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Abstract

Rapid and non-destructive estimation of plant water status is essential for adjusting field

practices and irrigation schemes of winter wheat. The objective of this study was to find new

combination spectral indices based on canopy reflectance for the estimation of plant water

status. Two experiments with different irrigation regimes were conducted in 2015–2016 and

2016–2017. The canopy spectra were collected at different growth stages of winter wheat.

The raw and derivative reflectance of canopy spectra showed obvious responses to the

change of plant water status. Except for equivalent water thickness (EWT), other water met-

rics had good relationships with new combination spectral indices (R2>0.7). An acceptable

model of canopy water content (CWC) was established with the best spectral index (RVI

(1605, 1712)). Models of leaf water content (LWC) and plant water content (PWC) had bet-

ter performances. Optimal spectral index of LWC was FDRVI (687, 531), having R2, RMSE

and RPD of 0.77, 2.181 and 2.09; R2, RMSE and RPD of 0.87, 2.652 and 2.34 for calibration

and validation, respectively. And PWC could be well estimated with FDDVI (688, 532) (R2,

RMSE and RPD of 0.79, 3.136 and 2.21; R2, RMSE and RPD of 0.83, 3.702 and 2.18 for cal-

ibration and validation, respectively). Comparing the performances of estimation models,

the new combination spectral indices FDRVI (687, 531) based on canopy reflectance

improved the accuracy of estimation of plant water status. Besides, based on FDRVI (687,

531), LWC was the optimal water metrics for plant water status estimation.

Introduction

Drought interrupts agricultural production and other human activities at global as well as

regional scales [1, 2]. Water shortage can happen during major drought events and in areas

with scarce water supply. Increasing water efficiently in irrigation is one of the many strategies

to deal with water shortage and conserve water. Real-time assessment of crop water status is

essential for irrigation scheduling because plant water status is a sensitive indicator prior to

changes in morphological and physiological responses to water stress [3, 4].
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Remote sensing technology has been extensively used for non-destructive and quick assess-

ment of crop growth condition as an alternative to more conventional means. Because water

status of plants can directly influence cell turgor, chemical reactions, and the arrangement of

cell and tissues in leaves, the absorption, transmission, and reflection of light from an individ-

ual leaf and leaf canopy are also affected by plant water status. For example, the light reflec-

tance of a cotton (Gossypium hirsutum L.) canopy was used to predict the physiological status

of cotton plants under water stress by Jackson and Ezra [5]. Attempt has been made in recent

years to use the technology for fast detection of changes of water status in field plants [6–8].

Quantifying plant water status using remote sensing requires model building and ground test-

ing. Peñuelas et al. [8, 9] used plant water content and the leaf relative water content to test

the model developed from spectral reflectance data. At a canopy level and in larger scales, the

quantification is more often expressed as equivalent water thickness (EWT) and canopy water

content (CWC) [10, 11].

The primary factors influencing the reliability of water prediction models based on hyper-

spectral data are model statistical approaches as well as spectrum and the spectral characteristic

parameters. The multiple regression models or machine learning models with either full reflec-

tive spectrum or sensitive wavelengths could adequately estimate the water status of plants

[12–14]. The absorption features (e.g. peak position and height) of water absorption bands

also showed good correlation with the relative water content of different plants [15–17]. Based

on those features, different vegetation indices were proposed to enhance the vegetation infor-

mation while minimize the influences from solar irradiance changes or soil brightness [18].

For instance, Hunt and Rock [19] found a good correlation between EWT and the moisture

stress index (R1600/R820). Other indices include normalized different water index (NDWI)

(R860-R1240)/(R860+R1240) by Gao [20], water index (WI) (R900/R970) by Panigada, Rossini [21],

water index (normalized different index and ratio index calculated with the reflectance at 780

nm and 1750 nm) [22], and more [23].

Other factors affecting the plant water prediction models are canopy structure and soil

background. The soil influences are particularly significant when with the lack of complete

vegetation coverage, such as during the early stages of crop growth and when the crops are

under stress. Huete [24] proposed the soil-adjusted vegetation index (SAVI) to minimize the

effect of the soil surface. Subsequently, Rondeaux and Steven [25] modified the parameter L in

the SAVI and arrived at an optimal soil-adjusted vegetation index (OSAVI). Most recently,

derivative transformation of the spectrum data are used to suppress the spectral response to

soil background [26].

The objective of this study was to evaluate different models in predicting the water status of

winter wheat based on canopy reflectance with or without derivative transformation. Ulti-

mately, our goal was to select an optimal water metrics and spectral index in assessing the

water status of winter wheat.

Materials andmethods

Site description and experimental design

The experiment was conducted from 2015 to 2017 at the experiment station of Shanxi Agricul-

tural University (E112˚33’, N37˚25’), Shanxi Province, China. The experiment site has a tem-

perate continental climate with an average annual temperature of 9.8 ˚C, 175 frost-free days

and annual precipitation about 450 mm.

There were two winter wheat cultivars (Chang 4738 and Zhongmai 175) during the 2015–

2016 growing season. Only one cultivar (Jingdong 17) was included during the 2016–2017

growing season. Wheat seeds were sown at a density of 400 plant m-2 on September 29 and
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October 1 in 2015 and 2016, respectively. The experiments were carried out in a bottomless

water-experiment pool (10 m×9 m) buried in the ground. The refilled soil in the pool was clas-

sified as Calcareous Cinnamon soil (Alfisols in US taxonomy) with 9.60 g kg-1 organic matters,

57.75 g kg-1 available nitrogen, 22.10 mg kg-1 available phosphate, and 185.48 mg kg-1 available

potassium. The field capacity of this artificial root zone was 24.24% at the bulk density of 1.42

g cm-3.

There were five irrigation regimes included in the two-year experiment: I1 (four irrigations

at jointing stage, booting stage, flowering stage, and filling stage), I2 (three irrigations at joint-

ing stage, booting stage, and filling stage), I3 (two irrigations at jointing stage and flowering

stage), I4 (two irrigations at jointing stage and booting stage), and I5 (without irrigation). The

amount of water at each irrigation was 80% of the soil field capacity controlled with a water

meter. The growth stages for irrigation were selected based on previous studies [27]. For all

treatments, the fertilizers were applied prior to seeding with 150 kg N hm-2, 150 kg P2O5 hm
-2,

and 150 kg K2O hm-2. The experiment was set up in a randomized complete block design with

three replications.

Canopy reflectance measurement

The canopy spectral reflectance was collected from jointing stage to filling stage using a Field-

Spec 3.0 Spectrometer (Analytical Spectral Devices (ASD), Boulder, CO, USA) at 1 m above

the canopy. The spectral range collected was 350–2500 nm, with a sampling interval of 1.4 nm

and spectral resolution of 3 nm between 350 and 1000 nm; and a sampling interval of 2 nm

and spectral resolution of 10 nm between 1000 and 2500 nm. The measurements were taken

under clear sky conditions from 10:00 to 14:00 hours. Three measurements were taken in each

plot. Ten reflectance curves per site were averaged. A 40 cm square BaSO4 panel was used for

calibrating the baseline reflectance before each measurement.

Plant water status measurement

Plant samples were collected at the same time of spectral measurements. Plants from 400 cm2

area in each plot were clipped at the soil surface and stored in plastic bags before the measure-

ment of water content. The fresh plant was separated into different organs (leaf, stem and

spike) and weighed for fresh weight (FW). Samples were dried in an oven at 105 ˚C for half an

hour, then at 80 ˚C for 24 hours to constant weight and reweighed to get dry weight (DW).

Leaf water content (LWC) and Plant water content (PWC) were calculated as follows:

LWC ¼ ðFWL � DWLÞ=FWL � 100% ð1Þ

PWC ¼ ðFWP � DWPÞ=FWP � 100% ð2Þ

Equivalent water thickness (EWT) is defined as the hypothetical thickness of a single layer

of water over the whole leaf area (A):

EWT ¼ ðFWL � DWLÞ=A ð3Þ

At the canopy level, canopy water content (CWC) can be obtained by scaling the EWT with

leaf area index (LAI):

CWC ¼ EWT � LAI ð4Þ
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Spectral indices

Random combinations of wavelengths in the range of 400–2400 nm were used to formulate

different NDVI, DVI, and RVI in this study.

NDVI ¼ ðRi � RjÞ=ðRi þ RjÞ ð5Þ

DVI ¼ Ri � Rj ð6Þ

RVI ¼ Ri=Rj ð7Þ

Where Ri and Rj represent the reflectance of i and j nm.

Likewise, random combinations of the derivative reflectance of in the range of 400–2400

nm in the spectral indices,

FDNDVI ¼ ðFDRi � FDRjÞ=ðFDRi þ FDRjÞ ð8Þ

FDDVI ¼ FDRi � FDRj ð9Þ

FDRVI ¼ FDRi=FDRj ð10Þ

Where FDRi and FDRj represent the derivative reflectance of i and j nm.

The performance of the formulations from above were compared with nine published vege-

tation indices for the estimation of water status (Table 1).

Calibration and validation method

The prediction models were evaluated based on R2, the root mean square error (RMSE), and

residual prediction difference (RPD). Accordingly, three crops of models were defined, ade-

quate (RPD>2), acceptable (1.4<RPD<2), and inadequate (RPD<1.4) [32].

Results

The response of canopy spectrum to plant water status

The raw reflectance spectral curves showed a similar trend (Fig 1). There was a positive rela-

tionship between reflectance and water status in the near-infrared wavelength and a negative

relationship in the visible wavelength. As the water content decreased, reflectance of the red

Table 1. Published vegetation indices used in this study for water status estimation.

Vegetation indices Name Formula Reference

WI Water index R900/R970 [8, 9]

WBI Water band index R970/R900 [8]

NDWI Normalized different water index (R860 − R1240)/ (R860 + R1240) [20]

MSI Moisture stress index R1600/R820 [19]

NDII Normalized different infrared index (R850 − R1650)/(R850 + R1650) [28]

WBI/NDVI [R970/R900]/[(R800 − R680)/(R800 + R680)] [23, 29]

PRI Photochemical Reflectance Index (R531 − R570)/(R531 + R570) [30]

Red-edge NDVI Red-edge normalized difference vegetation index (R750 − R705)/(R750 + R705) [22, 31]

OSAVI Optimized soil-adjusted vegetation index (1 + 0.16) × (R800 − R670)/(R800 + R670 + 0.16) [25]

https://doi.org/10.1371/journal.pone.0216890.t001
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(approximately 680 nm) increased and that in the green (approximately 550 nm) became less

obvious.

Fig 2 shows the first derivative reflectance of different water metrics at various gradients.

Spectral curves were differently affected by the chlorophyll and water absorption. The spec-

trum in 670–760 nm, was distinguished with a positive response to water metrics. These

responses indicated that raw reflectance and the first derivative reflectance were sensitive to

the change of crop water status in different spectral ranges.

Relationship between canopy reflectance and plant water status

Correlation coefficients between water metrics and each band were shown in Fig 3. And the

correlation coefficients curves for different water metrics were in the same pattern. With

exception in the range of 730–1315 nm, the raw reflectance showed significant negative corre-

lations with water metrics. In Fig 3B and 3C, the positive correlation between water metrics

(CWC and LWC) and spectrum was significant at the 0.01 probability level at 760 nm. The

first derivative reflectance improves the correlation in the visible and near-infrared regions

over the raw spectrum. The four water metrics had significant correlations with the raw reflec-

tance and the first derivative reflectance.

Fig 1. Canopy spectral reflectance (raw data) at various plant water status in winter wheat.Different colors indicate the mean spectrum of various
gradients of water metrics. (A) equivalent water thickness (EWT), (B) canopy water content (CWC), (C)leaf water content (LWC) and (D) plant water
content (PWC).

https://doi.org/10.1371/journal.pone.0216890.g001
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Relationships between plant water status and spectral indices

Relationships between plant water status and spectral indices using two raw bands.

The Fig 4 presented the R2 of linear regressions between water metrics and spectral indices cal-

culated with random combination of two raw reflectance. The order of relationship between

water metrics and optimal spectral index was PWC> LWC> CWC> EWT. The R2 values

for different spectral indices of EWT were all below 0.44, while the R2 values for CWC, PWC

and LWC were all above 0.73. For different water metrics, the patterns of contour maps of the

same spectral index were almost same. Spectral indices NDVI and RVI showed similar contour

map patterns. The optimal band combination indices for CWC and LWC were RVI (1605,

1712) and DVI (1301, 1213) with R2 of 0.74 and 0.76, respectively. Besides, NDVI and RVI had

the same optimal combination of 2273 nm and 1460 nm with the R2 of 0.81 in predicting the

PWC.

Relationships between plant water status and spectral indices using two bands with the

first derivative. R2 of linear regressions between different water metrics and spectral indices

calculated with two derivative reflectance were shown in Fig 5. Compared with ordinary spec-

tral indices, the orders of different water metrics were the same, while the combination ranges

of derivative spectral indices which had good relationships with plant water status were differ-

ent. The relationships between water metrics and derivative spectral indices (400–800 nm and

400–1800 nm) were closer than the ordinary spectral index. However, the best R2 of EWT was

Fig 2. First derivative reflectance at various plant water status in winter wheat.Different color represents gradients of water metrics. (A) equivalent
water thickness (EWT), (B) canopy water content (CWC), (C)leaf water content (LWC) and (D) plant water content (PWC).

https://doi.org/10.1371/journal.pone.0216890.g002
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still lower than other water metrics, only 0.44. Optimal combination derivative spectral indices

to predict CWC, LWC and PWC were FDRVI (713, 688), FDRVI (687, 531) and FDNDVI

(688, 533), respectively.

Calibration and validation of the quantitative model of plant water status
based on new combination spectral index

The data from 2015–2016 and 2016–2017 were used for model calibration and validation,

respectively. In order to select the optimal spectral indices for predicting the plant water status,

the linear and nonlinear models of each water metric based on the new combination spectral

index were established. The performances of quantitative models were compared (Table 2).

The quantitative relationships between the water metrics and the optimal band combina-

tion spectral indices were mostly linear models (Table 2). The predicting models for EWT

showed low R2 (R2<0.45). The quantitative models for CWC were acceptable (R2>0.7 and

1.4<RPD<2.0). The best spectral index for CWC was RVI (1605, 1712). Models using the raw

spectral indices were good in predicting LWC, while the validation of models based on deriva-

tive spectral indices were acceptable. However, the linear model using FDRVI (687, 531) was

the optimal model of LWC having the highest R2, RPD and lowest RMSE in model calibration

and validation (R2
C = 0.77, RMSEC = 2.181, RPDC = 2.09, R2

V = 0.87, RMSEV = 2.652, RPDV =

Fig 3. Correlation between water metrics and raw reflectance and between water metrics and the first derivative reflectance in winter wheat
(n = 120). (A) equivalent water thickness (EWT), (B) canopy water content (CWC), (C) leaf water content (LWC) and (D) plant water content (PWC).
The horizontal dotted lines represent the correlation coefficient threshold values at the 0.01 probability level.

https://doi.org/10.1371/journal.pone.0216890.g003
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Fig 4. Coefficient of determination (R2) between plant water status and spectral indices using two bands of the raw reflectance in winter wheat.

https://doi.org/10.1371/journal.pone.0216890.g004
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Fig 5. Coefficient of determination (R2) between plant water status and spectral indices using two bands of the first derivative reflectance in
winter wheat.

https://doi.org/10.1371/journal.pone.0216890.g005
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2.34) (Fig 6B). In addition, the performances of model calibration for predicting the PWC

were also well. But, the performances of model validation were less (1.4<RPD<2.0), except

for FDDVI (688, 532). Therefore, the nonlinear model using FDDVI (688, 532) was the opti-

mal model of PWC having the higher R2, RPD and lowest RMSE in model calibration and

Table 2. Quantitative models of water metrics (y) to select spectral index (x) in winter wheat.

Water metrics Spectral index Formulation Calibration Validation

R2
C RMSEC RPDC R2

V RMSEV RPDV

EWT NDVI (2348, 2065) y = 0.0455x + 0.0128 0.41 0.002 1.31 0.44 0.004 0.91

FDNDVI (1560, 1505) y = 0.0137e1.9805x 0.45 0.002 1.32 0.38 0.004 0.90

DVI (2247, 2192) y = -0.9937x + 0.0156 0.43 0.002 1.33 0.53 0.004 0.89

FDDVI (1663, 489) y = 23.443x + 0.0122 0.44 0.002 1.34 0.49 0.004 0.89

RVI (2348, 2065) y = -0.0226x + 0.0354 0.41 0.002 1.31 0.47 0.004 0.90

FDRVI (1284, 1220) y = 0.0086e-0.433x 0.45 0.002 1.31 0.54 0.003 1.07

CWC NDVI (1712, 1605) y = 4.2803x − 0.0158 0.73 0.027 1.94 0.71 0.029 1.79

FDNDVI (1586, 687) y = 0.2964x + 0.1651 0.74 0.026 1.98 0.70 0.031 1.69

DVI (458, 445) y = -76.353x + 0.1916 0.71 0.028 1.86 0.76 0.043 1.22

FDDVI (663, 602) y = 710.05x + 0.1733 0.71 0.028 1.85 0.63 0.039 1.33

RVI (1605, 1712) y = -11.927x2 + 20.155x − 8.2849 0.74 0.026 1.98 0.72 0.028 1.87

FDRVI (713, 688) y = 0.0355x − 0.0716 0.76 0.026 2.04 0.74 0.040 1.29

LWC NDVI (1301, 1218) y = -925.82x + 76.969 0.74 2.298 1.99 0.84 2.888 2.15

FDNDVI (1015, 790) y = 30.098x + 63.749 0.76 2.215 2.06 0.77 3.732 1.66

DVI (1299, 1218) y = -141188x2 + 1087.4x + 79.729 0.79 2.104 2.17 0.85 2.991 2.07

FDDVI (669, 553) y = 54751x + 77.873 0.74 2.324 1.96 0.72 3.857 1.61

RVI (1301, 1218) y = -460.59x + 537.57 0.75 2.295 1.99 0.84 2.882 2.15

FDRVI (687, 531) y = -18.567x + 97.6 0.77 2.181 2.09 0.87 2.652 2.34

PWC NDVI (2273, 1460) y = 0.0002x − 0.0048 0.81 2.978 2.32 0.85 4.315 1.87

FDNDVI (688, 533) y = -84.658x + 89.688 0.81 2.987 2.32 0.84 4.230 1.91

DVI (1691, 1644) y = 5183.1x + 71.246 0.81 3.003 2.30 0.80 5.836 1.38

FDDVI (688, 532) y = 6�107x2 − 75018x + 85.153 0.79 3.136 2.21 0.83 3.702 2.18

RVI (2273, 1460) y = 28.118x2–131.97x + 176.08 0.81 2.970 2.33 0.85 4.329 1.87

FDRVI (688, 533) y = 8.8609x2–53.97x + 133.87 0.81 2.973 2.33 0.84 4.177 1.93

https://doi.org/10.1371/journal.pone.0216890.t002

Fig 6. Scatter diagrams between the measured and estimated water metrics from the models with the optimal spectral index. (A) canopy water
content (CWC), (B) leaf water content (LWC) and (C) plant water content (PWC). The 1:1 line is marked with a dotted line.

https://doi.org/10.1371/journal.pone.0216890.g006
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validation (R2
C = 0.79, RMSEC = 3.136, RPDC = 2.21, R2

V = 0.83, RMSEV = 3.702, RPDV =

2.18) (Fig 6C).

Performance of published vegetation indices

The correlation between various water metrics and published vegetation indices are listed in

Table 3. Significant correlation was observed between published vegetation indices and CWC,

LWC and PWC. And the correlation between CWC and vegetation indices were better than

other water metrics. Except for WI, the relationships between vegetation indices and EWT

were significant different at 0.05 level. The Red-edge NDVI had the highest correlation coeffi-

cients with water metrics. Then, vegetation indices with the first two correlation coefficients

were selected to establish the predicting models (Table 4). Based on the RPD, the calibration

models using published vegetation indices were not acceptable in this study. However, based

on the new combination vegetation index (Table 2), the predicting models had the higher R2

and RPD and lower RMSE.

Discussion

Canopy reflectance contains complex information. Both raw and derivative spectral reflec-

tance had good correlations with various water metrics of winter wheat. With the decreasing

values of water metrics, the raw reflectance in the near-infrared region and derivative reflec-

tance in the red region decreased while the raw reflectance in the visible region increased (Fig

1), which is in agreement with previously published results [6, 33]. The increasing of near-

Table 3. Correlation coefficients between vegetation indices and water metrics (n = 120).

Vegetation indices EWT CWC LWC PWC

WI 0.178 0.423�� 0.390�� 0.276��

WBI -0.183� -0.428�� -0.400�� -0.281��

NDWI 0.217� 0.392�� 0.438�� 0.312��

MSI -0.457�� -0.646�� -0.673�� -0.554��

NDII 0.426�� 0.623�� 0.635�� 0.526��

WBI/NDVI -0.515�� -0.679�� -0.679�� -0.601��

PRI -0.462�� -0.694�� -0.655�� -0.569��

Red-edge NDVI 0.496�� 0.776�� 0.728�� 0.670��

OSAVI 0.423�� 0.662�� 0.633�� 0.550��

� and
�� represent significant differences at 0.05 and 0.01 level, respectively.

https://doi.org/10.1371/journal.pone.0216890.t003

Table 4. The performance of the calibration models based on the published vegetation indices.

Water metrics Vegetation index Model R2 RMSE RPD

EWT Red-edge NDVI y = 0.0169x0.5928 0.29 0.002 1.16

WBI/NDVI y = 0.033e-0.69x 0.30 0.002 1.18

CWC Red-edge NDVI y = 0.0039e5.3849x 0.68 0.033 1.56

PRI y = 0.1321e-19.65x 0.51 0.039 1.35

LWC Red-edge NDVI y = 87.149x0.3034 0.54 3.111 1.47

WBI/NDVI y = 88.51x-0.5 0.49 3.286 1.39

PWC Red-edge NDVI y = 45.229e0.7759x 0.46 5.105 1.35

WBI/NDVI y = 50.933x2–189.75x + 238.14 0.43 5.201 1.33

https://doi.org/10.1371/journal.pone.0216890.t004
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infrared reflectance may be related to the geometrical features of leaf and canopy and intercel-

lular scattering within the leaves [34]. The observed changes of water metrics in derivative

reflectance in red region was due to the sensitivity of red edge parameters to water stress (Fig

2) [33].

Plant water status could be described with various physiological parameters [35]. All water

metrics used in this study could be predicted by the raw and derivative reflectance. The effects

of plant water status include plant growth, yield, pigment content, and photosynthetic activity

[36], which would induce the changes of canopy reflectance. CWC, LWC and PWC had better

relationships with raw and derivative spectrum than EWT (Fig 3). LWC and PWC, the correla-

tion with spectrum and the performance of predicting model were similar. However, the LWC

model had higher accuracy in model validation. Furthermore, the optimal spectral indices had

a linear relationship with LWC, while a quadratic polynomial relationship with PWC. Because

linear relationship has the advantage of the absence of spectral saturation effect [37], LWC was

more suitable in the plant water status estimation by remote sensing.

Vegetation indices with adjustment of the influence of external factors (e.g. solar irradiance

and soil background) improved the prediction accuracy of water status [18, 38]. In this study,

random combinations of raw and derivative reflectance at 400–2400 nm were used to calculate

new spectral indices. For the raw reflectance, spectral indices based on the near-infrared and

short-infrared showed good performance in model calibration and validation [39–41]. How-

ever, derivative reflectance in visible and near-infrared regions were better suited for predict-

ing plant water status in this study. Despite the noise interference, some researchers believed

that derivative process could reduce the effects of radiation and soil background reflection on

vegetation and approve the estimating accuracy [26, 42, 43].

Conclusion

This study demonstrated the possibility of accurately predicting the plant water status by can-

opy reflectance. The canopy reflectance of winter wheat had good correlation with the water

status of winter wheat. CWC, LWC and PWC could be adequately predicted by the spectral

indices formulated in this study. Among four water metrics, LWC was the best water metric in

assessing the plant water status. Meanwhile, having a linear relationship (y = -18.567x + 97.6)

with LWC, FDRVI (687, 531) was the optimal spectral index with R2, RMSE and RPD of 0.77,

2.181 and 2.09; R2, RMSE and RPD of 0.87, 2.652 and 2.34 for calibration and validation,

respectively.
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