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Assessment of Point Process Models for
Earthquake Forecasting
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Abstract. Models for forecasting earthquakes are currently tested prospec-
tively in well-organized testing centers, using data collected after the mod-
els and their parameters are completely specified. The extent to which these
models agree with the data is typically assessed using a variety of numer-
ical tests, which unfortunately have low power and may be misleading for
model comparison purposes. Promising alternatives exist, especially residual
methods such as super-thinning and Voronoi residuals. This article reviews
some of these tests and residual methods for determining the goodness of fit
of earthquake forecasting models.
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1. INTRODUCTION

A major goal in seismology is the ability to accu-
rately anticipate future earthquakes before they occur
(Bolt, 2003). Anticipating major earthquakes is espe-
cially important, not only for short-term response such
as preparation of emergency personnel and disaster re-
lief, but also for longer-term preparation in the form
of building codes, urban planning and earthquake in-
surance (Jordan and Jones, 2010). In seismology, the
phrase earthquake prediction has a specific definition:
it is the identification of a meaningfully small geo-
graphic region and time window in which a major
earthquake will occur with very high probability. An
example of earthquake predictions are those gener-
ated by the M8 method (Keilis-Borok and Kossobokov,
1990), which issues an alarm whenever there is a suit-
ably large increase in the background seismicity of a
region. Such alarms could potentially be very valuable
for short-term disaster preparedness, but unfortunately
examples of M8-type alarms, including the notable Re-
verse Tracing of Precursors (RTP) algorithm, have gen-
erally exhibited low reliability when tested prospec-
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tively, typically failing to outperform naive methods
based simply on smoothed historical seismicity (Geller
et al., 1997; Zechar and Jordan, 2008).

Earthquake prediction can be contrasted with the
related earthquake forecasting, which means the as-
signment of probabilities of earthquakes occurring in
broader space–time-magnitude regions. The temporal
scale of an earthquake forecast is more on par with
climate forecasts and may be over intervals that range
from decades to centuries (Hough, 2010).

Many models have been proposed for forecast-
ing earthquakes, and since different models often re-
sult in very different forecasts, the question of how
to assess which models seem most consistent with
observed seismicity becomes increasingly important.
Concerns with retrospective analyses, especially re-
garding data selection, overfitting and lack of repro-
ducibility, have motivated seismologists recently to fo-
cus on prospective assessments of forecasting models.
This has led to the development of the Regional Earth-
quake Likelihood Models (RELM) and Collaborative
Study of Earthquake Predictability (CSEP) testing cen-
ters, which are designed to evaluate and compare the
goodness of fit of various earthquake forecasting mod-
els. This paper surveys methods for assessing the mod-
els in these RELM and CSEP experiments, including
methods currently used by RELM and CSEP and some
others not yet in use but which seem promising.
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2. A FRAMEWORK FOR PROSPECTIVE TESTING

The current paradigm for building and testing earth-
quake models emerged from the working group for the
development of Regional Earthquake Likelihood Mod-
els (RELM) in 2001. As described in Field (2007), the
participants were encouraged to submit differing mod-
els, in the hopes that the competition between models
would prove more useful than trying to build a single
consensus model. The competition took place within
the framework of a prospective test of their seismic-
ity forecasts. Working from a standardized data set
of historical seismicity, scientists fit their models and
submit to RELM a forecast of the number of events
expected within each of many pre-specified spatial–
temporal-magnitude bins. The first predictive experi-
ment required models to forecast seismicity in Califor-
nia between 2006 to 2011 using only data from before
2006.

This paradigm has many benefits from a statisti-
cal perspective. The prospective nature of the exper-
iments effectively eliminates concerns about overfit-
ting. Furthermore, the standardized nature of the data
and forecasts facilitates the comparison among differ-
ent models. RELM has since expanded into the Col-
laborative Study of Earthquake Predictability (CSEP),
a global-scale project to coordinate model development
and conduct prospective testing according to commu-
nity standards (Jordan, 2006). CSEP serves as an in-
dependent entity that provides standardized seismicity
data, inventories proposed models and publishes the
standards by which the models will be assessed.

3. SOME EXAMPLES OF MODELS FOR
EARTHQUAKE OCCURRENCES

The first predictive experiment coordinated through
RELM considered time-independent spatial point pro-
cess models, which can be specified by their Papan-
gelou intensity λ(s), a function of spatial location s.
A representative example is the model specified by
Helmstetter, Kagan and Jackson (2007) that is based
on smoothing previous seismicity. The intensity func-
tion is estimated with an isotropic adaptive kernel

λ(s) =
N∑

i=1

Kd(s − si),

where N is the total number of observed points, and
Kd is a power-law kernel

Kd(s − si) = C(d)

(|s − si |2 + d2)1.5 ,

where d is the smoothing distance, C(d) is a normaliz-
ing factor so that the integral of Kd(·) over an infinite
area equals 1, and | · | is the Euclidean norm. The es-
timated number of points within the pre-specified grid
cells is obtained by integrating λ(s) over each cell.

Models of earthquake occurrence that consider it to
be a time-dependent process are commonly variants of
the epidemic-type aftershock sequence (ETAS) model
of Ogata (1988, 1998) (see, e.g., Helmstetter and Sor-
nette, 2003; Ogata, Jones and Toda, 2003; Sornette,
2005; Vere-Jones and Zhuang, 2008; Console, Murru
and Falcone, 2010; Chu et al., 2011; Wang, Jackson
and Kagan, 2011; Werner et al., 2011; Zhuang, 2011;
Tiampo and Shcherbakov, 2012). According to the
ETAS model, earthquakes cause aftershocks, which in
turn cause more aftershocks, and so on. ETAS is a point
process model specified by its conditional intensity,
λ(s, t), which represents the infinitesimal expected rate
at which events are expected to occur around time t

and location s, given the history Ht of the process up
to time t . ETAS is a special case of the linear, self-
exciting Hawkes’ point process (Hawkes, 1971), where
the conditional intensity is of the form

λ(s, t |Ht) = μ(s, t) + ∑
ti<t

g(s − si, t − ti;Mi),

where μ(s, t) is the mean rate of a Poisson-distributed
background process that may in general vary with time
and space, g is a triggering function which indicates
how previous occurrences contribute, depending on
their spatial and temporal distances and marks, to the
conditional intensity λ at the location and time of in-
terest, and (si, ti ,Mi) are the origin times, epicentral
locations and moment magnitudes of observed earth-
quakes.

Ogata (1998) proposed various forms for the trigger-
ing function, g, such as the following:

g(s, t,M) = K(t + c)−pea(M−M0)
(|s|2 + d

)−q
,

where M0 is the lower magnitude cutoff for the ob-
served catalog.

The parameters in ETAS models and other spatial–
temporal point process models may be estimated by
maximizing the log-likelihood,

n∑
i=1

log
{
λ(si, ti)

} −
∫
S

∫
λ(s, t)ds dt.

The maximum likelihood estimator (MLE) of a point
process is, under quite general conditions, asymptoti-
cally unbiased, consistent, asymptotically normal and
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asymptotically efficient (Ogata, 1978). Finding the pa-
rameter vector that maximizes the log-likelihood can
be achieved using any of the various standard opti-
mization routines, such as the quasi-Newton methods
implemented in the function optim(·) in R. The spa-
tial background rate μ in the ETAS model can be es-
timated in various ways, such as via kernel smoothing
seismicity from prior to the observation window or ker-
nel smoothing the largest events in the catalog, as in
Ogata (1998) or Schoenberg (2003). Note that the inte-
gral term in the loglikelihood function can be cumber-
some to estimate, and an approximation method rec-
ommended in Schoenberg (2013) can be used to accel-
erate computation of the MLE.

There are of course many other earthquake forecast-
ing models quite distinct from the two point process
models above. Perhaps most important among these
are the Uniform California Earthquake Rupture Fore-
cast (UCERF) models, which are consulted when set-
ting insurance rates and crafting building codes (Field
et al., 2009). They are constructed by soliciting ex-
pert opinion from leading seismologists on which com-
ponents should enter the model, how they should be
weighted, and how they should interact (Marzocchi
and Zechar, 2011). Examples of the components in-
clude slip rate, geodetic strain rates and paleoseismic
data. Note that some seismologists have argued that
evaluating some earthquake forecasting models such
as UCERF using model validation experiments such as
RELM and CSEP may be inappropriate, though such a
conclusion seems to run counter to basic statistical and
scientific principles.

Although the UCERF models draw upon diverse in-
formation related to the geophysics of earthquake eti-
ology, commonly used models such as ETAS and its
variants rely solely on previous seismicity for forecast-
ing future events. Many attempts have been made to
include covariates, but when assessed rigorously, most
predictors other than the locations and times of pre-
vious earthquakes have been shown not to offer any
noticeable improvement in forecasting. Recent exam-
ples of such covariates include electromagnetic sig-
nals (Jackson, 1996; Kagan, 1997), radon (Hauksson
and Goddard, 1981) and water levels (Bakun et al.,
2005; Manga and Wang, 2007). A promising excep-
tion is moment tensor information, which is now rou-
tinely recorded with each earthquake and seems to give
potentially useful information regarding the direction-
ality of the release of stress in each earthquake. How-
ever, this information appears not to be explicitly used
presently in models in the CSEP or RELM forecasts.

4. NUMERICAL TESTS

Several numerical tests were initially proposed to
serve as the metrics by which RELM models would be
evaluated (Schorlemmer et al., 2007). For these numer-
ical tests, each model consists of the estimated num-
ber of earthquakes in each of the spatial–temporal-
magnitude bins, where the number of events in each
bin is assumed to follow a Poisson distribution with an
intensity parameter equivalent to the forecasted rate.

The L-test (or Likelihood test) evaluates the proba-
bility of the observed data under the proposed model.
The numbers of observed earthquakes in each spatial–
temporal-magnitude bin are treated as independent ran-
dom variables, so the joint probability is calculated
simply as the product of their corresponding Poisson
probabilities. This observed joint probability is then
considered with respect to the distribution of joint
probabilities generated by simulating many synthetic
data sets from the model. If the observed probability
is unusually low in the context of this distribution, the
data are considered inconsistent with the model.

The N -test (Number) ignores the spatial and mag-
nitude component and focuses on the total number of
earthquakes summed across all bins. If the proposed
model provides estimates λ̂i for i corresponding to
each of B bins, then according to this model, the to-
tal number of observed earthquakes should be Poisson
distributed with mean (

∑B
i=1 λ̂i). If the number of ob-

served earthquakes is unusually large or small relative
to this distribution, the data are considered inconsistent
with the model.

The L-test is considered more comprehensive in that
it evaluates the forecast in terms of magnitude, spa-
tial location and number of events, while the N -test
restricts its attention to the number of events. Two ad-
ditional data consistency tests were proposed to assess
the magnitude and spatial components of the forecasts,
respectively: the M-test and the S-test (Zechar, Ger-
stenberger and Rhoades, 2010). The M-test (Magni-
tude) isolates the forecasted magnitude distribution by
counting the observed number of events in each mag-
nitude bin without regard to their temporal or spatial
locations, standardized so that the observed and ex-
pected total number of events under the model agree,
and computing the joint (Poisson) likelihood of the ob-
served numbers of events in each magnitude bin. As
with the L-test, the distribution of this statistic under
the forecast is generated via simulation.

The S-test (Spatial) follows the same inferential pro-
cedure but isolates the forecasted spatial distribution by
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summing the numbers of observed events over all times
and over all magnitude ranges. These counts within
each of the spatial bins are again standardized so that
the observed and expected total number of events un-
der the model agree, and then one computes the joint
(Poisson) likelihood of the observed numbers of events
in the spatial bins.

The above tests measure the degree to which the ob-
servations agree with a particular model, in terms of
the probability of these observations under the given
model. As noted in Zechar et al. (2013), tests such
as the L-test and N -test are really tests of the con-
sistency between the data and a particular model, and
are not ideal for comparing two models. Schorlemmer
et al. (2007) proposed an additional test to allow for
the direct comparison of the performance of two mod-
els: the Ratio test (R-test). For a comparison of models
A and B, and given the numbers of observed events
in each bin, the test statistic R is defined as the log-
likelihood of the data according to model A minus the
corresponding log-likelihood for model B. Under the
null hypothesis that model A is correct, the distribution
of the test statistic is constructed by simulating from
model A and calculating R for each realization. The re-
sulting test is one-sided and is supplemented with the
corresponding test using model B as the null hypoth-
esis. The T -test and W -test of Rhoades et al. (2011)
are very similar to the R-test, except that instead of us-
ing simulations to find the null distribution of the dif-
ference between log-likelihoods, with the T -test and
W -test, the differences between log-likelihoods within
each space–time-magnitude bin for models A and B
are treated as independent normal or symmetric ran-
dom variables, respectively, and a t-test or Wilcoxon
signed rank test, respectively, is performed.

Unfortunately, when used to compare various mod-
els, such likelihood-based tests suffer from the problem
of variable null hypotheses and can lead to highly mis-
leading and even seemingly contradictory results. For
instance, suppose model A has a higher likelihood than
model B. It is nevertheless quite possible for model
A to be rejected according to the L-test and model B
not to be rejected using the L-test. Similarly, the R-
test with model A as the null might indicate that model
A performs statistically significantly better than model
B, while the R-test with model B as the null hypothe-
sis may indicate that the difference in likelihoods is not
statistically significant. Seemingly paradoxical results
like these occur frequently, and at a recent meeting of
the Seismological Society of America, much confusion

was expressed over such results; even some seismolo-
gists quite well versed in statistics referred to results in
such circumstances as “somewhat mixed,” even though
model A clearly fit better according to the likelihood
criterion than model B.

The explanation for such results is that the null hy-
potheses of the two tests are different: when model A is
tested using the L-test, the null hypothesis is model A,
and when model B is tested, the null hypothesis is
model B. The test statistic may have very different dis-
tributions under these different hypotheses.

Unfortunately, these types of discrepancies seem to
occur frequently and hence, the results of these numeri-
cal tests may not only be uninformative for model com-
parison, but in fact highly misleading. A striking exam-
ple is given in Figure 4 of Zechar et al. (2013), where
the Shen, Jackson and Kagan (2007) model produces
the highest likelihood of the five models considered in
this portion of the analysis, and yet under the L-test has
the lowest corresponding p-value of the five models.

5. FUNCTIONAL SUMMARIES

Functional summaries, that is, those producing a
function of one variable, such as the weighted K-
function and error diagrams, can also be useful mea-
sures of goodness of fit. However, such summaries typ-
ically provide little more information than numerical
tests in terms of indicating where and when the model
and the data fail to agree or how a model may be im-
proved.

The weighted K-function is a generalized version
of the K-function of Ripley (1976), which has been
widely used to detect clustering or inhibition for spa-
tial point processes. The ordinary K function, K(h),
counts, for each h, the total number of observed pairs
of points within distance h of one another, per observed
point, standardized by dividing by the estimated over-
all mean rate of the process, and the result is compared
to what would be expected for a homogeneous Poisson
process. The weighted version, Kw(h), was introduced
for the inhomogeneous spatial point process case by
Baddeley, Møller and Waagepetersen (2000), and is de-
fined similarly to K(h), except that each pair of points
(si, sj ) is weighted by 1/[λ̂(si)λ̂(sj )], the inverse of the
product of the modeled unconditional intensities at the
points si and sj . This was extended to spatial–temporal
point processes by Veen and Schoenberg (2006) and
Adelfio and Schoenberg (2009).

Whereas the null hypothesis for the ordinary K-
function is a homogeneous Poisson process, in the case
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of Kw , the weighting allows one to assess whether the
degree of clustering or inhibition in the observations is
consistent with what would be expected under the null
hypothesis corresponding to the model for λ̂. While
weighted K-functions may be useful for indicating
whether the degree of clustering in the model agrees
with that in the observations, such summaries unfor-
tunately do not appear to be useful for comparisons
between multiple competing models, nor do they ac-
curately indicate in which spatial–temporal-magnitude
regions there may be particular inconsistencies be-
tween a model and the observations.

Error diagrams, which are also sometimes called re-
ceiver operating characteristic (ROC) curves (Swets,
1973) or Molchan diagrams (Molchan, 1991, 2010;
Zaliapin and Molchan, 2004; Kagan, 2009), plot the
(normalized) number of alarms versus the (normalized)
number of false negatives (failures to predict), for each
possible alarm, where in the case of earthquake fore-
casting models an alarm is defined as any value of the
modeled conditional rate, λ̂, exceeding some threshold.
Figure 1 presents error diagrams for two RELM mod-
els, Helmstetter, Kagan and Jackson (2007) and Shen,
Jackson and Kagan (2007) (see Sections 3 and 7 for
model details).

The ease of interpretation of such diagrams is an at-
tractive feature, and plotting error diagrams with mul-
tiple models on the same plot can be a useful way to
compare the models’ overall forecasting efficacy. In

FIG. 1. Error diagrams for Helmstetter, Kagan and Jackson
(2007) in blue and Shen, Jackson and Kagan (2007) in orange.
Model details are in Sections 3 and 7, respectively.

Figure 1 we learn that Shen, Jackson and Kagan (2007)
slightly outperforms Helmstetter, Kagan and Jackson
(2007) when the threshold for the alarm is high, but as
the threshold is lowered Helmstetter, Kagan and Jack-
son (2007) performs noticeably better. For the purpose
of comparing models, one may even consider normal-
izing the error diagram so that the false negative rates
are considered relative to one of the given models in
consideration as in Kagan (2009). This tends to alle-
viate a common problem with error diagrams as ap-
plied to earthquake forecasts, which is that most of
the relevant focus is typically very near the axes and
thus it can be difficult to inspect differences between
the models graphically. A more fundamental problem
with error diagrams, however, is that while they can be
useful overall summaries of goodness of fit, such di-
agrams unfortunately provide little information as to
where models are fitting poorly or how they may be
improved.

6. RESIDUAL METHODS

Residual analysis methods for spatial–temporal point
process models produce graphical displays which may
highlight where one model outperforms another or
where a particular model does not ideally agree with
the data. Some residual methods, such as thinning,
rescaling and superposition, involve transforming the
point process using a model for the conditional inten-
sity λ and then inspecting the uniformity of the re-
sult, thus reducing the difficult problem of evaluating
the agreement between a possibly complex spatial–
temporal point process model and data to the simpler
matter of assessing the homogeneity of the residual
point process. Often, departures from homogeneity in
the residual process can be inspected by eye, and many
standard tests are also available. Other residual meth-
ods, such as pixel residuals, Voronoi residuals and de-
viance residuals, result in graphical displays that can
quite directly indicate locations where a model appears
to depart from the observations or where one model
appears to outperform another in terms of agreement
with the data.

6.1 Thinned, Superposed and Super-Thinned
Residuals

Thinned residuals are based on the technique of ran-
dom thinning, which was first introduced by Lewis
and Shedler (1979) and Ogata (1981) for the pur-
pose of simulating spatial–temporal point processes
and extended for the purpose of model evaluation in
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Schoenberg (2003). The method involves keeping each
observed point (earthquake) independently with prob-
ability b/λ̂(si, ti), where b = inf(s,t)∈S{λ̂(s, t)} and λ̂

is the modeled conditional intensity. If the model is
correct, that is, if the estimate λ̂(s, t) = λ(s, t) almost
everywhere, then the residual process will be homoge-
neous Poisson with rate b (Schoenberg, 2003). Because
the thinning is random, each thinning is distinct, and
one may inspect several realizations of thinned resid-
uals and analyze the entire collection to get an overall
assessment of goodness of fit, as in Schoenberg (2003).

An antithetical approach was proposed by Bremaud
(1981), who suggested superposing a simulated point
process onto an observed point process realization so
as to yield a homogeneous Poisson process. As indi-
cated in Clements, Schoenberg and Veen (2012), tests
based on thinned or superposed residuals tend to have
low power when the model λ̂ for the conditional in-
tensity is volatile, which is typically the case with
earthquake forecasts since earthquakes tend to be clus-
tered in particular spatial–temporal regions. Thinning
a point process will lead to very few points remaining
if the infimum of λ̂ over the observed space is small
(Schoenberg, 2003), while in superposition, the simu-
lated points, which are by construction approximately
homogeneous, will form the vast majority of residual
points if the supremum of λ̂ is large.

A hybrid approach called super-thinning was intro-
duced in Clements, Schoenberg and Veen (2012). With
super-thinning, a tuning parameter k is chosen, and
one thins (deletes) the observed points in locations
of space–time where λ̂ > k, keeping each point inde-
pendently with probability k/λ̂(s, t), and superposes a
Poisson process with rate λ̂(s, t)/k where λ̂ < k. When
the tuning parameter k is chosen wisely, the method ap-
pears to be more powerful than thinning or superposing
in isolation.

6.2 Rescaled Residuals

An alternative method for residual analysis is rescal-
ing. The idea behind rescaled residuals dates back
to Meyer (1971), who investigated rescaling temporal
point processes according to their conditional intensi-
ties, moving each point ti to a new time

∫ ti
0 λ̂(t)dt , cre-

ating a transformed space in which the rescaled points
are homogeneous Poisson of unit rate. Heuristically,
the space is essentially compressed when λ̂ is small
and stretched when λ̂ is large, so that the points are
ultimately uniformly distributed in the resulting trans-
formed space, if the model for λ̂ is correct. This method
was used in Ogata (1988) to assess a temporal ETAS

model and extended in Merzbach and Nualart (1986),
Nair (1990), Schoenberg (1999) and Vere-Jones and
Schoenberg (2004) to the spatial and spatial–temporal
cases. Rescaling may result in a transformed space that
is difficult to inspect if λ̂ varies widely over the obser-
vation region, and in such cases standard tests of ho-
mogeneity such as Ripley’s K-function may be domi-
nated by boundary effects, as illustrated in Schoenberg
(2003).

6.3 Pixel Residuals

A different type of residual analysis which is more
closely analogous to standard residual methods in re-
gression or spatial statistics is to consider the (stan-
dardized) differences between the observed and ex-
pected numbers of points in each of various spatial
or spatial–temporal pixels or grids, producing what
might be called pixel residuals. These types of resid-
uals were described in great detail by Baddeley et al.
(2005) and Baddeley, Møller and Pakes (2008). More
precisely, the raw pixel residual on each pixel Ai is de-
fined as N(Ai)−∫

λ̂(s, t)dt ds, where N(Ai) is simply
the number of points (earthquakes) observed in pixel
Ai (Baddeley et al., 2005). Baddeley et al. (2005) also
proposed various standardizations including Pearson
residuals, which are scaled in relation to the standard

deviation of the raw residuals: ri = N(Ai)−∫
λ̂(s,t)dt ds√∫

λ̂(s,t)dt ds
.

A problem expressed in Bray et al. (2014) is that if
the pixels are too large, then the method is not power-
ful to detect local inconsistencies between the model
and data, and places in the interior of a pixel where the
model overestimates seismicity may cancel out with
places where the model underestimates seismicity. On
the other hand, if the pixels are small, then the majority
of the raw residuals are close to zero while those few
that correspond to pixels with an earthquake are close
to one. In these situations where the residuals have a
highly skewed distribution, the skew is only intensified
by the standardization to Pearson residuals. As a re-
sult, plots of both the raw and the Pearson residuals are
not informative and merely highlight the pixels where
earthquakes occur regardless of the fit of the model.
The raw or Pearson residuals may be smoothed, as in
Baddeley et al. (2005), but such smoothing typically
only reveals gross, large-scale inconsistencies between
the model and data.

If one is primarily interested in comparing com-
peting models, then instead one may plot, in each
pixel, the difference between log-likelihoods for the
two models, as in Clements, Schoenberg and Schor-
lemmer (2011). The resulting residuals may be called
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deviance residuals, in analogy with residuals from lo-
gistic regression and other generalized linear models.
Deviance residuals appear to be useful for comparing
models on grid cells and inspecting where one model
appears to fit the observed earthquakes better than the
other. It remains unclear how these residuals may be
used or extended to enable comparisons of more than
two competing models, other than by comparing two at
a time.

6.4 Voronoi Residuals

One method of addressing the problem of pixel size
specification is to use a data-driven, spatially adap-
tive partition such as the Voronoi tessellation, as sug-
gested in Bray et al. (2014). Given n observed earth-
quakes, one may obtain a collection of n Voronoi cells
A1, . . . ,An, where Ai is defined as the collection of
spatial–temporal locations closer to the particular point
(earthquake) i than to any of the other observed points
(Okabe et al., 2000). Thus, N(Ai) = 1 for each cell Ai .
One may then compute the corresponding standardized

residuals ri = 1−∫
λ̂(s,t)dt ds√∫
λ̂(s,t)dt ds

over the Voronoi cells Ai .

As with pixel residuals, for each Voronoi cell one may
choose to plot the raw residual, or the residual deviance
if one is interested in comparing competing models.
Voronoi residuals are shown in Bray et al. (2014) to
be generally less skewed than pixel residuals and are
approximately Gamma distributed under quite general
regularity conditions.

7. EXAMPLES

In the present section we apply some of the residual
methods discussed above to models and seismicity data
from the 5-year RELM prediction experiment that ran
from 2006 to 2011. The original experiment called for
modelers to estimate the number of earthquakes above
magnitude 4.95 that would occur in many pre-specified
spatial bins in California. During this time period only
23 earthquakes that fit these criteria were recorded,
a fairly small data set from which to assess a model.
In order to better demonstrate the methods available in
residual analysis, the models that we consider were re-
calibrated using their specified magnitude distributions
to forecast earthquakes of greater than magnitude 4.0,
of which there are 232 on record.

The first model under consideration is one that was
submitted to RELM by Helmstetter, Kagan and Jack-
son (2007) and is described in Section 3. The left panel
of Figure 2 shows the estimated number of earthquakes
in every pixel in the greater California region that were

part of the prediction experiment. Pixels shaded very
light gray have a forecast of near zero earthquakes,
while pixels shaded black forecast much greater seis-
micity. The tan circles are the epicenters of the 232
earthquakes in the catalog, many of which are concen-
trated just South of the Salton Sea, near the border be-
tween California and Mexico.

The extent to which the observed seismicity is in
agreement with the forecast can be visualized in the
raw pixel residual plot (center panel). The pixels are
those established by the RELM experiment. Pixels
where the model predicted more events than were ob-
served are shaded in red; pixels where there was un-
derprediction are shown in blue. The degree of color
saturation indicates the p-value of the observed resid-
ual in the context of the forecasted Poisson distribution.
Thus, while the Helmstetter, Kagan and Jackson (2007)
model greatly underpredicted the number of events in
the Salton Sea trough (dark blue), it also forecasted a
high level of seismicity in several isolated pixels that
experienced no earthquakes (dark red). The majority of
the pixels are shaded very light red, indicating regions
where the model forecast a very low rate of seismicity
and no earthquakes were recorded.

The Voronoi residual plot for the Helmstetter, Kagan
and Jackson (2007) model is shown in the right panel
of Figure 2. The spatial adaptivity of this partition is
evidenced by the small tiles in regions of high point
density and larger tiles in low density regions. The re-
gion of consistent underprediction in the Salton Sea
trough is easily identified. Unlike the raw pixel residual
plot, the Voronoi plot appears to distinguish between
areas where the high isolated rates can be considered
substantial overprediction (dark red) and areas where,
considered in the context of the larger tile, the overpre-
diction is less extreme (light red).

In Figure 3 we assess how well the Helmstetter,
Kagan and Jackson (2007) model performs relative
to another model in RELM using deviance residuals.
The Shen, Jackson and Kagan (2007) model is no-
table for utilizing geodetic strain-rate information from
past earthquakes as a proxy for the density (intensity)
of the process. μ(·) is then an interpolation of this
data catalog. The result is a forecast that is generally
much smoother than the Helmstetter, Kagan and Jack-
son (2007) forecast, as seen in the left panel of Fig-
ure 3. The center panel displays the deviance residuals
for the Helmstetter, Kagan and Jackson (2007) model
relative to the Shen, Jackson and Kagan (2007) model.
The color scale is mapped to a measure of the compar-
ative performance of the two models ranging from 1
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FIG. 2. (a) Estimated rates under the Helmstetter, Kagan and Jackson (2007) model, with epicentral locations of observed earthquakes
with M ≥ 4.0 in Southern California between January 1, 2006 and January 1, 2011 overlaid. (b) Raw pixel residuals for Helmstetter, Kagan
and Jackson (2007) with pixels colored according to their corresponding p-values. (c) Voronol residuals for Helmstetter, Kagan and Jackson
(2007) with pixels colored according to their corresponding p-values.

(dark blue) indicating better performance of the Helm-
stetter, Kagan and Jackson (2007) model to −1 (dark
red) indicating better performance of the Shen, Jack-
son and Kagan (2007) model. This deviance residual
plot reveals that the Helmstetter, Kagan and Jackson
(2007) model’s relative advantage is in broad areas off
of the main fault lines where the forecast was lower and
there were no recorded earthquakes. It appeared to fit
worse than the Shen, Jackson and Kagan (2007) model,

however, just West of the Salton Sea trough region of
high seismicity, in a swath off the coast, and in isolated
pixels in central California.

The Voronoi deviance plot (right panel) identifies
the same relative underperformance of the Helmstet-
ter, Kagan and Jackson (2007) model relative to the
Shen, Jackson and Kagan (2007) model in the central
California region and off the coast and is a bit more
informative in the areas of higher recorded seismicity.

FIG. 3. (a) Estimated rates under the Shen, Jackson and Kagan (2007) model, with epicentral locations of observed earthquakes with
M ≥ 4.0 in Southern California between January 1, 2006 and January 1, 2011 overlaid. (b) Pixel deviance plot with blue favoring model
A, Helmstetter, Kagan and Jackson (2007), versus model B, Shen, Jackson and Kagan (2007). Coloration is on a linear scale. (c) Voronoi
deviance plot with blue favoring model A, Helmstetter, Kagan and Jackson (2007), versus model B, Shen, Jackson and Kagan (2007).
Coloration is on a linear scale.
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In the Salton Sea trough region, just south of the bor-
der of California with Mexico, the Helmstetter, Kagan
and Jackson (2007) model appears to outperform the
Shen, Jackson and Kagan (2007) model in a vertical
swath on the Western side of the seismicity, while the
results on the Eastern side are more mixed. While these
regions appear nearly white in the pixel deviance resid-
ual plot, suggesting roughly equivalent performance of
the models, the aggregation of many of those pixels in
the Voronoi plot allows for a stronger comparison of
the two models.

The utility of residual methods can be seen by con-
trasting the residual plots with the error diagram of
these same two models (Figure 1 in Section 5). While
the error diagram and other functional summaries col-
lapse the model and the observations into a new mea-
sure (such as the false negative rate), residual methods
preserve the spatial referencing, which can help inform
subsequent model generation.

8. DISCUSSION

The paradigm established by RELM and CSEP is
a very promising direction for earthquake model de-
velopment. In addition to requiring the full transpar-
ent specification of earthquake forecasts before the be-
ginning of the experiment, the criteria on which these
models would be evaluated, namely, the L, N and R

tests, was also established. As the first RELM experi-
ment proceeded, it became apparent that these tests can
be useful summaries of the degree to which one model
appears to agree with observed seismicity, but that they
leave much to be desired. They are not well-suited to
the purpose of comparing the goodness of fit of com-
peting models or to suggesting where models may be
improved. It is worth noting that numerical tests such
as the L-test, can be viewed as examples of scoring
rules (see Gneiting and Raftery, 2007), and developing
research on scoring rules may result in numerical tests
of improved power and efficiency.

Future prediction experiments will allow for the im-
plementation of more useful assessment tools. Residu-
als methods, including super-thinned, pixel and
Voronoi residuals, seem ideal for comparison and to
see where a particular model appears to overpredict or
underpredict seismicity. Deviance residuals are useful
for comparing two competing models and seeing where
one appears to outperform another in terms of agree-
ment with the observed seismicity. These methods are
particularly useful in the CSEP paradigm, as insight
gained during one prediction experiment can inform
the building of models for subsequent experiments.

A note of caution should be made concerning the use
of these model assessment tools. It is common to esti-
mate the intensity function nonparametrically, for ex-
ample using a kernel smoother. If the selection of the
tuning parameter is done while simultaneously assess-
ing the fit of the resulting models, this will likely lead
to a model that is overfitted. A simple way to avoid
this danger is to have a clear separation between the
model fitting stage and the model assessment stage, as
occurs when models are developed for prospective ex-
periments.

Although the best fitting models for forecasting
earthquake occurrences involve clustering and are thus
highly non-Poissonian, it is unclear whether the Pois-
son assumption implicit in the evaluation of these mod-
els in CSEP or RELM has anything more than a neg-
ligible impact on the results. Since the quadrats used
in these forecast evaluations are rather large, the de-
pendence between the numbers of events occurring
in adjacent pixels may be slight after accounting for
inhomogeneity. Further, a departure from the Poisson
distribution for the number of events occurring within
a given cell would typically have similar impacts on
competing forecast models and thus have little notice-
able effect when it comes to evaluation of the relative
performance of competing models. Nonetheless, fur-
ther study is needed to clarify the importance of this
assumption in the CSEP model evaluation framework.
An alternative approach to the Poisson model would be
to require that modelers provide not only the expected
number of earthquakes within each bin, but also the
joint probability distribution of counts within the bins.

Although this paper has focused on assessment tools
for earthquake models, there is a wide range of point
process models to which these methods can be ap-
plied. Super-thinned residuals and the K-function have
been useful in assessing models of invasive species
(Balderama et al., 2012). Other recent examples, such
as the use of functional summaries in a study of infec-
tious disease, can be found in Gelfand et al. (2010).
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