3
7 69.8 97.0 87.5 84.2 188 37.4 185 116 191 50.4 506 278 200 762 43.9
8 175 70.4 37.6 190 70.2 88.7 173 70.6 41.5 144 148 88.0 86.2 527 923
9 50.4 264 503 50.2 14.2 30.3 372 394 3627 88.6 122 210 73.2 93.4 466
10 24.9 14.2 116 13.6 1694 66.6 57.4 237 94.7 822 343 37.5 182 43.9 120
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noise is mainly present at high frequencies, flicker noise at
medium frequencies, and random walk noise at low fre-
quencies. To justify this, in the harmonic estimation, we
used equation (24) with a more sophisticated noise model
given by equation (30). Most of the lower frequency effects
that were detected in the white noise model could not be
detected here. Figure 7 (right) shows the stacked power
spectra of 71 stations using this new stochastic model. The
spectrum looks more or less flat and thus does not contradict
our statement.
[57] Therefore to avoid biases in the estimate of x and

also the amplitude of noise components (see section 3.3),
one should take good care of any potential periodicities in
the GPS position time series. We can at least mention the
annual and the semiannual signals, signals with the periods
of 13.66, 14.2, and 14.8 days, and most likely signals with
the periods of 350 days and its fractions.

6.4. Stochastic Model

6.4.1. Simple and Intuitive Technique
[58] Figure 4 (right) shows the weekly, monthly, and

yearly running average of residuals when 10 harmonic
functions are included to describe unmodelled effects (site
ALGO). Most of the signals and fluctuations have now been
removed. One can also plot the autocorrelation coefficients
for the corrected functional model. The correlograms of the
time series are given in Figure 5 (middle). At first insight,
they appear to represent white noise. The graphs at bottom
provide a ‘‘zoom-in’’ on the first part of the graphs at the
top and in the middle, i.e., the correlograms over the first
100 days. Unlike the original data, the autocorrelation
coefficients become small already after a few days (max
10 days). Our impression is that this remaining high-
frequency correlation can be caused by common and well-
known sources of errors like atmospheric effects and
satellite orbit errors. Table 4 provides the numerical results
over the first 5 days. The correlation coefficients reduce
approximately exponentially, for example, by e��t, which
is known as a first-order autoregressive noise process

AR(1). More results on this model are presented in the next
section for the cases � = 1 and � = 0.25.
6.4.2. The w-Test Statistic
[59] The results of the w-test statistic are presented to find

the most appropriate noise model for the global GPS coor-
dinate time series. The larger (absolute value) the w-test
statistic is, the more powerfully the null hypothesis tends
to be rejected, and hence the more likely the alternative

Figure 7. Stacked (weighted) power spectra of 71 permanent GPS stations (213 time series) for a linear
regression model when annual and semiannual signals were removed; use of estimated pure white noise
model (left); use of estimated short-memory plus flicker noise model—prewhitened time series (right).
The word ‘‘weighted’’ also implies that the individual spectra have been scaled according to their
estimated noise magnitudes (components).

Table 4. Estimated Time Correlation Over the First Five Time-

Lags t (Days) for Time Series of North, East, and Vertical

Components Before (Left) and After (Right) Removing Harmonic

Functions; Standard Deviation of all Estimates is 0.02

Site Code t

Correlation coefficienta Correlation coefficientb

N E V N E V

KOSG 1 0.35 0.32 0.37 0.20 0.20 0.26

2 0.28 0.29 0.26 0.12 0.16 0.14

3 0.23 0.22 0.23 0.06 0.09 0.10
4 0.22 0.21 0.21 0.05 0.08 0.08
5 0.21 0.19 0.18 0.03 0.06 0.06

WSRT 1 0.31 0.21 0.36 0.13 0.07 0.25

2 0.27 0.22 0.26 0.09 0.08 0.13

3 0.26 0.17 0.23 0.08 0.03 0.09
4 0.24 0.18 0.20 0.06 0.05 0.06
5 0.24 0.18 0.17 0.07 0.06 0.03

ONSA 1 0.31 0.33 0.37 0.20 0.16 0.27

2 0.25 0.29 0.29 0.13 0.11 0.18

3 0.21 0.26 0.25 0.08 0.08 0.13
4 0.20 0.25 0.22 0.07 0.06 0.11
5 0.18 0.23 0.20 0.04 0.04 0.08

GRAZ 1 0.32 0.32 0.35 0.16 0.14 0.23

2 0.27 0.27 0.29 0.10 0.08 0.16

3 0.23 0.28 0.26 0.06 0.09 0.13
4 0.21 0.25 0.22 0.03 0.06 0.08
5 0.23 0.24 0.20 0.06 0.05 0.07

ALGO 1 0.46 0.28 0.45 0.25 0.18 0.27

2 0.39 0.25 0.33 0.13 0.14 0.12

3 0.36 0.23 0.33 0.11 0.12 0.12
4 0.31 0.19 0.30 0.04 0.07 0.07
5 0.32 0.17 0.30 0.07 0.05 0.08

aBefore removing harmonic functions from data.
bAfter removing 10 harmonic functions from data.
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model will be as a candidate for the noise in the time series.
Six stochastic models were tested using the hypotheses as in
equation (28). The results are given in Table 5. For the
original data (before removing harmonic functions), the
maximum values are obtained for flicker noise and random
walk noise models (columns w3 and w4). In addition, except
for a few components (for example, ALGO north), flicker
noise is preferred to random walk noise. When the values are
very close (for example, ALGO vertical), both noise compo-
nents (in addition to white noise) are likely to be present in
the series. In other words, the power law noise is well
described with a spectral index between �1 and �2.
[60] Usually the white noise along with either flicker noise

or random walk noise are estimated. To confirm the w-test
results, we included all three variances in the stochastic
model, namely, white noise, flicker noise, and random walk
noise as in equation (11). If a variance is negative, it is an
indication that this noise model is most likely not the
preferred model and can be excluded from the stochastic
model. Table 6 shows the signs of the estimated variances
using LS-VCE. In 53% of the cases, the random walk noise
variance is negative. They are correspondingly related to the
cases that the w-test values for flicker noise given in Table 5
are significantly larger than those for random walk noise. In
44% of the cases both flicker and random walk noise
variances are positive. They are related to the case that the
w-test values of flicker noise are approximately identical to
those of random walk noise. Only for the north component of
ALGO, the flicker noise variance is negative, which is also
verified because the w-test value for flicker noise is smaller
than that for the random walk noise.
[61] In columns 5 and 6, we have respectively used the

following matrices for Cy: cij = e�t and cij = e�0.25t with
i, j = 1, 2, . . ., m. The corresponding w-test statistic values
are mostly significantly smaller than those for flicker and
random walk noise. However, after removing 10 harmonic
functions (individually per component) from the original
data series, the largest values for w-test statistic are
obtained for the e�0.25t stochastic model (column 6). Note

also that the results given in columns 5 and 6 are not much
different. This therefore confirms the existence of remaining
correlation at very high frequencies that is believed to be
due to common sources of errors that last only a couple of
successive days (see Figure 5, bottom). A relatively large
value of the w-test statistic (values on the right) for flicker
and random walk noise is most likely due to this correlation.
A significant decrease in the w-test values for flicker and
random walk noise implies that most parts of the power law
noise have now been captured by the harmonic functions.
This statement was also justified when the white and the
flicker noise amplitudes were estimated using the extended
functional model (with 10 harmonics), which led to small
positive or negative values for flicker noise amplitudes.
[62] Let us now turn our attention to the second column

(w2) in Table 5. The goal is to test stationarity of the white
noise amplitude in the series. For this purpose, we selected
Cy = diag(Qrw). Most of the w-test values are negative,
implying that the white noise amplitude in the daily position
estimates gets reduced toward the end of the series as swi

2 =

Table 5. The w-Test Statistic Values for Time Series of Position Estimate, Before (Left) and After (Right) Removing 10 Harmonic

Functions Using Equation (25), for Different Alternative Hypotheses (Different Cy’s)
a

Site Code Component

Before Removing Harmonic Functions After Removing Harmonic Functions

w1 w2 w3 w4 w5 w6 w1 w2 w3 w4 w5 w6

KOSG North 20.5 �8.1 123.5 125.9 27.5 40.0 12.1 �10.6 11.1 4.9 14.7 16.8

East 18.8 �1.8 32.9 9.3 26.0 37.3 11.9 �5.1 12.9 9.1 15.6 18.8

Vertical 21.5 0.3 58.1 43.2 27.7 37.6 15.9 0.6 10.4 1.1 19.0 21.2

WSRT North 14.6 �11.0 62.1 50.5 20.4 31.7 6.5 �12.0 6.4 0.2 8.4 11.0

East 10.0 �8.0 25.4 10.9 14.5 22.8 3.6 �9.8 6.4 2.4 5.3 7.5

Vertical 17.2 �8.3 61.2 58.4 22.4 30.8 12.3 �8.5 15.1 6.4 14.7 16.6

ONSA North 16.0 �8.2 71.0 66.5 21.3 35.7 12.1 �11.1 13.5 6.1 14.9 18.0

East 12.3 �8.4 67.7 52.8 17.1 41.4 10.0 �11.2 11.3 3.2 12.8 15.5

Vertical 17.7 �3.1 43.1 32.7 23.4 40.7 16.5 �4.5 16.9 4.5 20.8 25.5

GRAZ North 18.7 �8.8 119.8 119.2 25.5 38.5 10.0 �10.6 7.1 0.3 12.2 13.9

East 18.7 �4.5 139.1 144.4 26.0 41.0 8.5 �10.8 5.2 0.1 10.7 13.5

Vertical 20.6 �5.9 70.9 50.7 27.8 40.2 13.7 �7.0 14.9 3.9 17.4 21.5

ALGO North 27.5 �7.9 285.1 350.1 37.6 57.1 15.0 �8.7 13.1 3.3 18.1 20.9

East 10.4 �5.4 20.7 11.2 14.4 34.4 10.7 �10.4 10.2 4.7 14.2 18.2

Vertical 23.5 �2.7 99.2 99.3 31.1 52.5 16.7 �5.7 14.3 4.6 19.4 22.0

aw1:Cy =Qt, t = 1 contains only ones on two parallel side-diagonals next to the main diagonal; w2: Cy = diag(Qrw), only diagonal elements of Qrw in
in equation (13); w3: Cy = Qf, flicker noise structure introduced in equation (12); w4: Cy = Qrw, random walk noise structure introduced in equation (13);
w5: Cy = cij full matrix extracted from an exponential function of the form e�t; w6: Cy = cij full matrix extracted from an exponential function of the
form e�0.25t.

Table 6. Sign of White Noise, Flicker Noise, and Random Walk

Noise Variances for Different Components

Site Code Component

Sign of Variance Component

WN FN RW

KOSG North + + +
East + + �
Vertical + + �

WSRT North + + �
East + + �
Vertical + + +

ONSA North + + +
East + + �
Vertical + + �

GRAZ North + + +
East + + +
Vertical + + �

ALGO North + � +
East + + �
Vertical + + +
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sw
2 + ti d (d negative). This reflects the improvements in

analysis products (for example, satellite orbits and Earth
orientation parameters), which makes sense, of course, as
equipment is improving and also our knowledge about error
sources like atmosphere and orbit is continuously improved.
The reduction in noise amplitudes with time was shown by
Williams et al. [2004]. They showed that such a reduction of
noise also holds true for the flicker noise amplitude.
[63] A large value for the w-test leads to the rejection of

the null hypothesis. One can obtain the w-test values for
different alternative hypotheses. The one that gives the
largest absolute value is considered as a superior candidate
for describing the noise characteristics of the data. In our
case, in general, the flicker noise model was preferred. After
introducing 10 harmonic functions to the model, the largest
values were obtained for the AR(1) noise process. The w-test
statistic is considered to be a powerful tool to decide on the
preferred noise model. Based on simulated data, Williams
(personal communication, 2006) concluded that the w-test
statistic and the difference in the log likelihood values give
very similar results. Note, however, that the w-test statistic
can simply be used while the MLE method needs successive
inversion of the covariance matrix.

6.5. Remarks and Discussions

[64] We would like to point out here the duality between
harmonic functions and time correlated noise. If one could
compensate for all unmodelled effects in the functional
model, this would be the best way to do so. Otherwise, they
will be misinterpreted as if the data were time correlated;
see section 3.3 and the simulated example in section 5.3.
Examples of such hidden periodicities are the annual and
the semiannual signals, signals with the periods of 13.66,
14.2, and 14.8 days, and likely signals with the periods of
350/n (n = 1, . . ., 8).
[65] If the unmodelled variations cannot be considered as

deterministic signals to be compensated for in the functional
model (for example, by harmonic functions), they can be
captured as power law noise process (for example, flicker
noise or random walk noise) through the stochastic model.
Although not fully physically justified, we captured unmod-
elled effects by a set of harmonic functions (in this study
10 individual functions for each series). We observed a
duality between the functional and the stochastic model.
When unmodelled effects were removed by these harmonic
functions, a short-memory process is left in the time series.
In other words, most parts of the power law noise have been
captured by the harmonic functions. However, this does not
necessarily mean that there exist 10 individual hidden
periodic functions in each series.
[66] The remaining minor time correlation, as a short-

memory process, exponentially vanishes within a few days
and can be expressed for instance as an AR(1) noise process.
This essentially means that to avoid biases in the power
law noise amplitude due to underparameterization, one
will have to include also the AR(1) noise process sa

2Qa in
equation (11), namely, Qy = sw

2 I + sa
2Qa + sf

2Qf (when one
ignores random walk noise). This holds indeed also for any
potential periodicities in the functional part of the model.
[67] Our investigations show that the time series are not

yet long enough to separately estimate one variance for each

noise component. Therefore first the LS-HE method was
employed to include a set of harmonic functions to com-
pensate for power law noise model. The remaining noise is
now expressed as a combination of white and autoregressive
noise. The unknowns in this case are the amplitudes of white
and autoregressive noise (sw and sa) and the timescale � of
the noise process. In other words, the short-memory process
is expressed as Qy = Q(�; sw

2 , sa
2) = sw

2 I + sa
2Qa where qij

a =
e��t and t = jtj � tij. This is in fact a nonlinear stochastic
problem that can again be solved by LS-VCE.
[68] The method was applied to 71 globally distributed

GPS stations. The average value for the timescale is � �
0.25. The mean amplitude of white noise and autoregressive
noise is sw = 2.3, 3.3, and 6.3 and sa = 1.3, 1.8, and 4.0 (all
in mm) for north, east, and vertical components, respectively.
Suppose now that we do not include the 10 harmonic
functions to compensate for flicker noise. The covariance
matrix is again of the form Qy = sw

2 I + sa
2Qa + sf

2Qf. In
practice, it is more convenient to combine white noise and
autoregressive noise into one ‘‘short-memory’’ process using
the average values obtained above. Based on these results, if
one assumes that the timescale � and also the relative
magnitude of noise components sa/sw is known, the covari-
ance matrix Qy = sw

2 I + sa
2Qa + sf

2Qf can be reformulated as

Qy ¼ s2
sQs þ s2

fQf ð30Þ

where ss
2 = sa

2 + sw
2 is the variance of the short-memory

noise process and Qs is given as

qsij ¼
1 if t ¼ 0

be��t if t 6¼ 0
:

�

ð31Þ

with � � 0.25 and b = sa
2 / (sw

2 + sa
2) � 0.25. Figure 8

shows the weighted mean autocorrelation function of

Figure 8. Individual autocorrelation functions (solid line)
as well as mean autocorrelation function (white circles) of
71 permanent GPS stations (213 time series) for a linear
regression model with 10 harmonic functions; light dashed
line represents the estimated short-memory (SM = WN +
AR(1)) noise process.
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71 permanent GPS stations and its approximation based on
equation (31).
[69] Stochastic model (30) is referred to as the short-

memory noise and flicker noise model (model IIb), for
which two variance components ss

2 and sf
2 need to be

estimated by LS-VCE. We now consider this equation to
estimate the magnitude of short-memory (combined WN
and AR(1)) and flicker noise process. A correct functional
model consisting of annual and semiannual signals, a period
of 13.66 days, and a period of 350 days and its fractions
350/n (n = 2, . . ., 8) was also used. The results are given in
Table 7. Compared to the results given in Table 1 for the
white plus flicker noise model (model IIa), flicker noise
shows a reduction of 40% whereas white (in fact short-
memory) noise increases by about 20%. The differences in
the log likelihood values have also been computed which
show an increase of about 10% compared to the values
given in Table 2 for model IIa. With this strategy, not only
can one obtain a better precision for the parameters of
interest, but also one will be able to increase the log
likelihood values.

6.6. Error Estimate of Parameters

[70] The goal here is to estimate and compare the error of
four parameters of interest, namely, intercept, slope (rate),
position in the middle, and position at the far end of the time
series, for different stochastic models. Model I, IIa, IIb, and
III are the pure white noise, white noise plus flicker noise,
short-memory (combined white and autoregressive) noise
plus flicker noise, and white noise plus random walk noise,
respectively. Model IIb also includes the annual and the
semiannual signals, a period of 13.66 days, and periods of
350/n days, n = 1, . . ., 8 in the functional model.
[71] We show how an incorrect stochastic model will

result in a too optimistic (or too pessimistic) precision
description of the parameters of interest (see section 3.3).
The results given in Table 8 are based onQ0

x = (AT
Q

0�1
y A)�1,

whereQ0
y is a (in)correct covariance matrix obtained from

model I, IIa, IIb, or III. Model I gives the most optimistic
results and model III generally gives the least precise
results. The error of parameters for different models com-
pared to those for the pure white noise model is larger by
the coefficients given in Table 9. For example, if a white
plus flicker noise model is used instead of a pure white
noise model, the velocity error obtained can be larger by
factors of 9–16. Among different models, the error estimates
of site velocity and position for model III are considerably
larger (about one order of magnitude) than those for other
models.
[72] Compared to the white noise magnitude of the series

(scatter of the series), the standard deviations of positions
in the middle of the time series are 2%, 80%, 50%, and
400% for models I, IIa, IIb, and III, respectively. These
values increase at the end of the series to 4%, 90%, 55%,
and 800%. For all models, except model III, the minimum
error estimate of the position is obtained in the middle and
the largest values are given at both ends of the series. The
results of model I are too optimistic. The error contribution
of the intercept and the slope on the position seems to be the
same (2% in the middle and 4% at both ends). The results
obtained from models IIa and IIb appear to be more realistic.
In model IIa, the slope has only a contribution of 10% on the

Table 7. Short-Memory (WN plus AR(1)) Noise and Flicker Noise

Amplitude Estimates for North, East, and Vertical Components in

Modified Functional and Stochastic Model

Site Code

Short-Memory and Flicker Noise (Model IIb)

WN + AR(1) (mm) FN (mm)

North East Vertical North East Vertical

KOSG 2.85 3.06 6.36 2.23 1.61 5.21
StDa 0.05 0.05 0.12 0.25 0.27 0.57
WSRT 2.43 2.67 6.03 1.45 1.03 5.66
StDa 0.05 0.05 0.15 0.28 0.31 0.69
ONSA 2.96 3.10 6.32 2.06 2.21 6.99
StDa 0.05 0.06 0.14 0.26 0.27 0.57
GRAZ 3.26 4.09 7.75 2.02 2.72 6.07
StDa 0.06 0.07 0.15 0.29 0.34 0.69
ALGO 2.76 3.25 6.43 2.69 1.91 5.98
StDa 0.06 0.05 0.13 0.24 0.28 0.57
aStandard deviation of estimate.

Table 8. Error Estimate (Formal Standard Deviation) of Slope, Intercept, and Position for Different Stochastic Modelsa

Error in Model

KOSG WSRT ONSA GRAZ ALGO

N E V N E V N E V N E V N E V

Intercept (mm) I 0.12 0.12 0.26 0.12 0.13 0.32 0.12 0.13 0.28 0.13 0.17 0.32 0.13 0.13 0.29
IIa 2.87 3.08 7.41 2.22 2.03 7.07 2.85 2.90 8.07 3.04 3.46 8.35 3.25 3.09 8.15
IIb 1.89 1.37 4.40 1.30 0.92 4.90 1.75 1.87 5.90 1.72 2.16 5.13 2.27 1.62 5.05
III 1.13 1.23 2.90 0.90 0.85 2.70 1.15 1.13 3.20 1.20 1.42 3.32 1.42 1.49 3.58

Slope (mm/year) I 0.02 0.02 0.04 0.03 0.03 0.08 0.02 0.02 0.05 0.02 0.03 0.06 0.02 0.02 0.05
IIa 0.25 0.27 0.65 0.29 0.27 0.93 0.25 0.25 0.71 0.27 0.31 0.73 0.29 0.27 0.71
IIb 0.17 0.12 0.39 0.18 0.13 0.66 0.16 0.17 0.52 0.15 0.19 0.46 0.20 0.15 0.45
III 2.52 2.87 7.39 2.44 2.01 8.37 2.61 2.38 8.75 2.62 2.89 8.12 3.02 2.97 8.11

Positionb (mm) I 0.06 0.06 0.13 0.06 0.06 0.15 0.06 0.06 0.14 0.06 0.08 0.16 0.06 0.06 0.14
IIa 2.58 2.77 6.66 2.00 1.83 6.38 2.56 2.61 7.25 2.73 3.13 7.50 2.92 2.77 7.33
IIb 1.69 1.22 3.94 1.16 0.81 4.39 1.56 1.67 5.29 1.53 1.93 4.59 2.03 1.45 4.52
III 12.6 14.3 37.0 7.95 6.54 27.3 13.1 11.9 43.8 13.1 14.5 40.6 15.1 14.9 40.5

Positionc (mm) I 0.12 0.12 0.25 0.12 0.12 0.30 0.11 0.12 0.27 0.13 0.16 0.31 0.12 0.12 0.28
IIa 2.87 3.08 7.41 2.22 2.03 7.06 2.85 2.90 8.07 3.04 3.49 8.35 3.25 3.08 8.15
IIb 1.88 1.37 4.40 1.29 0.91 4.89 1.75 1.87 5.90 1.72 2.16 5.13 2.27 1.62 5.05
III 25.2 28.7 73.9 15.9 13.1 54.5 26.1 23.7 87.5 26.1 28.9 81.2 30.1 29.7 81.0

aI: White noise only; IIa: white noise plus flicker noise; IIb: short-memory noise plus flicker noise with proper functional model; and III: white noise plus
random walk noise.

bError position in the middle of time series.
cError position at the end of time series.
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position error estimate; the error in the intercept plays the
main role. This holds also for model IIb, but with an
improvement by a factor of 1.6. The behavior of model III
is somehow different. The results are too pessimistic and the
error in the slope plays the main role.
[73] In geophysical literature, the site velocity uncertainty

is usually of interest and not directly the position error.
However, in geodetic applications (for example, realization
of ITRF), the goal of the site velocity studies is both the
intercept and the slope, from which the position and its
uncertainty can be directly propagated. Figure 9 illustrates
the effect of site velocity only and site velocity plus intercept
on the position error for different stochastic models. The
plot shows the importance of the propagation of errors
correctly on topics like realization of ITRF. When interested
in position error and relying only on the site velocity error,
it seems that models IIa and IIb are more appropriate for
long-term accuracy but give optimistic results over short
periods. However, if one propagates both the slope and the
intercept errors, these models will always be preferred. On
the other hand, model III is likely suitable for short-term
accuracy but yields pessimistic results over long periods.

7. Conclusions and Recommendations

[74] We assessed the noise characteristics in global time
series of daily position estimates by LS-VCE. The method

is easily understood, generally applicable, and very flexible.
The LS-VCE estimators are unbiased and of minimum
variance. This method provides the precision of the (co)-
variance estimators. Based on the results given, the follow-
ing conclusions can be drawn:
[75] The w-test statistic is a powerful tool to recognize the

data noise characteristics in order to construct an appropri-
ate stochastic model. Using the w-test, a combination of
short-memory (white plus autoregressive) noise and flicker
noise was in general found to best describe the noise
characteristics of the position components; we hardly ob-
served that the strict white plus random walk was the
preferred noise model. These results have also been verified
using correlograms of the time series, the frequencies of
harmonic functions, and the signs of estimated flicker and
random walk noise variance components.
[76] The least squares harmonic estimation method was

used to find and consequently remove a set of harmonic
functions from the data. These harmonic functions captured
unmodelled effects. The results confirm the presence of
annual and semiannual signals in the series. We could also
observe other periodic effects; for example, a period of
13.66, 14.2, and 14.8 days. We observed also significant
periodic patterns with a period of 350 days and its fractions
350/n, n = 2, . . ., 8, which are likely due to aliased
multipath effects in permanent stations. When such varia-
tions have underlying physical phenomena (or modeling
error), their effects can be considered as systematic periodic
signals. It may not be appropriate to capture their effects by
a power law noise process in the stochastic model. They
may mistakenly mimic flicker or random walk noise if we
neglect them in the functional model. Therefore neglecting
such effects, which may be best described by a deterministic
model rather than a power law noise model, can seriously
affect the error estimate of the site velocity and the position.
[77] There are also some effects in the series that are not

of periodic nature. They can most likely be expressed as
power law noise. We however employed the harmonic
estimation method to find more frequencies in the series.

Table 9. Minimum and Maximum Error Estimate Coefficients of

Different Parameters Compared to Those of White Noise Only

Model (I)

Error

Error Model

IIa IIb III

Intercept 16–29 7–21 7–12
Slope 9–16 5–10 67–185
Positiona 31–52 13–38 109–313
Positionb 17–30 8–22 109–324

aIn the middle of time series.
bAt the end of time series.

Figure 9. Position error (standard deviation) of different stochastic models as a function of time for
north and vertical component of KOSG caused by rate uncertainty only (dashed lines) and full covariance
matrix of intercept and site velocity (solid lines); WN only (I), WN + FN (IIa), SM (short-memory) + FN
(IIb), and WN + RW (III).
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A significant decrease in the w-test values for power law
noise implies that most parts of this noise are captured by
the harmonic functions. This led us to see a duality between
the stochastic and the functional model. In fact, what is not
captured in the functional model is captured in the stochas-
tic model. When we include the harmonic functions, almost
exclusively white noise remains in the data. Only at very
high frequencies a significant time correlation appeared to
be present, which can be expressed as an exponential
function (for example, a first-order autoregressive noise
process). This noise can be caused by common sources of
errors like atmospheric effects as well as satellite orbit errors
that last over only a few successive days. Based on the
value of the timescale � � 0.25, Williams (personal
communication, 2006) suggested atmospheric loading as a
candidate for this noise process.
[78] The overestimation of the power law noise was due

to the presence of the autoregressive noise and also the
justified hidden periodic effects in the series. This means
that neither the white noise plus flicker noise model nor the
white noise plus random walk noise model is the preferred
model. The best model includes in addition to power law
noise also other noise models like autoregressive noise or as
Langbein [2004] used band-pass-filtered noise on EDM
data. Instead of a strict white noise model, a short-memory
noise process was introduced which led to the reduction of
the flicker noise magnitude.
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