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Abstract
A number of one- and two-equation turbulence mo

els are examined for hypersonic perfect- and real-g
flows with laminar, transitional, and turbulent flow re
gions. These models were generally developed for
compressible flows, and the extension to the hyperso
flow regime is discussed. In particular, inconsistenci
in the formulation of diffusion terms for one-equation
models are examined. For the Spalart-Allmaras mod
the standard method for forcing transition at a specifie
location is found to be inadequate for hypersonic flow
An alternative transition method is proposed and eva
ated for a Mach 8 flat plate test case. This test case
also used to evaluate three different two-equation turb
lence models: a low Reynolds number model, th
Menter formulation, and the Wilcox (1998)

model. These one- and two-equation models a
then applied to the Mach 20 Reentry F flight vehicle
The Spalart-Allmaras model and both formula
tions are found to provide good agreement with th
flight data for heat flux, while the Baldwin-Barth and
low Reynolds number models overpredict the tu
bulent heating rates. Careful attention is given to sol
tion verification in the areas of both iterative and gri
convergence.

Nomenclature
a speed of sound, m/s
D turbulence diffusion term

k ε–
k ω–

k ω–

k ω–

k ε–
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d distance to the wall, m
k specific turbulent kinetic energy, m2/s2

PrT turbulent Prandtl number (= 1.0)
p pressure,N/m2

q heat flux,W/m2

RN vehicle nose radius,m
r radial coordinate,m
SP turbulence production source term
SD turbulence destruction source term
Sij strain rate tensor,1/s
T temperature,K
Tu freestream turbulence intensity percent
t time, s
U conserved transport quantity
ui velocity,m/s
V velocity magnitude,m/s
x axial coordinate,m
y wall normal direction,m

angle of attack,degrees
ratio of specific heats
Kronecker delta function (= 1 wheni=j )
specific dissipation rate,m2/s3

cone half-angle,degrees
absolute viscosity,N·s/m2

kinematic viscosity,m2/s
Spalart-Allmaras working variable
density,kg/m3

turbulent stress tensor,m2/s2

non-conserved transport quantity
rotation tensor,1/s
specific turbulent frequency,1/s

Subscripts
E exact value
eff effective value (turbulent + laminar)
RE Richardson extrapolation
ref reference value

α
γ
δi j
ε
θcone
µ
ν
ν̃
ρ
τi j
ϕ
Ωi j
ω
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d
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T turbulent quantity
t transitional quantity
w wall value
∞ freestream value

Superscripts
+ quantity in wall coordinates
~ denotes Favre (density-weighted) averaging
__ denotes Reynolds (time-based) averaging

denotes Favre fluctuating quantity

Introduction
This work is concerned with developing a capability

to model high-speed compressible flows with laminar,
transitional, and turbulent flow regions. The approach
uses one- and two-equation eddy viscosity models to
predict the turbulent flow. The same governing equa-
tions are presently being used to predict the transitional
flow region where the onset to turbulent flow is speci-
fied and assumed to be known. The prediction of where
onset to turbulent flow occurs is a research area that de-
pends on an analysis of the flow stability, understanding
of the flow disturbances outside the boundary layer, and
a capability to predict the boundary layer receptivity.
The process of entraining disturbances into the bound-
ary layer and producing perturbations that can be ampli-
fied is called “receptivity.”

The more appropriate books providing information
on modeling compressible turbulent flows are Wilcox,1

Chapter 6 by Gatski,2 and Smits and Dussauge.3 The
modeling of compressible turbulent flows is still an ac-
tive area of research. The application of some of the tur-
bulence models to compressible flows is not always
clear, as the models were originally developed for in-
compressible flows. Formulations for incompressible
flow are not applicable to compressible flow because
some variables (e.g., density, viscosity) have been as-
sumed constant in the development. The turbulent trans-
port equations are often written in substantial
differential form, while the equations in conservation
form are generally required in compressible Navier-
Stokes codes. Problems with the formulation of the gov-
erning equations for compressible turbulence models in
conservation form are discussed. For example, the form
of the diffusion term in the Spalart-Allmaras4,5 model is
rewritten and justification for the new form is given.

The SACCARA (Sandia Advanced Code for Com-
pressible Aerothermodynamics Research and Analysis)
code6-9 is used for the results presented in this paper.
For one-equation turbulence models, the SACCARA
code has options for both the Baldwin-Barth10 and Spal-
art-Allmaras eddy viscosity models. There is evidence
that the use of the Baldwin-Barth model does not consti-

tute a well-posed system of governing equations.11 For
boundary layer and shear layer flows, the solutions
not appear to converge to a unique solution as the me
is refined. Therefore, there is more interest in using t
Spalart-Allmaras model, as it has proven to be a num
ically robust approach. Part of the present work is co
cerned with the evaluation of the Spalart-Allmara
model for high-speed flows and the simulation of th
transition region with the Spalart-Allmaras model.

The SACCARA code also has options for three pop
lar two-equation eddy viscosity turbulence models:
low Reynolds number formulation and two
models. The model1 employs the low Reynolds
number modification of Nagano and Hishida12 to allow
integration to solid walls. The first formulation is
the hybrid model of Menter13 which is a blending be-
tween a formulation (near solid walls) and

formulation (in shear layers and freestream flow
Menter proposed this hybrid model to take advantage
the accuracy of the model for wall-bounded flow
and the model for free shear layers. The fina
model is the Wilcox model1 which was modified
in 1998 to improve the predictive accuracy for she
flows. This model is referred to as the Wilcox (1998
model in the current work. The appropriate form of th
two-equation eddy viscosity equations are also impo
tant because the one-equation formulation can be dev
oped from the two-equation transport relations. Th
approach may be used to determine the appropriate fo
of the transport equation for the one-equation models

Two flow cases have been used to investigate the p
formance of the one- and two-equation eddy viscos
models. The first case is the flow over a flat plate a
Mach 8 and an altitude of 15km where the perfect gas
model is appropriate. The skin friction along the fla
plate is used to judge the accuracy of the predictio
through comparisons with the accurate laminar and tu
bulent results of Van Driest.14,15 If the standard turbu-
lence models (without modifications for transition) ar
employed over the whole domain, the transition locatio
often depends on turbulent intensity in the freestrea
This behavior is similar to the bypass transition prob
lem. When a transition plane is specified in which th
turbulent eddy viscosity is neglected upstream, the tra
sition locations for the Spalart-Allmaras and low Rey
nolds number models still show sensitivity to th
freestream turbulence quantities. The control of the tra
sition location with the Spalart-Allmaras model ha
been investigated.

The second case investigated is the flow over the R
entry F flight vehicle at Mach 20 and at an altitude o
24.4km (80,000 feet) where real gas effects are signif
cant. The measured heat transfer along the vehicle
used to judge the accuracy of the model predictions. T
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transition location is specified to give a reasonable
match of the wall heat flux with the flight data. It should
be remembered that the prediction of transition location
is not included in the modeling. The solutions have been
obtained on three meshes with the number of cells in
each coordinate direction doubled for each mesh refine-
ment. In addition, the solutions on each mesh are
marched in time until the wall heat flux has obtained a
steady-state value. The accuracy of the iterative solution
relative to the steady-state solution has been estimated
for each model. The various uncertainties and assump-
tions in the flight experiment and prediction are dis-
cussed. Real gas effects have been taken into account
with the use of an equilibrium air model.

Favre-Averaged Transport Equation for
Turbulence Models

The generic form of the turbulent transport equation
in substantial derivative form1 is

(1)

where

For example for a one-equation eddy viscosity model,
the dependent variable is and the effective diffu-
sion coefficient is . In some models there are two
parts to the diffusion term on the right-hand side of Eq.
(1); is the first part of the diffusion term which can
be put in conservation form, and is the remaining
part. When is included, it can take on several forms.
The source term has a production part
and a dissipation part . If the continuity equation is
multiplied by and added to Eq. (1), the resulting
equation is the generic transport equation in conserva-
tion form:

(2)

The dependent variable is . This development
utilizes Favre (overtilde) and Reynolds (overbar) aver-
aging. See Ref. 1 for notation and for details on the
Favre averaging procedure.

One-Equation Turbulence Model
There have been a number of one-equation turbu-

lence models developed which use a transport equation
to solve for the eddy viscosity directly. The present

work is focused on the Spalart-Allmaras model and
brief description is presented below.

Spalart-Allmaras Model
The transport equation for determining the eddy vi

cosity with near-wall effects included has been deve
oped by Spalart and Allmaras.4,5 The governing
equation form is slightly different than Eq. (1) and is

(3)

The dependent variable , where
is a damping function used in the near-wall region an
mainly in the viscous sublayer. This function and th
right hand side terms will be defined below. The cont
nuity equation is multiplied by and added to Eq. (3
which gives a transport equation in conservation for
for the Spalart-Allmaras model in the form of Eq. (2)

(4)

The right-hand side has contributions from a diffusio
term as well as production, destruction, and trip term
The four terms in the model are written as follows:

Diffusion-Original Form

Diffusion-Modified for Compressible Flow

Production

Destruction

ρDϕ
Dt
-------- D SP SD–+=

D D1 D D1
∂

∂xj
-------- µeff

ϕ∂
xj∂

------- 
 =,–=

ϕ νT∼
µeff

D1
D

D
S SP SD–= SP

SD
ϕ

t∂
∂U

xj∂
∂ ρũ jϕ µeff

ϕ∂
xj∂

-------–
 
 
 

+ D SP SD–+=

U ρϕ=

ρDϕ
Dt
-------- D SP SD– St,+ += µ̃

µT

f v1
-------- ρϕ= =

ϕ ν̃ νT f v1⁄= = f v1

ϕ

Spalart-Allmaras Model

t∂
∂U

xj∂
∂ ρũ jϕ µeff

ϕ∂
xj∂

-------–
 
 
 

+ D SP SD– St+ +=

U ρν̃ ρϕ,= = µeff
µ µ̃+

σ
-------------=

D ρ ∂
∂xj
--------

µeff

ρ
--------- ϕ∂

xj∂
------- D2+ D1 D+= =

µeff
µ µ̃+

σ
------------- ρ ν ϕ+

σ
------------- 

  ,= = D D2 D3–=

D2

cb2ρ
σ

----------- ϕ∂
xj∂

------- 
  ϕ∂

xj∂
------- 

  ,= D3

µeff

ρ
--------- 

  ρ∂
xj∂

------- ϕ∂
xj∂

-------=

D D1 D2,+= D D2=

SP cb1 1 f t2–[ ]S̃ρϕ=

SD cw1 f w

cb1

κ2
-------- f t2–

 
 
 

ρ ϕ
d
--- 

  2
=

3
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Trip Term

In the formal transform of the transport equation into
conservation form, the diffusion term includes a
density gradient term. This term is zero when the trans-
port equation (Eq. (4)) is developed from the compress-
ible form of the transport equations,11,16 and is
shown above in the termDiffusion-Modified for Com-
pressible Flow.This form of the diffusion term is used
in the present work. Including this density gradient term
has been found to cause stability problems for high-
speed flows, while having negligible effect on the pre-
dictions. The model controls transition from laminar to
turbulent flow with the use of the trip term. With this
additional physics, the foregoing governing equation re-
quires some additional terms and definitions for
and which involves the coefficients to . Ex-
cept where noted, the standard values for the model con-
stants are used in the current work.

Boundary Conditions for Spalart-Allmaras Model
At the wall or . The freestream

boundary condition for this model is the specification of
the turbulent eddy viscosity . In the freestream there
should be no production of the eddy viscosity, which re-
quires that

in order to turn off the production term in Eq. (6). The
restriction on  is

The restriction on the freestream eddy viscosity be-
comes

(5)

The freestream eddy viscosity as suggested by Spalart-
Allmaras is , which gives

Control of Laminar and Turbulent Flow with the
Spalart-Allmaras Model

The governing equation has three terms that are influ-
enced by the transition model. The complete source
term (for the conservative formulation) is

(6)

where the trip terms are underlined in the above equ
tion. The first term is part of the diffusion term and is in
cluded in the source term as it is evaluated numerica
in an explicit manner. The second term is the productio
term and it will produce or increase the eddy viscosity

The third term is the destruction term and i
will decrease the eddy viscosity if .
The fourth term is the trip term and it will increase th
eddy viscosity as .

The model generally predicts turbulent flow every
where when the trip terms are zero

The flow can be made laminar everywhere with the fo
lowing values of the trip terms:

or

Several different approaches have been investigated
control transition and to replace the original trip mode
approach of Spalart-Allmaras.

Method 1 (  is modified)

In this approach the value of , and
where varies from the laminar

flow region to the turbulent flow region. In the lamina
flow region while in the turbulent flow region

The parameter is increased smoothly and d
fines the transitional flow region. This method require
specification of the location and length of the transition
al region.

Method 2 (  is modified)

In this method the trip terms and
are set to zero. The coefficient is modified

from the laminar flow region to the turbulent flow re-
gion as follows:

In this method, the location of the start of transitiona
flow  and end of transitional flow  are specified.

St f t1ρ ∆U( )2=

D3

k ε–

f t1
f t2 ct1 ct4

µT 0= ν̃ 0=

µT

f t2 ct3e ct4χ2
– 1,>= ct3 1.2,= ct4 0.5=( )

χ

χ ν̃ ν⁄ ct3ln( ) ct4⁄< 0.604= =

µT

µ
------ χ f v1< χ 1 cv1 χ⁄( )3

+[ ]⁄ 3.713 10
4–×= =

cv1 7.1=

ν̃ 1 2⁄ ν<
µt

µ
----- ν̃ f v1 ν⁄< 1.746 10

4–
.×=

S
cb2ρ
PrT
----------- ν̃∂

xj∂
------- 

  2
cb1 1 f t2–[ ]S̃U+=

cw1 f w cb1 f t2 κ2⁄–( )ρ ν̃
d
--- 

  2
– f t1ρ ∆U( )2+

f t2 1.<
cw1f w cb1f t2 κ2⁄>

f t1 0>

f t1 0= or ct1 0,= f t2 0 or ct3 0= =

f t1 0= and f t2 1.0 or f t2 ct3Λ, Λ=≥ e ct4χ2
–=

f t1 0,= f t2 0,= cb1 0=

f t2

f t1 0=
f t2 ct3 1 λ–( )= λ

λ 0=
λ 1.=

cb1

f t1 0=
f t2 0= cb1

x xs: cb1< 0,= x xe: cb1> 0.1355=

xs x xe: cb1 0.1355λp
,=≤ ≤ λ x xs–( ) xe xs–( )⁄=

xs xe
4
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Method 3 (  is modified)

In this method the production term coefficient is
modified by writing this term as . The pa-
rameter increases from zero to one in the transitional
flow region. From the definition of , the following is
obtained:

(7)

The production term switches sign when
which gives a critical value of  which is .
When , set and there is no production of
eddy viscosity upstream of the transition location .
When , is increased downstream towards one.
This increase is controlled by setting

When and , then . When
and , then is obtained from Eq. (7). In this
method, only the single parameter  must be specified.

Two-Equation Turbulence Models
The standard method for specifying transition to tur-

bulence is through analogy with the turbulence intermit-
tency approach. The turbulence transport equations are
solved over the entire domain, with a user-defined tran-
sition plane specified. Upstream of this plane, the effec-
tive viscosity is simply the laminar value, while
downstream the effective viscosity is the sum of the
laminar and turbulent viscosities.

High Turbulent Reynolds Number  Model
The high Reynolds number formulation1 is appropri-

ate for turbulent flows but is not appropriate in the near-
wall region. It can be applied in the outer part of bound-
ary layers and combined with an inner boundary layer
approach near the wall to obtain a complete formulation.
For the standard model, the turbulent kinetic ener-
gy equation for a compressible fluid takes the same
form as Eq. (2) where the variables have the following
values:

(8)

The production term takes the standard form for com-
pressible flows (see Ref. 1), and the effective viscosity
is defined below in Eq. (10). The transport equation for
dissipation of turbulent kinetic energy is the same form
as Eq. (2), where the variables have the following val-
ues:

(9)

The effective viscosities are obtained from

(10)

The constants in the foregoing equations use the st
dard values.

Low Turbulent Reynolds Number  Model
The Nagano and Hishida model12 was developed for

incompressible flow and is included in the current fo
mulation. The model uses the following damping func
tion in the eddy viscosity relation given in Eq. (10):

This damping function is written in terms of the distanc
from the wall . The source term for the turbulent ki
netic energy Eq. (8) is

The production term has been approximated with:

The compressible term

has been neglected in the current formulation. Th
source term for the dissipation rate equation is

The parameters in these source terms are written as

The variables and use boundary layer type deriv
tives normal to the wall and requires the tangenti
velocity component.

The Nagano-Hishida and the Launder-Sharma17 low
Reynolds turbulence models have been used
Theodoridis, Prinos, and Goulas18 to predict transitional
flow. They have investigated a flat plate flow experi
ment where the freestream turbulent intensity was a

cb1 1 f t2–( )

αcb1 1 f t2–( )
α

f t2

χ ν̃ ν⁄ f t2 ct3⁄[ ] ct4⁄ln–= =

f t2 1=
χ χ∗ 0.604=

x xt< α 0=
xt

x xt> α

α 1 f t2– 1 ct3e ct4χ2
––= =

x xt> χ χ∗≤ χ χ∗= x xt>
χ χ∗> χ

xt

k ε–

k ε–

U ρk ρϕ,= = µeff µk,= D 0=

SPk ρP,= SDk ρε=

P

U ρε ρϕ,= = µeff µε=

D 0,= SPε cε1 f 1ρε
k
--P,= SDε cε2 f 2ρε2

k
-----=

µk µ µT σk,⁄+= µε µ µT σε⁄+=

where µT cµ f µρk
2 ε⁄=

k ε–

f µ 1 y+ 26.5⁄–( )exp–[ ]2
=

y+

S ρP ρε– D̃+=

ρP µT xj∂
∂ũi

xi∂
∂ũ j+

 
 
 

xj∂
∂ũi≈

2
3
--- ρk µTSkk+( )Skk,    where Skk–

xk∂
∂ũk=

S
ε
k
-- cε1 f 1ρP cε2 f 2ρε–( ) Ẽ+=

f 1 1,= f 2 1 0.3e RT
2

– ,–= RT k
2 νε⁄=

D̃ 2µ ∂ k
∂y

---------- 
 

2
,–= Ẽ µνT 1 f µ–( ) ∂2

ũ

∂y2
-------- 

 
2

=

D̃ Ẽ
Ẽ

k ε–
5
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proximately 3 percent and 6 percent. The two turbulence
models were used to model the laminar to turbulent by-
pass transition in which the freestream turbulence deter-
mines where the transition to turbulent flow occurs. For
this bypass transition case, the Nagano-Hishida model
predicts transition to turbulent flow too near the leading
edge while the Launder-Sharma model predictions are
in reasonable agreement with the experimental data. Of
course, neither of these turbulence models were devel-
oped to predict where transition will occur in a flow; the
performance of the Launder-Sharma model in predict-
ing the location of transition is fortuitous. The failure of
the Nagano-Hishida for transitional flow requires cau-
tion in the application of this model and a procedure is
required to have the model turned on at the appropriate
location.

Menter k-  Model
Two different two-equation turbulence models are

described which solve equations for the turbulent kinet-
ic energy, k, and the frequency of turbulent fluctuations,

The Menter k- model13 is a hybrid model which
uses a blending function to combine the best aspects of
both the k- and the k- turbulence models. Near sol-
id walls, a k- formulation is used which allows inte-
gration to the wall without any special damping or wall
functions. Near the outer edge of the boundary layer and
in shear layers, the model blends into a transformed ver-
sion of the k- formulation, thus providing good pre-
dictions for free shear flows.

For the Menter k- model, the terms in Eq. (2) are
as follows:

(11)

(12)

The cross-diffusion term ( ) in Eq. (12) arises due to
the transformation of the -equation into an equation
for  The production term is given by

. (13)

For 3-D compressible flows, the turbulence stress tensor

can be expressed as:

(14)

The effective viscosities are given by

(15)

and the model constants above are blended values of
k- and k- parameters. For example, for the consta

,

where varies from 1 at the wall to zero outside wa
boundary layers, and a “1” denotes k- constants a
“2” denotes k- constants. The values for these co
stants are:

and

Wilcox (1998) k-  Model

For the Wilcox (1998) k- model,1 the terms in Eq.
(2) are as follows:

(16)

(17)

where

ω

ω. ω

ω ε
ω

ε

ω

Turbulent Kinetic Energy Equation

U ρk ρϕ,= = µeff µk,= D 0=

SPk ρP,= SDk β* ρkω=

Turbulent Frequency Equation

U ρω ρϕ,= = µeff µω=

D 2ρ 1 F–( )σω2
1
ω
---- k∂

xj∂
------- ω∂

xj∂
-------=

SPω ρ γ
νT
------P,= SDω βρω2

=

D
ε

ω.

P τi j

ui∂
xj∂

------- where τi j, ui ′uj ′–= =

τi j 2νt Sij
1
3
---

ũk∂
xk∂

--------δi j– 
  2

3
---kδi j–=

µk µ σkµ
T

,+= µω µ σwµ
T

+=

where µT ρk ω⁄=

ω ε
β

β Fβ1 1 F–( )β2+=

F
ω

ε

σk1
1
2
--- σω1, 1

2
--- β1, 3

40
------,= = =

β*
0.09 κ, 0.41 γ1,

β1

β*
-----

σω1κ2

β*
----------------–= = =

σk2 1 σω2, 0.856 β2, 0.0828,= = =

β*
0.09 κ, 0.41 γ2,

β2

β*
-----

σω2κ2

β*
---------------- .–= = =

ω
ω

Turbulent Kinetic Energy Equation

U ρk ρϕ,= = µeff µk,= D 0=

SPk ρP,= SDk β* ρkω=

Turbulent Frequency Equation

U ρω ρϕ,= = µeff µω,= D 0=

SPω ρ γ
νT
------P,= SDω βρω2

=

6
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The production term, P, and the eddy viscosity defini-
tions are given in Eqs. (13) and (15), respectively. This
formulation is a modification to an earlier Wilcox
model19 in order to improve model predictions for free
shear layers and to reduce the solution sensitivity to
freestream  values.

Flow Predictions for Flat Plate
Flow over a flat plate has been chosen as a high speed

test case to illustrate the behavior of the laminar/turbu-
lent flow results obtained with the one- and two-equa-
tion turbulence models. The test case is Mach 8 flow
over a flat plate with a wall temperature of =1000K
and freestream conditions corresponding to an altitude
of 15 km. For this case, the temperature in the flow is
sufficiently low that perfect gas assumption with

 is reasonable.

Freestream Flow Conditions
The freestream conditions20 for the flat plate case

are:

For the Spalart-Allmaras model, the restriction on the
freestream eddy viscosity is determined by Eq. (5),
which gives

for the Mach 8 flat plate flow case. The freestream edd
viscosity for all models was thus chosen as

unless indicated otherwise. For the two-equation mo
els, the further specification of a freestream turbulen
intensity of 0.01% was used to determine the turbule
kinetic energy in the freestream from

Computational Mesh for the Flat Plate
A parabolic mesh has been used around the flat pl

with the Cartesian coordinate system fixed at th
leading edge. This mesh topology mitigates the effec
of the leading edge singularity. The parabolic coord
nates are related to the Cartesian coordinates
follows:

The value of has been determined by settin
at . This gives a mesh that is slightly

longer than one meter along the flat plate. A uniform
mesh is used in the coordinate direction while a no
uniform mesh spacing is used in the coordinate dire
tion. The mesh spacing has been determined with t
lower boundary stretching transformation of Roberts21

(see also Ref. 22). Most of the results have been o
tained with 80x160 cells. A coarser mesh of 40x80 and
finer mesh of 160x320 have been used to show that
80x160 mesh provides results sufficiently accurate f
the figures presented. A stretching parameter

has been used for the one-equation mode
This choice for gives maximumy+ values of approxi-
mately 2.3 for the coarse 40x80 mesh. As expected,
maximum allowabley+ values for the two-equation
models were found to be much smaller than for the on
equation models, with the larger values resulting in co
vergence problems. Thus a stretching parameter

was used giving at the end of
the plate for the coarse mesh.

Flat Plate Results with Standard Transition Method
For the freestream conditions and meshes specif

above, the laminar/turbulent flow has been calculat
with the SACCARA code and compared to the accura
laminar and turbulent results obtained for this case
Van Driest.14,15The standard transition method is use
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ũ j∂
xi∂

--------– 
  Si j, 1

2
---
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where the laminar viscosity is the sole contributor to the
effective viscosity upstream of the transition plane
( ). The L2 norms of the residuals for
both the momentum equations and the turbulence equa-
tions were reduced at least eight orders of magnitude in
each case, suggesting that the results for the flat plate
problem are not influenced by iterative convergence er-
ror.

Skin friction profiles have been obtained using all
five turbulence models for the Mach 8 flat plate case.
The Baldwin-Barth and both models give transi-
tion at the specified transition plane for the given
freestream turbulence levels as shown in Fig. 1. In order
to move the transition point to the desired location, the
freestream eddy viscosity had to be increased to

kg/m/s for the Spalart-Allmaras model, and
the turbulence intensity had to be increased to 0.1% for
the low Reynolds number model (see Fig. 2). All
of the models which correctly predict turbulent flow
downstream of the transition point also predict skin fric-
tion in this region in agreement with the theory.

Modified Transition Results for Spalart-Allmaras
Model

Solutions have been obtained with the Spalart-Allma-
ras trip functions set to zero. The flow is turbu-
lent along the flat plate for this case with the freestream
eddy viscosity varying from to kg/m/s.
Solutions have been obtained with the trip function
included and set to zero. For this case the flow tran-
sition location is dependent on the freestream eddy vis-
cosity. When the eddy viscosity is kg/m/s, the
flow remains laminar over the length of the flat plate. As
previously discussed, numerical solutions show that the
flow can be maintained laminar by making the produc-
tion term zero by setting with the trip
functions  set to zero.

The complete Spalart-Allmaras model has trip terms
included to control the transition location, but the for-
mulation is not intended to model the transition flow re-
gion. The behavior of this model has been investigated
with the results for the local skin friction given in Fig. 3
where the trip location is specified. The specified
transition location corresponds to
while the numerical prediction has transition varying as
the freestream eddy viscosity is increased above a value
of approximately kg/m/s. For these high speed
flows, it is difficult to control the transition location
with the suggested trip model. In addition, there is no
control of the length of the transition region. Because of
these experiences with the behavior of the Spalart-All-
maras trip model, different approaches have been inves-
tigated.

Three methods have been investigated to control t
transition location and the length of transition as prev
ously described. There are two parameters and
introduced to control the transition behavior. The pa
rameter is at the middle of the transition region whil

is the location upstream where transitio
starts and the location downstream whe
the flow becomes fully turbulent. The values of thes
parameters are:

These locations are also indicated in Fig. 4.
The results for the skin friction with the three pro

posed approaches for modeling transition have been
vestigated. All of the methods remain laminar
significant distance after the specified start of transitio
With Method 1, where the trip function is modified
transition occurs downstream of the desired locatio
with very rapid transition onset. With Method 2. wher
the production coefficient is modified, transition
occurs near the desired location with a reasonable va
tion of the skin friction in the transition region. With
Method 3, where the production term coefficien

is modified, transition occurs downstream
of the desired transition location with very rapid trans
tion onset. From this investigation it is concluded tha
Method 2 provides a reasonable technique to specify
transition location with limited control over the transi
tion region length. The results for method 2 are prese
ed in Fig. 4. When varies linearly over the transitio
region, there is better control. The transition contr
Method 2 appears to be insensitive to the freestrea
eddy viscosity. Other approaches need to be conside
and evaluated.

Flow Predictions for Reentry F Vehicle

Reentry F Description and Experimental Results
The Reentry F flight experiment23 was performed in

1968 to provide measurements of wall heat transf
rates at reentry flow conditions that cannot be obtain
in ground-based experimental facilities. The data is f
the flow over a slender conical vehicle where there
only a small amount of surface ablation localized at th
nosetip. The boundary layer flow is laminar, transition
al, or turbulent depending on the altitude and locatio
along the body surface. The Reentry F vehicle was a
degree sphere-cone with an initial nose radius of 0
inch and the vehicle length is 13 feet. A graphite noset
extended for the first 7.54 inches followed by a conic
beryllium frustum. The heat transfer measuremen
were obtained at altitudes between 120,000 and 60,0
feet. The data at a flight time of 456.0 seconds or an a

xt 0.1196m=

k ω–

1 10
6–×

k ε–

f t1 f t2,

µT 10 9– 10 5–

f t2
f t1

10 9–

SP cb1 0=
f t1 f t2,

xt
Rex 3.84

6×10=

10 9–

xt xl

xt
xs xt xl–=

xe xt xl+=

xt 0.1196m,= xl 0.1 m,= Rext
3.84 6×10=

f t2

cb1

cb1 1 f– t2( )

λ
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tude of 80,000 feet (24.383 km) is used to validate the
turbulence model predictions. Although this flight ex-
periment provides exceptional data, there are many as-
pects of the flow conditions, body orientation, body
shape, and wall surface temperature that are not com-
pletely or precisely known.

In recent years, this experimental data set has been
reevaluated with modern computational codes and is
documented in Refs. 24-26. Aerothermal predictions
have also been presented in these papers. It is important
to observe that the freestream conditions for the three
predictions are slightly different and the wall tempera-
ture in some cases is constant while in others a variation
is taken into account. Most of these solutions are for ax-
isymmetric flow with the vehicle at zero degree angle of
attack, but full three-dimensional solutions have been
obtained with the actual flight angle of attack of 0.14 de-
grees. There are many details of this flight experiment
that are not well defined, but overall the heat transfer
predictions are in reasonable agreement with the flight
measurements. Of course, none of the modeling in-
cludes a capability to predict the transition location. Fur-
ther information on the flight experiment is given in
Wright and Zoby.23

The flow conditions at an altitude of 80,000 feet have
become the location in the flight trajectory most often
analyzed and are also chosen for the present investiga-
tion. The present freestream conditions are based on the
U. S. Standard Atmosphere, 1976.20 The assumed tur-
bulent eddy viscosity is given as well as the turbulence
intensity for the two-equation models. The freestream
flow conditions (in SI units) that have been used in are

Note that there is some amount of uncertainty in the
specification of these properties.

The nosetip of the vehicle is graphite and initially is a
sphere-cone with a nose radius m. Due
to ablation, the nose radius increases to mat an
altitude of 80,000 feet. This result is an estimated value
from an ablation analysis of the nosetip.26 For the
present analysis, it is assumed that the nosetip shape re-
mains a sphere-cone after ablation with the same cone
half angle as the conical vehicle, which is .
The nosetip is illustrated below. The origin in this figure
is located at the virtual tip of the conical vehicle. For the
approximated sphere-cone configuration for the Reentry

F vehicle simulation, the location of the original noseti
and ablated nosetip is specified as

In previous analyses of this vehicle, the coordinate
is defined as the axial distance without a clear definitio
of the origin location given in many cases. Some figure
indicate that the origin is located at the ablated nose
the body. The axial location in this paper is measure
from the nosetip of the un-ablated vehicle. The uncer-
tainty in the location of the axial heat flux measure
ments has a negligible impact on the results presente

Due to the high velocities, the gas temperature
more than 6000K in the nosetip region with dissociation
of the oxygen and nitrogen occurring. Downstream
the nose the inviscid flow temperature behind the sho
is 420 K, and perfect gas flow occurs. However, in th
boundary layer the viscous dissipation increases the
temperature to around 3000K and dissociation of oxy-
gen occurs. At 80,000 feet, the chemical reactions a
sufficiently fast that the air is assumed to be in loc
thermochemical equilibrium. This is believed to be
reasonable assumption, but a finite rate solution needs
be performed in the future to validate this simplification
There is also some ablation of the nosetip which intr
duces chemical species from the ablation products in
the boundary layer flow. As the amount of ablation i
small, this influence has been neglected.

Predictions of Wall Heat Flux for Reentry F Vehicle
Simulation Code and Model Approach

The flow around the Reentry F vehicle has been d
termined with the SACCARA6-9 Navier-Stokes code.
This investigation is concerned with obtaining accura
numerical solutions of the wall heat flux based upon th
input conditions to the code and models used in the si
ulation. The wall heat flux predictions are then com
pared with the flight measurements at an altitude
80,000 feet. The solution is for the flow over the ablate
vehicle. The small angle of attack of the vehicle (
is neglected and the flow is assumed to be axisymm
ric. The solutions use a gas model of air in local therm
chemical equilibrium and the flow is laminar over th

M∞ 19.97,= α 0°,= ρ∞ 0.043523=

T∞ 221.034,= Tw 500,= p∞ 2761.41=

V∞ 5951.858,= a∞ 298.04=

µ∞ 1.445= 10
5–
,× µT 3.3227 10

14–×=

Tu 0.01%,= xbody 4.0=

RN 0.00254=
0.00343

θcone 5°=

r

RN x0 x

xtip 456( )

xtip 0( ) θcone

x0 0.012752m,= xtip 0( ) 0.026603m=

xtip 456( ) 0.035925m=

x

x

0.14°
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front part of the body. The flow transitions to turbulent
flow at a specified location. The turbulent flow has been
modeled with the Baldwin-Barth and Spalart-Allmaras
one-equation eddy viscosity approaches and the low
Reynolds number , Menter , and Wilcox
(1998) two-equation turbulence models. The so-
lutions have been obtained on three meshes to judge the
spatial convergence of the solution. The L2 norms of the
momentum and turbulence transport equations exhibited
oscillatory behavior after only a two or three order of
magnitude drop, thus another method was needed to
monitor convergence. The iterative convergence has
been initially determined by plotting the wall heat flux
at various number of time steps and assuming conver-
gence has been obtained when there is no noticeable
change in the results. Further analysis of the steady-state
solution error of the wall heat flux has shown that addi-
tional time steps are required to obtain adequate steady-
state solutions.

Transition Model
As previously discussed, the basic SACCARA code

treats the transition process by setting the effective vis-
cosity to the laminar value upstream of a specified tran-
sition plane, while downstream of this plane the
effective viscosity is the sum of both the laminar and
turbulent viscosities. This approach has been used with
the Baldwin-Barth one-equation eddy viscosity model
and all two-equation models. The transition plane is
specified to be perpendicular to the vehicle axis and lo-
cated at m. With the Spalart-Allmaras one-
equation eddy viscosity model, a different approach has
been implemented as described previously, with

and . From the results
of the investigation of the flat plate flow case, it was
concluded that Method 2 (coefficient is varied) is
the best approach to control the transition process with
the Spalart-Allmaras model at this time.

Iterative Convergence of the Numerical Solutions
At an altitude of 80,000 feet, steady-state solutions on

three meshes have been obtained by marching the solu-
tion in time until there is no further change in the plotted
solution. This method is illustrated in Fig. 5 for the
coarse Mesh 0-rg (100x40) with the Spalart-Allmaras
turbulence model. The laminar flow region takes the
longest time to converge as there is a very fine mesh in
the wall region. With Mesh 0-rg, the wall heat flux ap-
pears to have no significant changes after 4000 time
steps. The iterative convergence with Mesh 1-rg
(200x80) is shown in Fig. 6, while the behavior of Mesh
2-rg (400x160) is given in Fig. 7. With Mesh 1-rg, the
wall heat flux appears to have no significant changes af-
ter 7000 time steps while Mesh 2-rg requires approxi-

mately 14,000 time steps. However, the results shown
these figures are misleading! A more careful analys
has been performed to estimate the iterative conv
gence error.

The accuracy of the wall heat flux relative to th
steady-state value is determined by expressing the
merical solution at time  as

(18)

The exact steady-state value of the wall heat flux is
and the convergence error at time is . The conve
gence error has been observed to have an exponen
decrease in time which gives the following variation a
the solution approaches a steady state:

(19)

Eq. (18) and Eq. (19) are rewritten as

(20)

Eq. (20) is evaluated at three times, , , an
, and the three relations are used to eliminate

and obtain

If the time increments are equal, then =
 and the above becomes

The exact steady-state value of the wall heat flux
solved for in the above equation which gives

(21)

The iterative convergence error becomes

and the percent convergence error relative to the ex
steady-state value becomes

(22)

The foregoing results closely follow the works o
Ferziger and Peric27,28for determining the convergence
error of the numerical iterative solution of differenc
equations, but their results have been obtained with
different approach. In their work, the parameter
the spectral radius (or the magnitude of the large

k ε– k ω–
k ω–

x 2.6=

xs 1.8844m= xe 2.8844m=

cb1
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βtn αln qn qE–( )ln–=

n 1–( ) n
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β tn tn 1––( ) qn 1– qE–( ) qn qE–( )⁄[ ]ln=

β tn 1+ tn–( ) qn qE–( ) qn 1+ qE–( )⁄[ ]ln=

tn tn 1––( )
tn 1+ tn–( )

qn 1– qE–( ) qn 1+ qE–( ) qn qE–( )2=
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eigenvalue) of the iteration matrix. If the eigenvalues
are complex, the present approach is not appropriate.
The complex eigenvalue case has been considered by
Ferziger and Peric.

The above procedure is illustrated for the wall heat
flux solution at m (where the flow is lam-
inar) using the Spalart-Allmaras model. The percent er-
ror is shown in Fig. 8 for the three meshes. The percent
error obtained from Eq. (22) is indicated by the symbols
while the lines are the percent error obtained from the
best estimate of the exact solution given by Eq. (21).
The initial solution results on the finest mesh (Mesh 2-
rg shown in Fig. 7) appeared converged at 10,000 itera-
tions; however, based on the above error analysis, an ad-
ditional 15,000 iterations were needed to get the error
below 0.1%. The flow solution for Reentry F has also
been obtained with three meshes (Mesh 0-f, Mesh 1-f
and Mesh 2-f) with the same number of cells, but finer
spacing near the wall than was used with Mesh rg. Re-
sults of iterative convergence similar to Fig. 5, Fig. 6,
and Fig. 7 are obtained except the number of time steps
is increased significantly for the solutions with finer
near-wall spacing. The iterative convergence error for
Mesh f is given in Fig. 9. The iterative solution errors
are much smaller than the spatial solution errors, as will
be demonstrated.

The iterative convergence for the two-equation turbu-
lence models was also examined for Meshes 0-2eq
(130x40 cells), 1-2eq (260x80 cells), and 2-2eq
(520x160 cells). Results are presented for the low Rey-
nolds number model (Fig. 10), the Menter
model (Fig. 11), and the Wilcox (1998) model
(Fig. 12). There is some scatter in the symbols due to the
fact that the time increments were not always equal. A
larger number of iterations were required due to the
stricter requirements for Mesh 2eq verses the one-
equation meshes (Mesh rg and Mesh f). The two-equa-
tion results were all converged to less than 0.4% error,
which is again much smaller than the grid convergence
error.

Spatial Convergence of the Numerical Solutions
Spatial convergence has been judged from the steady-

state solutions on the three meshes, 0, 1, and 2 (from
coarsest to finest). The wall heat flux obtained with the
Spalart-Allmaras turbulence model for the three meshes
is given in Fig. 13 with the variable spacing given by
Mesh rg. The Richardson extrapolation procedure29 has
been used to obtain a more accurate result from the rela-
tion

(23)

The above relation assumes that the numerical scheme
is second-order. The Richardson extrapolation result

and the solution on Mesh 2-rg are nearly the sam
(also shown in Fig. 13). The accuracy of the solution
on the three meshes has been estimated with the ex
solution approximated with which gives the solu
tion error as

If the mesh has been refined sufficiently where th
solution error has second-order behavior, then the err
on the three meshes have the following relationship

(24)

In the above equation, the first equality will always b
satisfied when Eq. (23) has been used. The seco
equality will only be satisfied if the mesh has been suff
ciently refined to be in the asymptotic range. The pe
cent error of the wall heat flux along the vehicle i
presented in Fig. 14. The laminar flow solution region
in the asymptotic range while the turbulent flow regio
is not in the asymptotic range. The wall heat flux predic
tion in the laminar flow region is more accurate than th
heat flux prediction in the turbulent flow region.

For Mesh f, spatial convergence has been judg
from the steady-state solutions on the three meshes 0
and 2. Richardson extrapolation procedure has be
used to obtain a more accurate result. The accuracy
the solutions on the three meshes has been estima
with the exact solution approximated with the Richard
son extrapolated result and these results are giv
in Fig. 15. Again, the laminar flow solution region is in
the asymptotic range while the turbulent flow region
not always in the asymptotic range. The wall heat flu
prediction in the laminar flow region with Mesh f is less
accurate than the results with Mesh rg. The heat flu
predictions in the turbulent flow region with Mesh f are
more accurate than the results with Mesh rg. Only th
solution on Mesh 2-f is considered sufficiently accura
for comparison with the flight measurements and the R
chardson extrapolated results provide even a more ac
rate numerical prediction.

Spatial convergence has also been examined for
three two-equation models. The spatial error of the he
flux is given in Figs. 16-18 for the low Reynolds num
ber , the Menter , and the Wilcox (1998

models, respectively. The spatial error in the lam
inar regions is generally below 2%, while in the turbu
lent regions it varies from approximately 2% for th

model to 4% for the models. The results fo
the models indicate that the heat flux is not full
grid independent in the turbulent region. The spike
the error for the two-equation models is due to mov
ment of the transition location on the different siz

x 2.14892=

k ε– k ω–
k ω–

y
+

qRE q1 2, q2 q2 q1–( ) 3⁄ .+= =

qRE

qRE

% Error ofqM 100 qM qRE–( ) qRE M⁄ 1 2 3, ,= =

% Error ofq2

% Error ofq1

4
---------------------------------

% Error ofq0

16
---------------------------------= =

qRE

k ε– k ω–
k ω–

k ε– k ω–
k ω–
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meshes and is more apparent for the two-equation mod-
els due to the fine axial spacing around the transition
point.

Wall Heat Flux
The predictions of the wall heat flux on the Reentry F

vehicle at an altitude of 80,000 feet with the one-equa-
tion turbulence models are given in Fig. 19 along with
the flight data. The Spalart-Allmaras prediction uses the
numerical solution with Mesh 2-f and the Richardson
extrapolation results for this case. The simulation over-
predicts the laminar wall heat flux by roughly 10 per-
cent while the turbulent wall heat flux is overpredicted
by roughly 15 percent. At this altitude the vehicle has a
0.14 degree angle of attack and the heat transfer mea-
surements were made on the leeward side of the conical
body. A full three-dimensional solution, with the vehi-
cle at angle of attack, would bring the prediction and
flight data into closer agreement. The prediction with
Mesh 2-f is believed to be a sufficiently accurate steady-
state solution that it can be used to validate the turbu-
lence model, but there are small errors in these results
due to uncertainty in information used in the simulation
as discussed previously.

The Baldwin-Barth turbulence model prediction (also
shown in Fig. 19) uses the numerical solution with Mesh
2-rg where the wall temperature is not maintained at
500K. However, these heat transfer results are not ex-
pected to be influenced much by this inaccurate wall
temperature. The simulation with the Baldwin-Barth
turbulence model overpredicts the laminar wall heat
flux by roughly 10 percent and is in agreement with the
simulation with the Spalart-Allmaras model. Of course,
in the laminar flow region the turbulence models should
have no impact on the flow solution. The turbulent wall
heat flux is overpredicted by roughly 100 percent with
the Baldwin-Barth turbulence model. It is recommended
that the Spalart-Allmaras model should be used rather
than the Baldwin-Barth turbulence model for reentry
flows.

Results with the Nagano and Hishida , the
Menter , and the Wilcox (1998) models are
presented in Fig. 20. Fine grid results with Mesh 2eq are
shown along with the results from Richardson extrapo-
lation. The results show an overprediction of the
turbulent heating rates by approximately 100%. The two

models show better agreement with the flight da-
ta, with the Menter model within 40% and the Wilcox
(1998) model within 30% of the data. All three models
display a peak in the turbulent heating just downstream
of the specified transition plane, which is possibly due
to crude transitional behavior of the standard method.

The present simulations have been performed with a
gas model that assumes the air flow is in local thermo-

chemical equilibrium. This study needs to be extend
to include solutions obtained with a nonequilibrium
thermochemical gas model for air. This type of simula
tion introduces the modeling of the heterogeneo
chemical reactions at the vehicle surface and vibration
nonequilibrium effects.

Conclusions
Many Navier-Stokes codes require that the governi

equations be written in conservation form with a sourc
term. The Spalart-Allmaras one-equation model w
originally developed in substantial derivative form an
when rewritten in conservation form, a density gradie
term appears in the source term. This density gradie
term causes numerical problems and has a small inf
ence on the numerical predictions. Further work h
been performed to understand and to justify the negle
of this term.11,16 The transition trip term has been in-
cluded in the one-equation eddy viscosity model
Spalart-Allmaras. Several problems with this mod
have been discovered when applied to high-speed flow

For the Mach 8 flat plate boundary layer flow with
the standard transition method, the Baldwin-Barth an
both models gave transition at the specified loc
tion. The Spalart-Allmaras and low Reynolds numbe

models required an increase in the freestream t
bulence levels in order to give transition at the desire
location. All models predicted the correct skin friction
levels in both the laminar and turbulent flow regions.

For Mach 8 flat plate case, the transition locatio
could not be controlled with the trip terms as given i
the Spalart-Allmaras model. Several other approach
have been investigated to allow the specification of th
transition location. The approach that appears most a
propriate is to vary the coefficient that multiplies th
turbulent production term in the governing partial dif
ferential equation for the eddy viscosity (Method 2
When this coefficient is zero, the flow remains lamina
The coefficient is increased to its normal value over
specified distance to crudely model the transition regio
and obtain fully turbulent flow. While this approach
provides a reasonable interim solution, a separate eff
should be initiated to address the proper transition pr
cedure associated with the turbulent production ter
Also, the transition process might be better modele
with the Spalart-Allmaras turbulence model with mod
fication of the damping function The damping
function could be set to zero in the laminar flow regio
and then turned on through the transition flow region.

Predictions have been obtained for the Reentry
flight vehicle with both one- and two-equation turbu
lence models where the transition location is specifieda
priori . The axisymmetric turbulent predictions for wal

k ε–
k ω– k ω–

k ε–

k ω–

k ω–

k ε–

f v1.
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heat flux with the Spalart-Allmaras, Menter , and
Wilcox (1998) models are in reasonable agree-
ment with the flight measurements. The mesh sensitivity
has been evaluated by obtaining results on three meshes
and more accurate results have been obtained with Rich-
ardson extrapolation. The simulation assumes the vehi-
cle is at zero degree angle-of-attack while in fact, the
flight vehicle is at 0.14 degree angle-of-attack. For the
one-equation models, the Spalart-Allmaras model pre-
dictions for this case are much better than the results
from the Baldwin-Barth model. For the two-equation
models, both models give good agreement with
the flight data, while the low Reynolds number
model greatly overpredicts the heating in the fully tur-
bulent region.

Future Work
The Reentry F calculations need to be extended to the

finite rate chemistry model. This modification should
help to determine if the equilibrium air assumption is
appropriate and will help determine if the turbulence
model with finite chemistry is reasonable. The present
Reentry F calculations have assumed a constant wall
temperature and this assumption needs to be improved.
As there is only limited flight information on the wall
temperature and no data in the nose region, a coupled
fluid/heat-conduction analysis is needed to provide the
wall temperature variation along the vehicle. Further
work could be done to modify the transition mechanism
for the two-equation models along the lines of the Spal-
art-Allmaras modifications presented herein. Finally, in-
cluding a realizeability limitation has been shown to
improve predictions for flows with large normal
stresses30 and may also improve predictions through
strong normal shocks.
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Abstract
A number of one- and two-equation turbulence mo

els are examined for hypersonic perfect- and real-g
flows with laminar, transitional, and turbulent flow re
gions. These models were generally developed for
compressible flows, and the extension to the hyperso
flow regime is discussed. In particular, inconsistenci
in the formulation of diffusion terms for one-equation
models are examined. For the Spalart-Allmaras mod
the standard method for forcing transition at a specifie
location is found to be inadequate for hypersonic flow
An alternative transition method is proposed and eva
ated for a Mach 8 flat plate test case. This test case
also used to evaluate three different two-equation turb
lence models: a low Reynolds number model, th
Menter formulation, and the Wilcox (1998)

model. These one- and two-equation models a
then applied to the Mach 20 Reentry F flight vehicle
The Spalart-Allmaras model and both formula
tions are found to provide good agreement with th
flight data for heat flux, while the Baldwin-Barth and
low Reynolds number models overpredict the tu
bulent heating rates. Careful attention is given to sol
tion verification in the areas of both iterative and gri
convergence.

Nomenclature
a speed of sound, m/s
D turbulence diffusion term

k ε–
k ω–

k ω–

k ω–

k ε–
1
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d distance to the wall, m
k specific turbulent kinetic energy, m2/s2

PrT turbulent Prandtl number (= 1.0)
p pressure,N/m2

q heat flux,W/m2

RN vehicle nose radius,m
r radial coordinate,m
SP turbulence production source term
SD turbulence destruction source term
Sij strain rate tensor,1/s
T temperature,K
Tu freestream turbulence intensity percent
t time, s
U conserved transport quantity
ui velocity,m/s
V velocity magnitude,m/s
x axial coordinate,m
y wall normal direction,m

angle of attack,degrees
ratio of specific heats
Kronecker delta function (= 1 wheni=j )
specific dissipation rate,m2/s3

cone half-angle,degrees
absolute viscosity,N·s/m2

kinematic viscosity,m2/s
Spalart-Allmaras working variable
density,kg/m3

turbulent stress tensor,m2/s2

non-conserved transport quantity
rotation tensor,1/s
specific turbulent frequency,1/s

Subscripts
E exact value
eff effective value (turbulent + laminar)
RE Richardson extrapolation
ref reference value

α
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θcone
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Superscripts
+ quantity in wall coordinates
~ denotes Favre (density-weighted) averaging
__ denotes Reynolds (time-based) averaging

denotes Favre fluctuating quantity

Introduction
This work is concerned with developing a capability

to model high-speed compressible flows with laminar,
transitional, and turbulent flow regions. The approach
uses one- and two-equation eddy viscosity models to
predict the turbulent flow. The same governing equa-
tions are presently being used to predict the transitional
flow region where the onset to turbulent flow is speci-
fied and assumed to be known. The prediction of where
onset to turbulent flow occurs is a research area that de-
pends on an analysis of the flow stability, understanding
of the flow disturbances outside the boundary layer, and
a capability to predict the boundary layer receptivity.
The process of entraining disturbances into the bound-
ary layer and producing perturbations that can be ampli-
fied is called “receptivity.”

The more appropriate books providing information
on modeling compressible turbulent flows are Wilcox,1

Chapter 6 by Gatski,2 and Smits and Dussauge.3 The
modeling of compressible turbulent flows is still an ac-
tive area of research. The application of some of the tur-
bulence models to compressible flows is not always
clear, as the models were originally developed for in-
compressible flows. Formulations for incompressible
flow are not applicable to compressible flow because
some variables (e.g., density, viscosity) have been as-
sumed constant in the development. The turbulent trans-
port equations are often written in substantial
differential form, while the equations in conservation
form are generally required in compressible Navier-
Stokes codes. Problems with the formulation of the gov-
erning equations for compressible turbulence models in
conservation form are discussed. For example, the form
of the diffusion term in the Spalart-Allmaras4,5 model is
rewritten and justification for the new form is given.

The SACCARA (Sandia Advanced Code for Com-
pressible Aerothermodynamics Research and Analysis)
code6-9 is used for the results presented in this paper.
For one-equation turbulence models, the SACCARA
code has options for both the Baldwin-Barth10 and Spal-
art-Allmaras eddy viscosity models. There is evidence
that the use of the Baldwin-Barth model does not consti-

tute a well-posed system of governing equations.11 For
boundary layer and shear layer flows, the solutions
not appear to converge to a unique solution as the me
is refined. Therefore, there is more interest in using t
Spalart-Allmaras model, as it has proven to be a num
ically robust approach. Part of the present work is co
cerned with the evaluation of the Spalart-Allmara
model for high-speed flows and the simulation of th
transition region with the Spalart-Allmaras model.

The SACCARA code also has options for three pop
lar two-equation eddy viscosity turbulence models:
low Reynolds number formulation and two
models. The model1 employs the low Reynolds
number modification of Nagano and Hishida12 to allow
integration to solid walls. The first formulation is
the hybrid model of Menter13 which is a blending be-
tween a formulation (near solid walls) and

formulation (in shear layers and freestream flow
Menter proposed this hybrid model to take advantage
the accuracy of the model for wall-bounded flow
and the model for free shear layers. The fina
model is the Wilcox model1 which was modified
in 1998 to improve the predictive accuracy for she
flows. This model is referred to as the Wilcox (1998
model in the current work. The appropriate form of th
two-equation eddy viscosity equations are also impo
tant because the one-equation formulation can be dev
oped from the two-equation transport relations. Th
approach may be used to determine the appropriate fo
of the transport equation for the one-equation models

Two flow cases have been used to investigate the p
formance of the one- and two-equation eddy viscos
models. The first case is the flow over a flat plate a
Mach 8 and an altitude of 15km where the perfect gas
model is appropriate. The skin friction along the fla
plate is used to judge the accuracy of the predictio
through comparisons with the accurate laminar and tu
bulent results of Van Driest.14,15 If the standard turbu-
lence models (without modifications for transition) ar
employed over the whole domain, the transition locatio
often depends on turbulent intensity in the freestrea
This behavior is similar to the bypass transition prob
lem. When a transition plane is specified in which th
turbulent eddy viscosity is neglected upstream, the tra
sition locations for the Spalart-Allmaras and low Rey
nolds number models still show sensitivity to th
freestream turbulence quantities. The control of the tra
sition location with the Spalart-Allmaras model ha
been investigated.

The second case investigated is the flow over the R
entry F flight vehicle at Mach 20 and at an altitude o
24.4km (80,000 feet) where real gas effects are signif
cant. The measured heat transfer along the vehicle
used to judge the accuracy of the model predictions. T

′

k ε– k ω–
k ε–

k ω–

k ω–
k ε–

k ω–
k ε–

k ω–

k ε–
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transition location is specified to give a reasonable
match of the wall heat flux with the flight data. It should
be remembered that the prediction of transition location
is not included in the modeling. The solutions have been
obtained on three meshes with the number of cells in
each coordinate direction doubled for each mesh refine-
ment. In addition, the solutions on each mesh are
marched in time until the wall heat flux has obtained a
steady-state value. The accuracy of the iterative solution
relative to the steady-state solution has been estimated
for each model. The various uncertainties and assump-
tions in the flight experiment and prediction are dis-
cussed. Real gas effects have been taken into account
with the use of an equilibrium air model.

Favre-Averaged Transport Equation for
Turbulence Models

The generic form of the turbulent transport equation
in substantial derivative form1 is

(1)

where

For example for a one-equation eddy viscosity model,
the dependent variable is and the effective diffu-
sion coefficient is . In some models there are two
parts to the diffusion term on the right-hand side of Eq.
(1); is the first part of the diffusion term which can
be put in conservation form, and is the remaining
part. When is included, it can take on several forms.
The source term has a production part
and a dissipation part . If the continuity equation is
multiplied by and added to Eq. (1), the resulting
equation is the generic transport equation in conserva-
tion form:

(2)

The dependent variable is . This development
utilizes Favre (overtilde) and Reynolds (overbar) aver-
aging. See Ref. 1 for notation and for details on the
Favre averaging procedure.

One-Equation Turbulence Model
There have been a number of one-equation turbu-

lence models developed which use a transport equation
to solve for the eddy viscosity directly. The present

work is focused on the Spalart-Allmaras model and
brief description is presented below.

Spalart-Allmaras Model
The transport equation for determining the eddy vi

cosity with near-wall effects included has been deve
oped by Spalart and Allmaras.4,5 The governing
equation form is slightly different than Eq. (1) and is

(3)

The dependent variable , where
is a damping function used in the near-wall region an
mainly in the viscous sublayer. This function and th
right hand side terms will be defined below. The cont
nuity equation is multiplied by and added to Eq. (3
which gives a transport equation in conservation for
for the Spalart-Allmaras model in the form of Eq. (2)

(4)

The right-hand side has contributions from a diffusio
term as well as production, destruction, and trip term
The four terms in the model are written as follows:
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Trip Term

In the formal transform of the transport equation into
conservation form, the diffusion term includes a
density gradient term. This term is zero when the trans-
port equation (Eq. (4)) is developed from the compress-
ible form of the transport equations,11,16 and is
shown above in the termDiffusion-Modified for Com-
pressible Flow.This form of the diffusion term is used
in the present work. Including this density gradient term
has been found to cause stability problems for high-
speed flows, while having negligible effect on the pre-
dictions. The model controls transition from laminar to
turbulent flow with the use of the trip term. With this
additional physics, the foregoing governing equation re-
quires some additional terms and definitions for
and which involves the coefficients to . Ex-
cept where noted, the standard values for the model con-
stants are used in the current work.

Boundary Conditions for Spalart-Allmaras Model
At the wall or . The freestream

boundary condition for this model is the specification of
the turbulent eddy viscosity . In the freestream there
should be no production of the eddy viscosity, which re-
quires that

in order to turn off the production term in Eq. (6). The
restriction on  is

The restriction on the freestream eddy viscosity be-
comes

(5)

The freestream eddy viscosity as suggested by Spalart-
Allmaras is , which gives

Control of Laminar and Turbulent Flow with the
Spalart-Allmaras Model

The governing equation has three terms that are influ-
enced by the transition model. The complete source
term (for the conservative formulation) is

(6)

where the trip terms are underlined in the above equ
tion. The first term is part of the diffusion term and is in
cluded in the source term as it is evaluated numerica
in an explicit manner. The second term is the productio
term and it will produce or increase the eddy viscosity

The third term is the destruction term and i
will decrease the eddy viscosity if .
The fourth term is the trip term and it will increase th
eddy viscosity as .

The model generally predicts turbulent flow every
where when the trip terms are zero

The flow can be made laminar everywhere with the fo
lowing values of the trip terms:

or

Several different approaches have been investigated
control transition and to replace the original trip mode
approach of Spalart-Allmaras.

Method 1 (  is modified)

In this approach the value of , and
where varies from the laminar

flow region to the turbulent flow region. In the lamina
flow region while in the turbulent flow region

The parameter is increased smoothly and d
fines the transitional flow region. This method require
specification of the location and length of the transition
al region.

Method 2 (  is modified)

In this method the trip terms and
are set to zero. The coefficient is modified

from the laminar flow region to the turbulent flow re-
gion as follows:

In this method, the location of the start of transitiona
flow  and end of transitional flow  are specified.
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Method 3 (  is modified)

In this method the production term coefficient is
modified by writing this term as . The pa-
rameter increases from zero to one in the transitional
flow region. From the definition of , the following is
obtained:

(7)

The production term switches sign when
which gives a critical value of  which is .
When , set and there is no production of
eddy viscosity upstream of the transition location .
When , is increased downstream towards one.
This increase is controlled by setting

When and , then . When
and , then is obtained from Eq. (7). In this
method, only the single parameter  must be specified.

Two-Equation Turbulence Models
The standard method for specifying transition to tur-

bulence is through analogy with the turbulence intermit-
tency approach. The turbulence transport equations are
solved over the entire domain, with a user-defined tran-
sition plane specified. Upstream of this plane, the effec-
tive viscosity is simply the laminar value, while
downstream the effective viscosity is the sum of the
laminar and turbulent viscosities.

High Turbulent Reynolds Number  Model
The high Reynolds number formulation1 is appropri-

ate for turbulent flows but is not appropriate in the near-
wall region. It can be applied in the outer part of bound-
ary layers and combined with an inner boundary layer
approach near the wall to obtain a complete formulation.
For the standard model, the turbulent kinetic ener-
gy equation for a compressible fluid takes the same
form as Eq. (2) where the variables have the following
values:

(8)

The production term takes the standard form for com-
pressible flows (see Ref. 1), and the effective viscosity
is defined below in Eq. (10). The transport equation for
dissipation of turbulent kinetic energy is the same form
as Eq. (2), where the variables have the following val-
ues:

(9)

The effective viscosities are obtained from

(10)

The constants in the foregoing equations use the st
dard values.

Low Turbulent Reynolds Number  Model
The Nagano and Hishida model12 was developed for

incompressible flow and is included in the current fo
mulation. The model uses the following damping func
tion in the eddy viscosity relation given in Eq. (10):

This damping function is written in terms of the distanc
from the wall . The source term for the turbulent ki
netic energy Eq. (8) is

The production term has been approximated with:

The compressible term

has been neglected in the current formulation. Th
source term for the dissipation rate equation is

The parameters in these source terms are written as

The variables and use boundary layer type deriv
tives normal to the wall and requires the tangenti
velocity component.

The Nagano-Hishida and the Launder-Sharma17 low
Reynolds turbulence models have been used
Theodoridis, Prinos, and Goulas18 to predict transitional
flow. They have investigated a flat plate flow experi
ment where the freestream turbulent intensity was a
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proximately 3 percent and 6 percent. The two turbulence
models were used to model the laminar to turbulent by-
pass transition in which the freestream turbulence deter-
mines where the transition to turbulent flow occurs. For
this bypass transition case, the Nagano-Hishida model
predicts transition to turbulent flow too near the leading
edge while the Launder-Sharma model predictions are
in reasonable agreement with the experimental data. Of
course, neither of these turbulence models were devel-
oped to predict where transition will occur in a flow; the
performance of the Launder-Sharma model in predict-
ing the location of transition is fortuitous. The failure of
the Nagano-Hishida for transitional flow requires cau-
tion in the application of this model and a procedure is
required to have the model turned on at the appropriate
location.

Menter k-  Model
Two different two-equation turbulence models are

described which solve equations for the turbulent kinet-
ic energy, k, and the frequency of turbulent fluctuations,

The Menter k- model13 is a hybrid model which
uses a blending function to combine the best aspects of
both the k- and the k- turbulence models. Near sol-
id walls, a k- formulation is used which allows inte-
gration to the wall without any special damping or wall
functions. Near the outer edge of the boundary layer and
in shear layers, the model blends into a transformed ver-
sion of the k- formulation, thus providing good pre-
dictions for free shear flows.

For the Menter k- model, the terms in Eq. (2) are
as follows:

(11)

(12)

The cross-diffusion term ( ) in Eq. (12) arises due to
the transformation of the -equation into an equation
for  The production term is given by

. (13)

For 3-D compressible flows, the turbulence stress tensor

can be expressed as:

(14)

The effective viscosities are given by

(15)

and the model constants above are blended values of
k- and k- parameters. For example, for the consta

,

where varies from 1 at the wall to zero outside wa
boundary layers, and a “1” denotes k- constants a
“2” denotes k- constants. The values for these co
stants are:

and

Wilcox (1998) k-  Model

For the Wilcox (1998) k- model,1 the terms in Eq.
(2) are as follows:

(16)

(17)

where
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The production term, P, and the eddy viscosity defini-
tions are given in Eqs. (13) and (15), respectively. This
formulation is a modification to an earlier Wilcox
model19 in order to improve model predictions for free
shear layers and to reduce the solution sensitivity to
freestream  values.

Flow Predictions for Flat Plate
Flow over a flat plate has been chosen as a high speed

test case to illustrate the behavior of the laminar/turbu-
lent flow results obtained with the one- and two-equa-
tion turbulence models. The test case is Mach 8 flow
over a flat plate with a wall temperature of =1000K
and freestream conditions corresponding to an altitude
of 15 km. For this case, the temperature in the flow is
sufficiently low that perfect gas assumption with

 is reasonable.

Freestream Flow Conditions
The freestream conditions20 for the flat plate case

are:

For the Spalart-Allmaras model, the restriction on the
freestream eddy viscosity is determined by Eq. (5),
which gives

for the Mach 8 flat plate flow case. The freestream edd
viscosity for all models was thus chosen as

unless indicated otherwise. For the two-equation mo
els, the further specification of a freestream turbulen
intensity of 0.01% was used to determine the turbule
kinetic energy in the freestream from

Computational Mesh for the Flat Plate
A parabolic mesh has been used around the flat pl

with the Cartesian coordinate system fixed at th
leading edge. This mesh topology mitigates the effec
of the leading edge singularity. The parabolic coord
nates are related to the Cartesian coordinates
follows:

The value of has been determined by settin
at . This gives a mesh that is slightly

longer than one meter along the flat plate. A uniform
mesh is used in the coordinate direction while a no
uniform mesh spacing is used in the coordinate dire
tion. The mesh spacing has been determined with t
lower boundary stretching transformation of Roberts21

(see also Ref. 22). Most of the results have been o
tained with 80x160 cells. A coarser mesh of 40x80 and
finer mesh of 160x320 have been used to show that
80x160 mesh provides results sufficiently accurate f
the figures presented. A stretching parameter

has been used for the one-equation mode
This choice for gives maximumy+ values of approxi-
mately 2.3 for the coarse 40x80 mesh. As expected,
maximum allowabley+ values for the two-equation
models were found to be much smaller than for the on
equation models, with the larger values resulting in co
vergence problems. Thus a stretching parameter

was used giving at the end of
the plate for the coarse mesh.

Flat Plate Results with Standard Transition Method
For the freestream conditions and meshes specif

above, the laminar/turbulent flow has been calculat
with the SACCARA code and compared to the accura
laminar and turbulent results obtained for this case
Van Driest.14,15The standard transition method is use
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ũi∂
xj∂

-------
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where the laminar viscosity is the sole contributor to the
effective viscosity upstream of the transition plane
( ). The L2 norms of the residuals for
both the momentum equations and the turbulence equa-
tions were reduced at least eight orders of magnitude in
each case, suggesting that the results for the flat plate
problem are not influenced by iterative convergence er-
ror.

Skin friction profiles have been obtained using all
five turbulence models for the Mach 8 flat plate case.
The Baldwin-Barth and both models give transi-
tion at the specified transition plane for the given
freestream turbulence levels as shown in Fig. 1. In order
to move the transition point to the desired location, the
freestream eddy viscosity had to be increased to

kg/m/s for the Spalart-Allmaras model, and
the turbulence intensity had to be increased to 0.1% for
the low Reynolds number model (see Fig. 2). All
of the models which correctly predict turbulent flow
downstream of the transition point also predict skin fric-
tion in this region in agreement with the theory.

Modified Transition Results for Spalart-Allmaras
Model

Solutions have been obtained with the Spalart-Allma-
ras trip functions set to zero. The flow is turbu-
lent along the flat plate for this case with the freestream
eddy viscosity varying from to kg/m/s.
Solutions have been obtained with the trip function
included and set to zero. For this case the flow tran-
sition location is dependent on the freestream eddy vis-
cosity. When the eddy viscosity is kg/m/s, the
flow remains laminar over the length of the flat plate. As
previously discussed, numerical solutions show that the
flow can be maintained laminar by making the produc-
tion term zero by setting with the trip
functions  set to zero.

The complete Spalart-Allmaras model has trip terms
included to control the transition location, but the for-
mulation is not intended to model the transition flow re-
gion. The behavior of this model has been investigated
with the results for the local skin friction given in Fig. 3
where the trip location is specified. The specified
transition location corresponds to
while the numerical prediction has transition varying as
the freestream eddy viscosity is increased above a value
of approximately kg/m/s. For these high speed
flows, it is difficult to control the transition location
with the suggested trip model. In addition, there is no
control of the length of the transition region. Because of
these experiences with the behavior of the Spalart-All-
maras trip model, different approaches have been inves-
tigated.

Three methods have been investigated to control t
transition location and the length of transition as prev
ously described. There are two parameters and
introduced to control the transition behavior. The pa
rameter is at the middle of the transition region whil

is the location upstream where transitio
starts and the location downstream whe
the flow becomes fully turbulent. The values of thes
parameters are:

These locations are also indicated in Fig. 4.
The results for the skin friction with the three pro

posed approaches for modeling transition have been
vestigated. All of the methods remain laminar
significant distance after the specified start of transitio
With Method 1, where the trip function is modified
transition occurs downstream of the desired locatio
with very rapid transition onset. With Method 2. wher
the production coefficient is modified, transition
occurs near the desired location with a reasonable va
tion of the skin friction in the transition region. With
Method 3, where the production term coefficien

is modified, transition occurs downstream
of the desired transition location with very rapid trans
tion onset. From this investigation it is concluded tha
Method 2 provides a reasonable technique to specify
transition location with limited control over the transi
tion region length. The results for method 2 are prese
ed in Fig. 4. When varies linearly over the transitio
region, there is better control. The transition contr
Method 2 appears to be insensitive to the freestrea
eddy viscosity. Other approaches need to be conside
and evaluated.

Flow Predictions for Reentry F Vehicle

Reentry F Description and Experimental Results
The Reentry F flight experiment23 was performed in

1968 to provide measurements of wall heat transf
rates at reentry flow conditions that cannot be obtain
in ground-based experimental facilities. The data is f
the flow over a slender conical vehicle where there
only a small amount of surface ablation localized at th
nosetip. The boundary layer flow is laminar, transition
al, or turbulent depending on the altitude and locatio
along the body surface. The Reentry F vehicle was a
degree sphere-cone with an initial nose radius of 0
inch and the vehicle length is 13 feet. A graphite noset
extended for the first 7.54 inches followed by a conic
beryllium frustum. The heat transfer measuremen
were obtained at altitudes between 120,000 and 60,0
feet. The data at a flight time of 456.0 seconds or an a
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tude of 80,000 feet (24.383 km) is used to validate the
turbulence model predictions. Although this flight ex-
periment provides exceptional data, there are many as-
pects of the flow conditions, body orientation, body
shape, and wall surface temperature that are not com-
pletely or precisely known.

In recent years, this experimental data set has been
reevaluated with modern computational codes and is
documented in Refs. 24-26. Aerothermal predictions
have also been presented in these papers. It is important
to observe that the freestream conditions for the three
predictions are slightly different and the wall tempera-
ture in some cases is constant while in others a variation
is taken into account. Most of these solutions are for ax-
isymmetric flow with the vehicle at zero degree angle of
attack, but full three-dimensional solutions have been
obtained with the actual flight angle of attack of 0.14 de-
grees. There are many details of this flight experiment
that are not well defined, but overall the heat transfer
predictions are in reasonable agreement with the flight
measurements. Of course, none of the modeling in-
cludes a capability to predict the transition location. Fur-
ther information on the flight experiment is given in
Wright and Zoby.23

The flow conditions at an altitude of 80,000 feet have
become the location in the flight trajectory most often
analyzed and are also chosen for the present investiga-
tion. The present freestream conditions are based on the
U. S. Standard Atmosphere, 1976.20 The assumed tur-
bulent eddy viscosity is given as well as the turbulence
intensity for the two-equation models. The freestream
flow conditions (in SI units) that have been used in are

Note that there is some amount of uncertainty in the
specification of these properties.

The nosetip of the vehicle is graphite and initially is a
sphere-cone with a nose radius m. Due
to ablation, the nose radius increases to mat an
altitude of 80,000 feet. This result is an estimated value
from an ablation analysis of the nosetip.26 For the
present analysis, it is assumed that the nosetip shape re-
mains a sphere-cone after ablation with the same cone
half angle as the conical vehicle, which is .
The nosetip is illustrated below. The origin in this figure
is located at the virtual tip of the conical vehicle. For the
approximated sphere-cone configuration for the Reentry

F vehicle simulation, the location of the original noseti
and ablated nosetip is specified as

In previous analyses of this vehicle, the coordinate
is defined as the axial distance without a clear definitio
of the origin location given in many cases. Some figure
indicate that the origin is located at the ablated nose
the body. The axial location in this paper is measure
from the nosetip of the un-ablated vehicle. The uncer-
tainty in the location of the axial heat flux measure
ments has a negligible impact on the results presente

Due to the high velocities, the gas temperature
more than 6000K in the nosetip region with dissociation
of the oxygen and nitrogen occurring. Downstream
the nose the inviscid flow temperature behind the sho
is 420 K, and perfect gas flow occurs. However, in th
boundary layer the viscous dissipation increases the
temperature to around 3000K and dissociation of oxy-
gen occurs. At 80,000 feet, the chemical reactions a
sufficiently fast that the air is assumed to be in loc
thermochemical equilibrium. This is believed to be
reasonable assumption, but a finite rate solution needs
be performed in the future to validate this simplification
There is also some ablation of the nosetip which intr
duces chemical species from the ablation products in
the boundary layer flow. As the amount of ablation i
small, this influence has been neglected.

Predictions of Wall Heat Flux for Reentry F Vehicle
Simulation Code and Model Approach

The flow around the Reentry F vehicle has been d
termined with the SACCARA6-9 Navier-Stokes code.
This investigation is concerned with obtaining accura
numerical solutions of the wall heat flux based upon th
input conditions to the code and models used in the si
ulation. The wall heat flux predictions are then com
pared with the flight measurements at an altitude
80,000 feet. The solution is for the flow over the ablate
vehicle. The small angle of attack of the vehicle (
is neglected and the flow is assumed to be axisymm
ric. The solutions use a gas model of air in local therm
chemical equilibrium and the flow is laminar over th

M∞ 19.97,= α 0°,= ρ∞ 0.043523=

T∞ 221.034,= Tw 500,= p∞ 2761.41=

V∞ 5951.858,= a∞ 298.04=

µ∞ 1.445= 10
5–
,× µT 3.3227 10

14–×=

Tu 0.01%,= xbody 4.0=

RN 0.00254=
0.00343

θcone 5°=

r

RN x0 x

xtip 456( )

xtip 0( ) θcone

x0 0.012752m,= xtip 0( ) 0.026603m=

xtip 456( ) 0.035925m=

x

x

0.14°
9
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front part of the body. The flow transitions to turbulent
flow at a specified location. The turbulent flow has been
modeled with the Baldwin-Barth and Spalart-Allmaras
one-equation eddy viscosity approaches and the low
Reynolds number , Menter , and Wilcox
(1998) two-equation turbulence models. The so-
lutions have been obtained on three meshes to judge the
spatial convergence of the solution. The L2 norms of the
momentum and turbulence transport equations exhibited
oscillatory behavior after only a two or three order of
magnitude drop, thus another method was needed to
monitor convergence. The iterative convergence has
been initially determined by plotting the wall heat flux
at various number of time steps and assuming conver-
gence has been obtained when there is no noticeable
change in the results. Further analysis of the steady-state
solution error of the wall heat flux has shown that addi-
tional time steps are required to obtain adequate steady-
state solutions.

Transition Model
As previously discussed, the basic SACCARA code

treats the transition process by setting the effective vis-
cosity to the laminar value upstream of a specified tran-
sition plane, while downstream of this plane the
effective viscosity is the sum of both the laminar and
turbulent viscosities. This approach has been used with
the Baldwin-Barth one-equation eddy viscosity model
and all two-equation models. The transition plane is
specified to be perpendicular to the vehicle axis and lo-
cated at m. With the Spalart-Allmaras one-
equation eddy viscosity model, a different approach has
been implemented as described previously, with

and . From the results
of the investigation of the flat plate flow case, it was
concluded that Method 2 (coefficient is varied) is
the best approach to control the transition process with
the Spalart-Allmaras model at this time.

Iterative Convergence of the Numerical Solutions
At an altitude of 80,000 feet, steady-state solutions on

three meshes have been obtained by marching the solu-
tion in time until there is no further change in the plotted
solution. This method is illustrated in Fig. 5 for the
coarse Mesh 0-rg (100x40) with the Spalart-Allmaras
turbulence model. The laminar flow region takes the
longest time to converge as there is a very fine mesh in
the wall region. With Mesh 0-rg, the wall heat flux ap-
pears to have no significant changes after 4000 time
steps. The iterative convergence with Mesh 1-rg
(200x80) is shown in Fig. 6, while the behavior of Mesh
2-rg (400x160) is given in Fig. 7. With Mesh 1-rg, the
wall heat flux appears to have no significant changes af-
ter 7000 time steps while Mesh 2-rg requires approxi-

mately 14,000 time steps. However, the results shown
these figures are misleading! A more careful analys
has been performed to estimate the iterative conv
gence error.

The accuracy of the wall heat flux relative to th
steady-state value is determined by expressing the
merical solution at time  as

(18)

The exact steady-state value of the wall heat flux is
and the convergence error at time is . The conve
gence error has been observed to have an exponen
decrease in time which gives the following variation a
the solution approaches a steady state:

(19)

Eq. (18) and Eq. (19) are rewritten as

(20)

Eq. (20) is evaluated at three times, , , an
, and the three relations are used to eliminate

and obtain

If the time increments are equal, then =
 and the above becomes

The exact steady-state value of the wall heat flux
solved for in the above equation which gives

(21)

The iterative convergence error becomes

and the percent convergence error relative to the ex
steady-state value becomes

(22)

The foregoing results closely follow the works o
Ferziger and Peric27,28for determining the convergence
error of the numerical iterative solution of differenc
equations, but their results have been obtained with
different approach. In their work, the parameter
the spectral radius (or the magnitude of the large

k ε– k ω–
k ω–

x 2.6=

xs 1.8844m= xe 2.8844m=

cb1

qn

tn

qn q tn( ) qE εn+= =

qE
tn εn

εn αe
βt

n
–

=

βtn αln qn qE–( )ln–=

n 1–( ) n
n 1+( ) α

β tn tn 1––( ) qn 1– qE–( ) qn qE–( )⁄[ ]ln=

β tn 1+ tn–( ) qn qE–( ) qn 1+ qE–( )⁄[ ]ln=

tn tn 1––( )
tn 1+ tn–( )

qn 1– qE–( ) qn 1+ qE–( ) qn qE–( )2=

qE
qn Λn

q
n 1–

–

1 Λn
–

------------------------------- ,= Λn qn 1+ qn–( )
qn qn 1––( )

-----------------------------=

εn qn 1+ qn–( ) 1 Λn
–( )⁄–=

% Error of qn 100
qn 1+ qn–

q
n Λn

– q
n 1–

-------------------------------–=

Λn
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eigenvalue) of the iteration matrix. If the eigenvalues
are complex, the present approach is not appropriate.
The complex eigenvalue case has been considered by
Ferziger and Peric.

The above procedure is illustrated for the wall heat
flux solution at m (where the flow is lam-
inar) using the Spalart-Allmaras model. The percent er-
ror is shown in Fig. 8 for the three meshes. The percent
error obtained from Eq. (22) is indicated by the symbols
while the lines are the percent error obtained from the
best estimate of the exact solution given by Eq. (21).
The initial solution results on the finest mesh (Mesh 2-
rg shown in Fig. 7) appeared converged at 10,000 itera-
tions; however, based on the above error analysis, an ad-
ditional 15,000 iterations were needed to get the error
below 0.1%. The flow solution for Reentry F has also
been obtained with three meshes (Mesh 0-f, Mesh 1-f
and Mesh 2-f) with the same number of cells, but finer
spacing near the wall than was used with Mesh rg. Re-
sults of iterative convergence similar to Fig. 5, Fig. 6,
and Fig. 7 are obtained except the number of time steps
is increased significantly for the solutions with finer
near-wall spacing. The iterative convergence error for
Mesh f is given in Fig. 9. The iterative solution errors
are much smaller than the spatial solution errors, as will
be demonstrated.

The iterative convergence for the two-equation turbu-
lence models was also examined for Meshes 0-2eq
(130x40 cells), 1-2eq (260x80 cells), and 2-2eq
(520x160 cells). Results are presented for the low Rey-
nolds number model (Fig. 10), the Menter
model (Fig. 11), and the Wilcox (1998) model
(Fig. 12). There is some scatter in the symbols due to the
fact that the time increments were not always equal. A
larger number of iterations were required due to the
stricter requirements for Mesh 2eq verses the one-
equation meshes (Mesh rg and Mesh f). The two-equa-
tion results were all converged to less than 0.4% error,
which is again much smaller than the grid convergence
error.

Spatial Convergence of the Numerical Solutions
Spatial convergence has been judged from the steady-

state solutions on the three meshes, 0, 1, and 2 (from
coarsest to finest). The wall heat flux obtained with the
Spalart-Allmaras turbulence model for the three meshes
is given in Fig. 13 with the variable spacing given by
Mesh rg. The Richardson extrapolation procedure29 has
been used to obtain a more accurate result from the rela-
tion

(23)

The above relation assumes that the numerical scheme
is second-order. The Richardson extrapolation result

and the solution on Mesh 2-rg are nearly the sam
(also shown in Fig. 13). The accuracy of the solution
on the three meshes has been estimated with the ex
solution approximated with which gives the solu
tion error as

If the mesh has been refined sufficiently where th
solution error has second-order behavior, then the err
on the three meshes have the following relationship

(24)

In the above equation, the first equality will always b
satisfied when Eq. (23) has been used. The seco
equality will only be satisfied if the mesh has been suff
ciently refined to be in the asymptotic range. The pe
cent error of the wall heat flux along the vehicle i
presented in Fig. 14. The laminar flow solution region
in the asymptotic range while the turbulent flow regio
is not in the asymptotic range. The wall heat flux predic
tion in the laminar flow region is more accurate than th
heat flux prediction in the turbulent flow region.

For Mesh f, spatial convergence has been judg
from the steady-state solutions on the three meshes 0
and 2. Richardson extrapolation procedure has be
used to obtain a more accurate result. The accuracy
the solutions on the three meshes has been estima
with the exact solution approximated with the Richard
son extrapolated result and these results are giv
in Fig. 15. Again, the laminar flow solution region is in
the asymptotic range while the turbulent flow region
not always in the asymptotic range. The wall heat flu
prediction in the laminar flow region with Mesh f is less
accurate than the results with Mesh rg. The heat flu
predictions in the turbulent flow region with Mesh f are
more accurate than the results with Mesh rg. Only th
solution on Mesh 2-f is considered sufficiently accura
for comparison with the flight measurements and the R
chardson extrapolated results provide even a more ac
rate numerical prediction.

Spatial convergence has also been examined for
three two-equation models. The spatial error of the he
flux is given in Figs. 16-18 for the low Reynolds num
ber , the Menter , and the Wilcox (1998

models, respectively. The spatial error in the lam
inar regions is generally below 2%, while in the turbu
lent regions it varies from approximately 2% for th

model to 4% for the models. The results fo
the models indicate that the heat flux is not full
grid independent in the turbulent region. The spike
the error for the two-equation models is due to mov
ment of the transition location on the different siz

x 2.14892=

k ε– k ω–
k ω–

y
+

qRE q1 2, q2 q2 q1–( ) 3⁄ .+= =

qRE

qRE

% Error ofqM 100 qM qRE–( ) qRE M⁄ 1 2 3, ,= =

% Error ofq2

% Error ofq1

4
---------------------------------

% Error ofq0

16
---------------------------------= =

qRE

k ε– k ω–
k ω–

k ε– k ω–
k ω–
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meshes and is more apparent for the two-equation mod-
els due to the fine axial spacing around the transition
point.

Wall Heat Flux
The predictions of the wall heat flux on the Reentry F

vehicle at an altitude of 80,000 feet with the one-equa-
tion turbulence models are given in Fig. 19 along with
the flight data. The Spalart-Allmaras prediction uses the
numerical solution with Mesh 2-f and the Richardson
extrapolation results for this case. The simulation over-
predicts the laminar wall heat flux by roughly 10 per-
cent while the turbulent wall heat flux is overpredicted
by roughly 15 percent. At this altitude the vehicle has a
0.14 degree angle of attack and the heat transfer mea-
surements were made on the leeward side of the conical
body. A full three-dimensional solution, with the vehi-
cle at angle of attack, would bring the prediction and
flight data into closer agreement. The prediction with
Mesh 2-f is believed to be a sufficiently accurate steady-
state solution that it can be used to validate the turbu-
lence model, but there are small errors in these results
due to uncertainty in information used in the simulation
as discussed previously.

The Baldwin-Barth turbulence model prediction (also
shown in Fig. 19) uses the numerical solution with Mesh
2-rg where the wall temperature is not maintained at
500K. However, these heat transfer results are not ex-
pected to be influenced much by this inaccurate wall
temperature. The simulation with the Baldwin-Barth
turbulence model overpredicts the laminar wall heat
flux by roughly 10 percent and is in agreement with the
simulation with the Spalart-Allmaras model. Of course,
in the laminar flow region the turbulence models should
have no impact on the flow solution. The turbulent wall
heat flux is overpredicted by roughly 100 percent with
the Baldwin-Barth turbulence model. It is recommended
that the Spalart-Allmaras model should be used rather
than the Baldwin-Barth turbulence model for reentry
flows.

Results with the Nagano and Hishida , the
Menter , and the Wilcox (1998) models are
presented in Fig. 20. Fine grid results with Mesh 2eq are
shown along with the results from Richardson extrapo-
lation. The results show an overprediction of the
turbulent heating rates by approximately 100%. The two

models show better agreement with the flight da-
ta, with the Menter model within 40% and the Wilcox
(1998) model within 30% of the data. All three models
display a peak in the turbulent heating just downstream
of the specified transition plane, which is possibly due
to crude transitional behavior of the standard method.

The present simulations have been performed with a
gas model that assumes the air flow is in local thermo-

chemical equilibrium. This study needs to be extend
to include solutions obtained with a nonequilibrium
thermochemical gas model for air. This type of simula
tion introduces the modeling of the heterogeneo
chemical reactions at the vehicle surface and vibration
nonequilibrium effects.

Conclusions
Many Navier-Stokes codes require that the governi

equations be written in conservation form with a sourc
term. The Spalart-Allmaras one-equation model w
originally developed in substantial derivative form an
when rewritten in conservation form, a density gradie
term appears in the source term. This density gradie
term causes numerical problems and has a small inf
ence on the numerical predictions. Further work h
been performed to understand and to justify the negle
of this term.11,16 The transition trip term has been in-
cluded in the one-equation eddy viscosity model
Spalart-Allmaras. Several problems with this mod
have been discovered when applied to high-speed flow

For the Mach 8 flat plate boundary layer flow with
the standard transition method, the Baldwin-Barth an
both models gave transition at the specified loc
tion. The Spalart-Allmaras and low Reynolds numbe

models required an increase in the freestream t
bulence levels in order to give transition at the desire
location. All models predicted the correct skin friction
levels in both the laminar and turbulent flow regions.

For Mach 8 flat plate case, the transition locatio
could not be controlled with the trip terms as given i
the Spalart-Allmaras model. Several other approach
have been investigated to allow the specification of th
transition location. The approach that appears most a
propriate is to vary the coefficient that multiplies th
turbulent production term in the governing partial dif
ferential equation for the eddy viscosity (Method 2
When this coefficient is zero, the flow remains lamina
The coefficient is increased to its normal value over
specified distance to crudely model the transition regio
and obtain fully turbulent flow. While this approach
provides a reasonable interim solution, a separate eff
should be initiated to address the proper transition pr
cedure associated with the turbulent production ter
Also, the transition process might be better modele
with the Spalart-Allmaras turbulence model with mod
fication of the damping function The damping
function could be set to zero in the laminar flow regio
and then turned on through the transition flow region.

Predictions have been obtained for the Reentry
flight vehicle with both one- and two-equation turbu
lence models where the transition location is specifieda
priori . The axisymmetric turbulent predictions for wal

k ε–
k ω– k ω–

k ε–

k ω–

k ω–

k ε–

f v1.
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heat flux with the Spalart-Allmaras, Menter , and
Wilcox (1998) models are in reasonable agree-
ment with the flight measurements. The mesh sensitivity
has been evaluated by obtaining results on three meshes
and more accurate results have been obtained with Rich-
ardson extrapolation. The simulation assumes the vehi-
cle is at zero degree angle-of-attack while in fact, the
flight vehicle is at 0.14 degree angle-of-attack. For the
one-equation models, the Spalart-Allmaras model pre-
dictions for this case are much better than the results
from the Baldwin-Barth model. For the two-equation
models, both models give good agreement with
the flight data, while the low Reynolds number
model greatly overpredicts the heating in the fully tur-
bulent region.

Future Work
The Reentry F calculations need to be extended to the

finite rate chemistry model. This modification should
help to determine if the equilibrium air assumption is
appropriate and will help determine if the turbulence
model with finite chemistry is reasonable. The present
Reentry F calculations have assumed a constant wall
temperature and this assumption needs to be improved.
As there is only limited flight information on the wall
temperature and no data in the nose region, a coupled
fluid/heat-conduction analysis is needed to provide the
wall temperature variation along the vehicle. Further
work could be done to modify the transition mechanism
for the two-equation models along the lines of the Spal-
art-Allmaras modifications presented herein. Finally, in-
cluding a realizeability limitation has been shown to
improve predictions for flows with large normal
stresses30 and may also improve predictions through
strong normal shocks.
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Fig. 1: Transition location with one- and two-equation turbulence
models for Mach 8 flat plate flow with the standard transition mode
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Abstract
A number of one- and two-equation turbulence mo

els are examined for hypersonic perfect- and real-g
flows with laminar, transitional, and turbulent flow re
gions. These models were generally developed for
compressible flows, and the extension to the hyperso
flow regime is discussed. In particular, inconsistenci
in the formulation of diffusion terms for one-equation
models are examined. For the Spalart-Allmaras mod
the standard method for forcing transition at a specifie
location is found to be inadequate for hypersonic flow
An alternative transition method is proposed and eva
ated for a Mach 8 flat plate test case. This test case
also used to evaluate three different two-equation turb
lence models: a low Reynolds number model, th
Menter formulation, and the Wilcox (1998)

model. These one- and two-equation models a
then applied to the Mach 20 Reentry F flight vehicle
The Spalart-Allmaras model and both formula
tions are found to provide good agreement with th
flight data for heat flux, while the Baldwin-Barth and
low Reynolds number models overpredict the tu
bulent heating rates. Careful attention is given to sol
tion verification in the areas of both iterative and gri
convergence.

Nomenclature
a speed of sound, m/s
D turbulence diffusion term

k ε–
k ω–

k ω–

k ω–

k ε–
1
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d distance to the wall, m
k specific turbulent kinetic energy, m2/s2

PrT turbulent Prandtl number (= 1.0)
p pressure,N/m2

q heat flux,W/m2

RN vehicle nose radius,m
r radial coordinate,m
SP turbulence production source term
SD turbulence destruction source term
Sij strain rate tensor,1/s
T temperature,K
Tu freestream turbulence intensity percent
t time, s
U conserved transport quantity
ui velocity,m/s
V velocity magnitude,m/s
x axial coordinate,m
y wall normal direction,m

angle of attack,degrees
ratio of specific heats
Kronecker delta function (= 1 wheni=j )
specific dissipation rate,m2/s3

cone half-angle,degrees
absolute viscosity,N·s/m2

kinematic viscosity,m2/s
Spalart-Allmaras working variable
density,kg/m3

turbulent stress tensor,m2/s2

non-conserved transport quantity
rotation tensor,1/s
specific turbulent frequency,1/s

Subscripts
E exact value
eff effective value (turbulent + laminar)
RE Richardson extrapolation
ref reference value

α
γ
δi j
ε
θcone
µ
ν
ν̃
ρ
τi j
ϕ
Ωi j
ω
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T turbulent quantity
t transitional quantity
w wall value
∞ freestream value

Superscripts
+ quantity in wall coordinates
~ denotes Favre (density-weighted) averaging
__ denotes Reynolds (time-based) averaging

denotes Favre fluctuating quantity

Introduction
This work is concerned with developing a capability

to model high-speed compressible flows with laminar,
transitional, and turbulent flow regions. The approach
uses one- and two-equation eddy viscosity models to
predict the turbulent flow. The same governing equa-
tions are presently being used to predict the transitional
flow region where the onset to turbulent flow is speci-
fied and assumed to be known. The prediction of where
onset to turbulent flow occurs is a research area that de-
pends on an analysis of the flow stability, understanding
of the flow disturbances outside the boundary layer, and
a capability to predict the boundary layer receptivity.
The process of entraining disturbances into the bound-
ary layer and producing perturbations that can be ampli-
fied is called “receptivity.”

The more appropriate books providing information
on modeling compressible turbulent flows are Wilcox,1

Chapter 6 by Gatski,2 and Smits and Dussauge.3 The
modeling of compressible turbulent flows is still an ac-
tive area of research. The application of some of the tur-
bulence models to compressible flows is not always
clear, as the models were originally developed for in-
compressible flows. Formulations for incompressible
flow are not applicable to compressible flow because
some variables (e.g., density, viscosity) have been as-
sumed constant in the development. The turbulent trans-
port equations are often written in substantial
differential form, while the equations in conservation
form are generally required in compressible Navier-
Stokes codes. Problems with the formulation of the gov-
erning equations for compressible turbulence models in
conservation form are discussed. For example, the form
of the diffusion term in the Spalart-Allmaras4,5 model is
rewritten and justification for the new form is given.

The SACCARA (Sandia Advanced Code for Com-
pressible Aerothermodynamics Research and Analysis)
code6-9 is used for the results presented in this paper.
For one-equation turbulence models, the SACCARA
code has options for both the Baldwin-Barth10 and Spal-
art-Allmaras eddy viscosity models. There is evidence
that the use of the Baldwin-Barth model does not consti-

tute a well-posed system of governing equations.11 For
boundary layer and shear layer flows, the solutions
not appear to converge to a unique solution as the me
is refined. Therefore, there is more interest in using t
Spalart-Allmaras model, as it has proven to be a num
ically robust approach. Part of the present work is co
cerned with the evaluation of the Spalart-Allmara
model for high-speed flows and the simulation of th
transition region with the Spalart-Allmaras model.

The SACCARA code also has options for three pop
lar two-equation eddy viscosity turbulence models:
low Reynolds number formulation and two
models. The model1 employs the low Reynolds
number modification of Nagano and Hishida12 to allow
integration to solid walls. The first formulation is
the hybrid model of Menter13 which is a blending be-
tween a formulation (near solid walls) and

formulation (in shear layers and freestream flow
Menter proposed this hybrid model to take advantage
the accuracy of the model for wall-bounded flow
and the model for free shear layers. The fina
model is the Wilcox model1 which was modified
in 1998 to improve the predictive accuracy for she
flows. This model is referred to as the Wilcox (1998
model in the current work. The appropriate form of th
two-equation eddy viscosity equations are also impo
tant because the one-equation formulation can be dev
oped from the two-equation transport relations. Th
approach may be used to determine the appropriate fo
of the transport equation for the one-equation models

Two flow cases have been used to investigate the p
formance of the one- and two-equation eddy viscos
models. The first case is the flow over a flat plate a
Mach 8 and an altitude of 15km where the perfect gas
model is appropriate. The skin friction along the fla
plate is used to judge the accuracy of the predictio
through comparisons with the accurate laminar and tu
bulent results of Van Driest.14,15 If the standard turbu-
lence models (without modifications for transition) ar
employed over the whole domain, the transition locatio
often depends on turbulent intensity in the freestrea
This behavior is similar to the bypass transition prob
lem. When a transition plane is specified in which th
turbulent eddy viscosity is neglected upstream, the tra
sition locations for the Spalart-Allmaras and low Rey
nolds number models still show sensitivity to th
freestream turbulence quantities. The control of the tra
sition location with the Spalart-Allmaras model ha
been investigated.

The second case investigated is the flow over the R
entry F flight vehicle at Mach 20 and at an altitude o
24.4km (80,000 feet) where real gas effects are signif
cant. The measured heat transfer along the vehicle
used to judge the accuracy of the model predictions. T

′

k ε– k ω–
k ε–

k ω–

k ω–
k ε–

k ω–
k ε–

k ω–

k ε–
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transition location is specified to give a reasonable
match of the wall heat flux with the flight data. It should
be remembered that the prediction of transition location
is not included in the modeling. The solutions have been
obtained on three meshes with the number of cells in
each coordinate direction doubled for each mesh refine-
ment. In addition, the solutions on each mesh are
marched in time until the wall heat flux has obtained a
steady-state value. The accuracy of the iterative solution
relative to the steady-state solution has been estimated
for each model. The various uncertainties and assump-
tions in the flight experiment and prediction are dis-
cussed. Real gas effects have been taken into account
with the use of an equilibrium air model.

Favre-Averaged Transport Equation for
Turbulence Models

The generic form of the turbulent transport equation
in substantial derivative form1 is

(1)

where

For example for a one-equation eddy viscosity model,
the dependent variable is and the effective diffu-
sion coefficient is . In some models there are two
parts to the diffusion term on the right-hand side of Eq.
(1); is the first part of the diffusion term which can
be put in conservation form, and is the remaining
part. When is included, it can take on several forms.
The source term has a production part
and a dissipation part . If the continuity equation is
multiplied by and added to Eq. (1), the resulting
equation is the generic transport equation in conserva-
tion form:

(2)

The dependent variable is . This development
utilizes Favre (overtilde) and Reynolds (overbar) aver-
aging. See Ref. 1 for notation and for details on the
Favre averaging procedure.

One-Equation Turbulence Model
There have been a number of one-equation turbu-

lence models developed which use a transport equation
to solve for the eddy viscosity directly. The present

work is focused on the Spalart-Allmaras model and
brief description is presented below.

Spalart-Allmaras Model
The transport equation for determining the eddy vi

cosity with near-wall effects included has been deve
oped by Spalart and Allmaras.4,5 The governing
equation form is slightly different than Eq. (1) and is

(3)

The dependent variable , where
is a damping function used in the near-wall region an
mainly in the viscous sublayer. This function and th
right hand side terms will be defined below. The cont
nuity equation is multiplied by and added to Eq. (3
which gives a transport equation in conservation for
for the Spalart-Allmaras model in the form of Eq. (2)

(4)

The right-hand side has contributions from a diffusio
term as well as production, destruction, and trip term
The four terms in the model are written as follows:

Diffusion-Original Form

Diffusion-Modified for Compressible Flow

Production

Destruction

ρDϕ
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Trip Term

In the formal transform of the transport equation into
conservation form, the diffusion term includes a
density gradient term. This term is zero when the trans-
port equation (Eq. (4)) is developed from the compress-
ible form of the transport equations,11,16 and is
shown above in the termDiffusion-Modified for Com-
pressible Flow.This form of the diffusion term is used
in the present work. Including this density gradient term
has been found to cause stability problems for high-
speed flows, while having negligible effect on the pre-
dictions. The model controls transition from laminar to
turbulent flow with the use of the trip term. With this
additional physics, the foregoing governing equation re-
quires some additional terms and definitions for
and which involves the coefficients to . Ex-
cept where noted, the standard values for the model con-
stants are used in the current work.

Boundary Conditions for Spalart-Allmaras Model
At the wall or . The freestream

boundary condition for this model is the specification of
the turbulent eddy viscosity . In the freestream there
should be no production of the eddy viscosity, which re-
quires that

in order to turn off the production term in Eq. (6). The
restriction on  is

The restriction on the freestream eddy viscosity be-
comes

(5)

The freestream eddy viscosity as suggested by Spalart-
Allmaras is , which gives

Control of Laminar and Turbulent Flow with the
Spalart-Allmaras Model

The governing equation has three terms that are influ-
enced by the transition model. The complete source
term (for the conservative formulation) is

(6)

where the trip terms are underlined in the above equ
tion. The first term is part of the diffusion term and is in
cluded in the source term as it is evaluated numerica
in an explicit manner. The second term is the productio
term and it will produce or increase the eddy viscosity

The third term is the destruction term and i
will decrease the eddy viscosity if .
The fourth term is the trip term and it will increase th
eddy viscosity as .

The model generally predicts turbulent flow every
where when the trip terms are zero

The flow can be made laminar everywhere with the fo
lowing values of the trip terms:

or

Several different approaches have been investigated
control transition and to replace the original trip mode
approach of Spalart-Allmaras.

Method 1 (  is modified)

In this approach the value of , and
where varies from the laminar

flow region to the turbulent flow region. In the lamina
flow region while in the turbulent flow region

The parameter is increased smoothly and d
fines the transitional flow region. This method require
specification of the location and length of the transition
al region.

Method 2 (  is modified)

In this method the trip terms and
are set to zero. The coefficient is modified

from the laminar flow region to the turbulent flow re-
gion as follows:

In this method, the location of the start of transitiona
flow  and end of transitional flow  are specified.

St f t1ρ ∆U( )2=

D3

k ε–

f t1
f t2 ct1 ct4

µT 0= ν̃ 0=

µT

f t2 ct3e ct4χ2
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Method 3 (  is modified)

In this method the production term coefficient is
modified by writing this term as . The pa-
rameter increases from zero to one in the transitional
flow region. From the definition of , the following is
obtained:

(7)

The production term switches sign when
which gives a critical value of  which is .
When , set and there is no production of
eddy viscosity upstream of the transition location .
When , is increased downstream towards one.
This increase is controlled by setting

When and , then . When
and , then is obtained from Eq. (7). In this
method, only the single parameter  must be specified.

Two-Equation Turbulence Models
The standard method for specifying transition to tur-

bulence is through analogy with the turbulence intermit-
tency approach. The turbulence transport equations are
solved over the entire domain, with a user-defined tran-
sition plane specified. Upstream of this plane, the effec-
tive viscosity is simply the laminar value, while
downstream the effective viscosity is the sum of the
laminar and turbulent viscosities.

High Turbulent Reynolds Number  Model
The high Reynolds number formulation1 is appropri-

ate for turbulent flows but is not appropriate in the near-
wall region. It can be applied in the outer part of bound-
ary layers and combined with an inner boundary layer
approach near the wall to obtain a complete formulation.
For the standard model, the turbulent kinetic ener-
gy equation for a compressible fluid takes the same
form as Eq. (2) where the variables have the following
values:

(8)

The production term takes the standard form for com-
pressible flows (see Ref. 1), and the effective viscosity
is defined below in Eq. (10). The transport equation for
dissipation of turbulent kinetic energy is the same form
as Eq. (2), where the variables have the following val-
ues:

(9)

The effective viscosities are obtained from

(10)

The constants in the foregoing equations use the st
dard values.

Low Turbulent Reynolds Number  Model
The Nagano and Hishida model12 was developed for

incompressible flow and is included in the current fo
mulation. The model uses the following damping func
tion in the eddy viscosity relation given in Eq. (10):

This damping function is written in terms of the distanc
from the wall . The source term for the turbulent ki
netic energy Eq. (8) is

The production term has been approximated with:

The compressible term

has been neglected in the current formulation. Th
source term for the dissipation rate equation is

The parameters in these source terms are written as

The variables and use boundary layer type deriv
tives normal to the wall and requires the tangenti
velocity component.

The Nagano-Hishida and the Launder-Sharma17 low
Reynolds turbulence models have been used
Theodoridis, Prinos, and Goulas18 to predict transitional
flow. They have investigated a flat plate flow experi
ment where the freestream turbulent intensity was a
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f t2 1=
χ χ∗ 0.604=
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proximately 3 percent and 6 percent. The two turbulence
models were used to model the laminar to turbulent by-
pass transition in which the freestream turbulence deter-
mines where the transition to turbulent flow occurs. For
this bypass transition case, the Nagano-Hishida model
predicts transition to turbulent flow too near the leading
edge while the Launder-Sharma model predictions are
in reasonable agreement with the experimental data. Of
course, neither of these turbulence models were devel-
oped to predict where transition will occur in a flow; the
performance of the Launder-Sharma model in predict-
ing the location of transition is fortuitous. The failure of
the Nagano-Hishida for transitional flow requires cau-
tion in the application of this model and a procedure is
required to have the model turned on at the appropriate
location.

Menter k-  Model
Two different two-equation turbulence models are

described which solve equations for the turbulent kinet-
ic energy, k, and the frequency of turbulent fluctuations,

The Menter k- model13 is a hybrid model which
uses a blending function to combine the best aspects of
both the k- and the k- turbulence models. Near sol-
id walls, a k- formulation is used which allows inte-
gration to the wall without any special damping or wall
functions. Near the outer edge of the boundary layer and
in shear layers, the model blends into a transformed ver-
sion of the k- formulation, thus providing good pre-
dictions for free shear flows.

For the Menter k- model, the terms in Eq. (2) are
as follows:

(11)

(12)

The cross-diffusion term ( ) in Eq. (12) arises due to
the transformation of the -equation into an equation
for  The production term is given by

. (13)

For 3-D compressible flows, the turbulence stress tensor

can be expressed as:

(14)

The effective viscosities are given by

(15)

and the model constants above are blended values of
k- and k- parameters. For example, for the consta

,

where varies from 1 at the wall to zero outside wa
boundary layers, and a “1” denotes k- constants a
“2” denotes k- constants. The values for these co
stants are:

and

Wilcox (1998) k-  Model

For the Wilcox (1998) k- model,1 the terms in Eq.
(2) are as follows:

(16)

(17)

where

ω

ω. ω

ω ε
ω

ε

ω
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The production term, P, and the eddy viscosity defini-
tions are given in Eqs. (13) and (15), respectively. This
formulation is a modification to an earlier Wilcox
model19 in order to improve model predictions for free
shear layers and to reduce the solution sensitivity to
freestream  values.

Flow Predictions for Flat Plate
Flow over a flat plate has been chosen as a high speed

test case to illustrate the behavior of the laminar/turbu-
lent flow results obtained with the one- and two-equa-
tion turbulence models. The test case is Mach 8 flow
over a flat plate with a wall temperature of =1000K
and freestream conditions corresponding to an altitude
of 15 km. For this case, the temperature in the flow is
sufficiently low that perfect gas assumption with

 is reasonable.

Freestream Flow Conditions
The freestream conditions20 for the flat plate case

are:

For the Spalart-Allmaras model, the restriction on the
freestream eddy viscosity is determined by Eq. (5),
which gives

for the Mach 8 flat plate flow case. The freestream edd
viscosity for all models was thus chosen as

unless indicated otherwise. For the two-equation mo
els, the further specification of a freestream turbulen
intensity of 0.01% was used to determine the turbule
kinetic energy in the freestream from

Computational Mesh for the Flat Plate
A parabolic mesh has been used around the flat pl

with the Cartesian coordinate system fixed at th
leading edge. This mesh topology mitigates the effec
of the leading edge singularity. The parabolic coord
nates are related to the Cartesian coordinates
follows:

The value of has been determined by settin
at . This gives a mesh that is slightly

longer than one meter along the flat plate. A uniform
mesh is used in the coordinate direction while a no
uniform mesh spacing is used in the coordinate dire
tion. The mesh spacing has been determined with t
lower boundary stretching transformation of Roberts21

(see also Ref. 22). Most of the results have been o
tained with 80x160 cells. A coarser mesh of 40x80 and
finer mesh of 160x320 have been used to show that
80x160 mesh provides results sufficiently accurate f
the figures presented. A stretching parameter

has been used for the one-equation mode
This choice for gives maximumy+ values of approxi-
mately 2.3 for the coarse 40x80 mesh. As expected,
maximum allowabley+ values for the two-equation
models were found to be much smaller than for the on
equation models, with the larger values resulting in co
vergence problems. Thus a stretching parameter

was used giving at the end of
the plate for the coarse mesh.

Flat Plate Results with Standard Transition Method
For the freestream conditions and meshes specif

above, the laminar/turbulent flow has been calculat
with the SACCARA code and compared to the accura
laminar and turbulent results obtained for this case
Van Driest.14,15The standard transition method is use
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where the laminar viscosity is the sole contributor to the
effective viscosity upstream of the transition plane
( ). The L2 norms of the residuals for
both the momentum equations and the turbulence equa-
tions were reduced at least eight orders of magnitude in
each case, suggesting that the results for the flat plate
problem are not influenced by iterative convergence er-
ror.

Skin friction profiles have been obtained using all
five turbulence models for the Mach 8 flat plate case.
The Baldwin-Barth and both models give transi-
tion at the specified transition plane for the given
freestream turbulence levels as shown in Fig. 1. In order
to move the transition point to the desired location, the
freestream eddy viscosity had to be increased to

kg/m/s for the Spalart-Allmaras model, and
the turbulence intensity had to be increased to 0.1% for
the low Reynolds number model (see Fig. 2). All
of the models which correctly predict turbulent flow
downstream of the transition point also predict skin fric-
tion in this region in agreement with the theory.

Modified Transition Results for Spalart-Allmaras
Model

Solutions have been obtained with the Spalart-Allma-
ras trip functions set to zero. The flow is turbu-
lent along the flat plate for this case with the freestream
eddy viscosity varying from to kg/m/s.
Solutions have been obtained with the trip function
included and set to zero. For this case the flow tran-
sition location is dependent on the freestream eddy vis-
cosity. When the eddy viscosity is kg/m/s, the
flow remains laminar over the length of the flat plate. As
previously discussed, numerical solutions show that the
flow can be maintained laminar by making the produc-
tion term zero by setting with the trip
functions  set to zero.

The complete Spalart-Allmaras model has trip terms
included to control the transition location, but the for-
mulation is not intended to model the transition flow re-
gion. The behavior of this model has been investigated
with the results for the local skin friction given in Fig. 3
where the trip location is specified. The specified
transition location corresponds to
while the numerical prediction has transition varying as
the freestream eddy viscosity is increased above a value
of approximately kg/m/s. For these high speed
flows, it is difficult to control the transition location
with the suggested trip model. In addition, there is no
control of the length of the transition region. Because of
these experiences with the behavior of the Spalart-All-
maras trip model, different approaches have been inves-
tigated.

Three methods have been investigated to control t
transition location and the length of transition as prev
ously described. There are two parameters and
introduced to control the transition behavior. The pa
rameter is at the middle of the transition region whil

is the location upstream where transitio
starts and the location downstream whe
the flow becomes fully turbulent. The values of thes
parameters are:

These locations are also indicated in Fig. 4.
The results for the skin friction with the three pro

posed approaches for modeling transition have been
vestigated. All of the methods remain laminar
significant distance after the specified start of transitio
With Method 1, where the trip function is modified
transition occurs downstream of the desired locatio
with very rapid transition onset. With Method 2. wher
the production coefficient is modified, transition
occurs near the desired location with a reasonable va
tion of the skin friction in the transition region. With
Method 3, where the production term coefficien

is modified, transition occurs downstream
of the desired transition location with very rapid trans
tion onset. From this investigation it is concluded tha
Method 2 provides a reasonable technique to specify
transition location with limited control over the transi
tion region length. The results for method 2 are prese
ed in Fig. 4. When varies linearly over the transitio
region, there is better control. The transition contr
Method 2 appears to be insensitive to the freestrea
eddy viscosity. Other approaches need to be conside
and evaluated.

Flow Predictions for Reentry F Vehicle

Reentry F Description and Experimental Results
The Reentry F flight experiment23 was performed in

1968 to provide measurements of wall heat transf
rates at reentry flow conditions that cannot be obtain
in ground-based experimental facilities. The data is f
the flow over a slender conical vehicle where there
only a small amount of surface ablation localized at th
nosetip. The boundary layer flow is laminar, transition
al, or turbulent depending on the altitude and locatio
along the body surface. The Reentry F vehicle was a
degree sphere-cone with an initial nose radius of 0
inch and the vehicle length is 13 feet. A graphite noset
extended for the first 7.54 inches followed by a conic
beryllium frustum. The heat transfer measuremen
were obtained at altitudes between 120,000 and 60,0
feet. The data at a flight time of 456.0 seconds or an a

xt 0.1196m=

k ω–

1 10
6–×

k ε–

f t1 f t2,

µT 10 9– 10 5–

f t2
f t1

10 9–

SP cb1 0=
f t1 f t2,

xt
Rex 3.84

6×10=

10 9–

xt xl
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xe xt xl+=
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tude of 80,000 feet (24.383 km) is used to validate the
turbulence model predictions. Although this flight ex-
periment provides exceptional data, there are many as-
pects of the flow conditions, body orientation, body
shape, and wall surface temperature that are not com-
pletely or precisely known.

In recent years, this experimental data set has been
reevaluated with modern computational codes and is
documented in Refs. 24-26. Aerothermal predictions
have also been presented in these papers. It is important
to observe that the freestream conditions for the three
predictions are slightly different and the wall tempera-
ture in some cases is constant while in others a variation
is taken into account. Most of these solutions are for ax-
isymmetric flow with the vehicle at zero degree angle of
attack, but full three-dimensional solutions have been
obtained with the actual flight angle of attack of 0.14 de-
grees. There are many details of this flight experiment
that are not well defined, but overall the heat transfer
predictions are in reasonable agreement with the flight
measurements. Of course, none of the modeling in-
cludes a capability to predict the transition location. Fur-
ther information on the flight experiment is given in
Wright and Zoby.23

The flow conditions at an altitude of 80,000 feet have
become the location in the flight trajectory most often
analyzed and are also chosen for the present investiga-
tion. The present freestream conditions are based on the
U. S. Standard Atmosphere, 1976.20 The assumed tur-
bulent eddy viscosity is given as well as the turbulence
intensity for the two-equation models. The freestream
flow conditions (in SI units) that have been used in are

Note that there is some amount of uncertainty in the
specification of these properties.

The nosetip of the vehicle is graphite and initially is a
sphere-cone with a nose radius m. Due
to ablation, the nose radius increases to mat an
altitude of 80,000 feet. This result is an estimated value
from an ablation analysis of the nosetip.26 For the
present analysis, it is assumed that the nosetip shape re-
mains a sphere-cone after ablation with the same cone
half angle as the conical vehicle, which is .
The nosetip is illustrated below. The origin in this figure
is located at the virtual tip of the conical vehicle. For the
approximated sphere-cone configuration for the Reentry

F vehicle simulation, the location of the original noseti
and ablated nosetip is specified as

In previous analyses of this vehicle, the coordinate
is defined as the axial distance without a clear definitio
of the origin location given in many cases. Some figure
indicate that the origin is located at the ablated nose
the body. The axial location in this paper is measure
from the nosetip of the un-ablated vehicle. The uncer-
tainty in the location of the axial heat flux measure
ments has a negligible impact on the results presente

Due to the high velocities, the gas temperature
more than 6000K in the nosetip region with dissociation
of the oxygen and nitrogen occurring. Downstream
the nose the inviscid flow temperature behind the sho
is 420 K, and perfect gas flow occurs. However, in th
boundary layer the viscous dissipation increases the
temperature to around 3000K and dissociation of oxy-
gen occurs. At 80,000 feet, the chemical reactions a
sufficiently fast that the air is assumed to be in loc
thermochemical equilibrium. This is believed to be
reasonable assumption, but a finite rate solution needs
be performed in the future to validate this simplification
There is also some ablation of the nosetip which intr
duces chemical species from the ablation products in
the boundary layer flow. As the amount of ablation i
small, this influence has been neglected.

Predictions of Wall Heat Flux for Reentry F Vehicle
Simulation Code and Model Approach

The flow around the Reentry F vehicle has been d
termined with the SACCARA6-9 Navier-Stokes code.
This investigation is concerned with obtaining accura
numerical solutions of the wall heat flux based upon th
input conditions to the code and models used in the si
ulation. The wall heat flux predictions are then com
pared with the flight measurements at an altitude
80,000 feet. The solution is for the flow over the ablate
vehicle. The small angle of attack of the vehicle (
is neglected and the flow is assumed to be axisymm
ric. The solutions use a gas model of air in local therm
chemical equilibrium and the flow is laminar over th

M∞ 19.97,= α 0°,= ρ∞ 0.043523=

T∞ 221.034,= Tw 500,= p∞ 2761.41=

V∞ 5951.858,= a∞ 298.04=

µ∞ 1.445= 10
5–
,× µT 3.3227 10

14–×=

Tu 0.01%,= xbody 4.0=

RN 0.00254=
0.00343

θcone 5°=

r

RN x0 x

xtip 456( )

xtip 0( ) θcone

x0 0.012752m,= xtip 0( ) 0.026603m=

xtip 456( ) 0.035925m=

x

x

0.14°
9
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front part of the body. The flow transitions to turbulent
flow at a specified location. The turbulent flow has been
modeled with the Baldwin-Barth and Spalart-Allmaras
one-equation eddy viscosity approaches and the low
Reynolds number , Menter , and Wilcox
(1998) two-equation turbulence models. The so-
lutions have been obtained on three meshes to judge the
spatial convergence of the solution. The L2 norms of the
momentum and turbulence transport equations exhibited
oscillatory behavior after only a two or three order of
magnitude drop, thus another method was needed to
monitor convergence. The iterative convergence has
been initially determined by plotting the wall heat flux
at various number of time steps and assuming conver-
gence has been obtained when there is no noticeable
change in the results. Further analysis of the steady-state
solution error of the wall heat flux has shown that addi-
tional time steps are required to obtain adequate steady-
state solutions.

Transition Model
As previously discussed, the basic SACCARA code

treats the transition process by setting the effective vis-
cosity to the laminar value upstream of a specified tran-
sition plane, while downstream of this plane the
effective viscosity is the sum of both the laminar and
turbulent viscosities. This approach has been used with
the Baldwin-Barth one-equation eddy viscosity model
and all two-equation models. The transition plane is
specified to be perpendicular to the vehicle axis and lo-
cated at m. With the Spalart-Allmaras one-
equation eddy viscosity model, a different approach has
been implemented as described previously, with

and . From the results
of the investigation of the flat plate flow case, it was
concluded that Method 2 (coefficient is varied) is
the best approach to control the transition process with
the Spalart-Allmaras model at this time.

Iterative Convergence of the Numerical Solutions
At an altitude of 80,000 feet, steady-state solutions on

three meshes have been obtained by marching the solu-
tion in time until there is no further change in the plotted
solution. This method is illustrated in Fig. 5 for the
coarse Mesh 0-rg (100x40) with the Spalart-Allmaras
turbulence model. The laminar flow region takes the
longest time to converge as there is a very fine mesh in
the wall region. With Mesh 0-rg, the wall heat flux ap-
pears to have no significant changes after 4000 time
steps. The iterative convergence with Mesh 1-rg
(200x80) is shown in Fig. 6, while the behavior of Mesh
2-rg (400x160) is given in Fig. 7. With Mesh 1-rg, the
wall heat flux appears to have no significant changes af-
ter 7000 time steps while Mesh 2-rg requires approxi-

mately 14,000 time steps. However, the results shown
these figures are misleading! A more careful analys
has been performed to estimate the iterative conv
gence error.

The accuracy of the wall heat flux relative to th
steady-state value is determined by expressing the
merical solution at time  as

(18)

The exact steady-state value of the wall heat flux is
and the convergence error at time is . The conve
gence error has been observed to have an exponen
decrease in time which gives the following variation a
the solution approaches a steady state:

(19)

Eq. (18) and Eq. (19) are rewritten as

(20)

Eq. (20) is evaluated at three times, , , an
, and the three relations are used to eliminate

and obtain

If the time increments are equal, then =
 and the above becomes

The exact steady-state value of the wall heat flux
solved for in the above equation which gives

(21)

The iterative convergence error becomes

and the percent convergence error relative to the ex
steady-state value becomes

(22)

The foregoing results closely follow the works o
Ferziger and Peric27,28for determining the convergence
error of the numerical iterative solution of differenc
equations, but their results have been obtained with
different approach. In their work, the parameter
the spectral radius (or the magnitude of the large

k ε– k ω–
k ω–
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eigenvalue) of the iteration matrix. If the eigenvalues
are complex, the present approach is not appropriate.
The complex eigenvalue case has been considered by
Ferziger and Peric.

The above procedure is illustrated for the wall heat
flux solution at m (where the flow is lam-
inar) using the Spalart-Allmaras model. The percent er-
ror is shown in Fig. 8 for the three meshes. The percent
error obtained from Eq. (22) is indicated by the symbols
while the lines are the percent error obtained from the
best estimate of the exact solution given by Eq. (21).
The initial solution results on the finest mesh (Mesh 2-
rg shown in Fig. 7) appeared converged at 10,000 itera-
tions; however, based on the above error analysis, an ad-
ditional 15,000 iterations were needed to get the error
below 0.1%. The flow solution for Reentry F has also
been obtained with three meshes (Mesh 0-f, Mesh 1-f
and Mesh 2-f) with the same number of cells, but finer
spacing near the wall than was used with Mesh rg. Re-
sults of iterative convergence similar to Fig. 5, Fig. 6,
and Fig. 7 are obtained except the number of time steps
is increased significantly for the solutions with finer
near-wall spacing. The iterative convergence error for
Mesh f is given in Fig. 9. The iterative solution errors
are much smaller than the spatial solution errors, as will
be demonstrated.

The iterative convergence for the two-equation turbu-
lence models was also examined for Meshes 0-2eq
(130x40 cells), 1-2eq (260x80 cells), and 2-2eq
(520x160 cells). Results are presented for the low Rey-
nolds number model (Fig. 10), the Menter
model (Fig. 11), and the Wilcox (1998) model
(Fig. 12). There is some scatter in the symbols due to the
fact that the time increments were not always equal. A
larger number of iterations were required due to the
stricter requirements for Mesh 2eq verses the one-
equation meshes (Mesh rg and Mesh f). The two-equa-
tion results were all converged to less than 0.4% error,
which is again much smaller than the grid convergence
error.

Spatial Convergence of the Numerical Solutions
Spatial convergence has been judged from the steady-

state solutions on the three meshes, 0, 1, and 2 (from
coarsest to finest). The wall heat flux obtained with the
Spalart-Allmaras turbulence model for the three meshes
is given in Fig. 13 with the variable spacing given by
Mesh rg. The Richardson extrapolation procedure29 has
been used to obtain a more accurate result from the rela-
tion

(23)

The above relation assumes that the numerical scheme
is second-order. The Richardson extrapolation result

and the solution on Mesh 2-rg are nearly the sam
(also shown in Fig. 13). The accuracy of the solution
on the three meshes has been estimated with the ex
solution approximated with which gives the solu
tion error as

If the mesh has been refined sufficiently where th
solution error has second-order behavior, then the err
on the three meshes have the following relationship

(24)

In the above equation, the first equality will always b
satisfied when Eq. (23) has been used. The seco
equality will only be satisfied if the mesh has been suff
ciently refined to be in the asymptotic range. The pe
cent error of the wall heat flux along the vehicle i
presented in Fig. 14. The laminar flow solution region
in the asymptotic range while the turbulent flow regio
is not in the asymptotic range. The wall heat flux predic
tion in the laminar flow region is more accurate than th
heat flux prediction in the turbulent flow region.

For Mesh f, spatial convergence has been judg
from the steady-state solutions on the three meshes 0
and 2. Richardson extrapolation procedure has be
used to obtain a more accurate result. The accuracy
the solutions on the three meshes has been estima
with the exact solution approximated with the Richard
son extrapolated result and these results are giv
in Fig. 15. Again, the laminar flow solution region is in
the asymptotic range while the turbulent flow region
not always in the asymptotic range. The wall heat flu
prediction in the laminar flow region with Mesh f is less
accurate than the results with Mesh rg. The heat flu
predictions in the turbulent flow region with Mesh f are
more accurate than the results with Mesh rg. Only th
solution on Mesh 2-f is considered sufficiently accura
for comparison with the flight measurements and the R
chardson extrapolated results provide even a more ac
rate numerical prediction.

Spatial convergence has also been examined for
three two-equation models. The spatial error of the he
flux is given in Figs. 16-18 for the low Reynolds num
ber , the Menter , and the Wilcox (1998

models, respectively. The spatial error in the lam
inar regions is generally below 2%, while in the turbu
lent regions it varies from approximately 2% for th

model to 4% for the models. The results fo
the models indicate that the heat flux is not full
grid independent in the turbulent region. The spike
the error for the two-equation models is due to mov
ment of the transition location on the different siz

x 2.14892=

k ε– k ω–
k ω–

y
+

qRE q1 2, q2 q2 q1–( ) 3⁄ .+= =

qRE
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% Error ofqM 100 qM qRE–( ) qRE M⁄ 1 2 3, ,= =

% Error ofq2

% Error ofq1
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meshes and is more apparent for the two-equation mod-
els due to the fine axial spacing around the transition
point.

Wall Heat Flux
The predictions of the wall heat flux on the Reentry F

vehicle at an altitude of 80,000 feet with the one-equa-
tion turbulence models are given in Fig. 19 along with
the flight data. The Spalart-Allmaras prediction uses the
numerical solution with Mesh 2-f and the Richardson
extrapolation results for this case. The simulation over-
predicts the laminar wall heat flux by roughly 10 per-
cent while the turbulent wall heat flux is overpredicted
by roughly 15 percent. At this altitude the vehicle has a
0.14 degree angle of attack and the heat transfer mea-
surements were made on the leeward side of the conical
body. A full three-dimensional solution, with the vehi-
cle at angle of attack, would bring the prediction and
flight data into closer agreement. The prediction with
Mesh 2-f is believed to be a sufficiently accurate steady-
state solution that it can be used to validate the turbu-
lence model, but there are small errors in these results
due to uncertainty in information used in the simulation
as discussed previously.

The Baldwin-Barth turbulence model prediction (also
shown in Fig. 19) uses the numerical solution with Mesh
2-rg where the wall temperature is not maintained at
500K. However, these heat transfer results are not ex-
pected to be influenced much by this inaccurate wall
temperature. The simulation with the Baldwin-Barth
turbulence model overpredicts the laminar wall heat
flux by roughly 10 percent and is in agreement with the
simulation with the Spalart-Allmaras model. Of course,
in the laminar flow region the turbulence models should
have no impact on the flow solution. The turbulent wall
heat flux is overpredicted by roughly 100 percent with
the Baldwin-Barth turbulence model. It is recommended
that the Spalart-Allmaras model should be used rather
than the Baldwin-Barth turbulence model for reentry
flows.

Results with the Nagano and Hishida , the
Menter , and the Wilcox (1998) models are
presented in Fig. 20. Fine grid results with Mesh 2eq are
shown along with the results from Richardson extrapo-
lation. The results show an overprediction of the
turbulent heating rates by approximately 100%. The two

models show better agreement with the flight da-
ta, with the Menter model within 40% and the Wilcox
(1998) model within 30% of the data. All three models
display a peak in the turbulent heating just downstream
of the specified transition plane, which is possibly due
to crude transitional behavior of the standard method.

The present simulations have been performed with a
gas model that assumes the air flow is in local thermo-

chemical equilibrium. This study needs to be extend
to include solutions obtained with a nonequilibrium
thermochemical gas model for air. This type of simula
tion introduces the modeling of the heterogeneo
chemical reactions at the vehicle surface and vibration
nonequilibrium effects.

Conclusions
Many Navier-Stokes codes require that the governi

equations be written in conservation form with a sourc
term. The Spalart-Allmaras one-equation model w
originally developed in substantial derivative form an
when rewritten in conservation form, a density gradie
term appears in the source term. This density gradie
term causes numerical problems and has a small inf
ence on the numerical predictions. Further work h
been performed to understand and to justify the negle
of this term.11,16 The transition trip term has been in-
cluded in the one-equation eddy viscosity model
Spalart-Allmaras. Several problems with this mod
have been discovered when applied to high-speed flow

For the Mach 8 flat plate boundary layer flow with
the standard transition method, the Baldwin-Barth an
both models gave transition at the specified loc
tion. The Spalart-Allmaras and low Reynolds numbe

models required an increase in the freestream t
bulence levels in order to give transition at the desire
location. All models predicted the correct skin friction
levels in both the laminar and turbulent flow regions.

For Mach 8 flat plate case, the transition locatio
could not be controlled with the trip terms as given i
the Spalart-Allmaras model. Several other approach
have been investigated to allow the specification of th
transition location. The approach that appears most a
propriate is to vary the coefficient that multiplies th
turbulent production term in the governing partial dif
ferential equation for the eddy viscosity (Method 2
When this coefficient is zero, the flow remains lamina
The coefficient is increased to its normal value over
specified distance to crudely model the transition regio
and obtain fully turbulent flow. While this approach
provides a reasonable interim solution, a separate eff
should be initiated to address the proper transition pr
cedure associated with the turbulent production ter
Also, the transition process might be better modele
with the Spalart-Allmaras turbulence model with mod
fication of the damping function The damping
function could be set to zero in the laminar flow regio
and then turned on through the transition flow region.

Predictions have been obtained for the Reentry
flight vehicle with both one- and two-equation turbu
lence models where the transition location is specifieda
priori . The axisymmetric turbulent predictions for wal

k ε–
k ω– k ω–

k ε–

k ω–

k ω–

k ε–

f v1.
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heat flux with the Spalart-Allmaras, Menter , and
Wilcox (1998) models are in reasonable agree-
ment with the flight measurements. The mesh sensitivity
has been evaluated by obtaining results on three meshes
and more accurate results have been obtained with Rich-
ardson extrapolation. The simulation assumes the vehi-
cle is at zero degree angle-of-attack while in fact, the
flight vehicle is at 0.14 degree angle-of-attack. For the
one-equation models, the Spalart-Allmaras model pre-
dictions for this case are much better than the results
from the Baldwin-Barth model. For the two-equation
models, both models give good agreement with
the flight data, while the low Reynolds number
model greatly overpredicts the heating in the fully tur-
bulent region.

Future Work
The Reentry F calculations need to be extended to the

finite rate chemistry model. This modification should
help to determine if the equilibrium air assumption is
appropriate and will help determine if the turbulence
model with finite chemistry is reasonable. The present
Reentry F calculations have assumed a constant wall
temperature and this assumption needs to be improved.
As there is only limited flight information on the wall
temperature and no data in the nose region, a coupled
fluid/heat-conduction analysis is needed to provide the
wall temperature variation along the vehicle. Further
work could be done to modify the transition mechanism
for the two-equation models along the lines of the Spal-
art-Allmaras modifications presented herein. Finally, in-
cluding a realizeability limitation has been shown to
improve predictions for flows with large normal
stresses30 and may also improve predictions through
strong normal shocks.
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Fig. 1: Transition location with one- and two-equation turbulence
models for Mach 8 flat plate flow with the standard transition mode
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