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Abstract
There is very little knowledge on microplastic pollution in the Western Ghats (WG), a heritage site in southwest India. To 
address this, we have studied the spatiotemporal variations of sedimentary microplastics (MPs) from the River Sharavathi, a 
pristine river in the Western Ghats (WG), southern India. The rich biodiversity in the region makes it relevant to analyse the 
distribution of this emerging pollutant that is causing harm to the biota and the ecosystem. We analysed the sedimentological 
and carbon content (organic and inorganic) of these sediments and explored their relationship with MPs. Finally, risk assess-
ment indices such as the Pollution Load Index (PLI), the Polymer Hazard Index (PHI), and the Potential Ecological Risk Index 
(PERI) were calculated to detect the levels of plastic pollution. The concentration of MPs ranged from 2.5 to 57.5 pieces/
kg and 0 to 15 pieces/kg during the pre-monsoon and post-monsoon seasons, respectively. The dip in the MPs’ abundance 
during the post-monsoon season was due to the extremely high rainfall in the river basin during July–August 2019, which 
would have entrained the sedimentary MPs and transported them to the coast/Arabian Sea. Smaller MPs (0.3–1 mm) were 
more abundant than the larger MPs (1–5 mm), mainly due to the breakdown of sedimentary plastics by physical processes. 
Fragments, films, foams, and fibres were the main categories of MPs, and the main polymers were polyethylene, polyeth-
ylene terephthalate, and polypropylene. No significant relationship was observed between the sedimentological properties 
and microplastics, which may be due to the different physical properties of sediments and microplastics. The PLI, PHI, and 
PERI indices suggest different contamination levels in the river basin. Based on the PLI scores, all the samples belong to 
the hazardous level I suggesting minor risk category, and the risk of microplastic pollution falls under the high to hazardous 
risk category based on the PHI values. The PERI value ranged from 160 to 440 and 40 to 2240 during the pre-monsoon and 
post-monsoon seasons, respectively. The risk assessment in a region known for its rich biodiversity is crucial, as the data 
can be used by the district administration to mitigate plastic pollution.
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Introduction

Microplastics (MPs) are tiny (< 5 mm) particles of plastic 
debris (Thompson et al. 2004). The chemical properties 
of plastic materials help them persist in nature for a long 
time and disintegrate into MPs (Browne et al. 2007) due 
to biotic and abiotic processes (Ji et al. 2021). Micro- and 
nano-sized plastic materials are known to adsorb harmful 
chemical pollutants (Hahladakis et al. 2018) from water 
bodies due to their longer residence times (GESAMP 
2015). As a result, these small, polluted plastic materi-
als get easily ingested by all organisms belonging to the 
marine food chain (Rochman et al. 2013). Consumption of 
marine organisms can also lead to the transfer of MPs to 
the human body (Sharma and Chatterjee 2017), affecting 
their health. Besides the food chain, MPs can also reach 
the human body through other pathways, including atmos-
pheric transmission (Wang et al. 2021).

Rivers play a significant role in transporting plastic debris 
of different sizes into the marine system (Ockelford et al. 
2020). According to a global estimate of plastic pollution, 
riverine MPs that enter the marine environment exceed 2 
million tonne per year (Lebreton et al. 2017). According 
to Meijer et al. (2021), over a thousand rivers contribute 
about 0.8–2.7 million metric tonnes of plastic waste per year, 
or about 80% of global annual emissions. With the help of 
hydrodynamic modelling involving sediment transport, He 
et al. (2021) concluded that river sediments are likely to be 
a sink for MPs rather than act as a carrier into the oceans. 
Highly dense MPs can quickly sink through the water col-
umn and mix with the sediments (Waldschläger et al. 2022). 
whereas less dense MPs can get deposited after forming bio-
films on their surface, increasing their density (Crawford and 
Quinn 2017). Hydrodynamic conditions mainly influence 
the transport mechanisms of MPs in sediments in the river 
channel, along with the physical properties of the plastic 
materials and sediments (Yang et al. 2021). These factors 
affect the movement of microplastic particles and deter-
mine their retention period in the sediments. Some authors 
pointed out that the behaviour of small plastic materials can 
be similar to sediment particles with hydraulically identi-
cal physical properties (Harris 2020; Ockelford et al. 2020). 
Gerolin et al. (2020) reported the pervasive occurrence of 
MPs in the sediments of large Amazon rivers. They attrib-
uted it to the collective influence of anthropogenic activities 
and hydraulic conditions in the rivers. A greater abundance 
of MPs can affect the physical properties of sediments and 
soils, such as porosity (Adomat and Grischek 2021), per-
meability (Carson et al. 2011), and bulk density (de Souza 
Machado et al. 2018). Furthermore, the deposited MPs can 
re-enter the riverbed due to increased turbulent energy at the 
water–sediment boundary or bioturbation activity (Ockelford 

et al. 2020; Ji et al. 2021). Besides, high rainfall events in 
the riverine catchment may induce floods, which can play 
a significant role in flushing out the MPs from continental 
sediments into the marine environment (Hurley et al. 2018).

Microplastics research in India has skewed chiefly 
towards the coasts (Veerasingam et al. 2020; Amrutha et al. 
2021), and terrestrial water bodies have received less atten-
tion. However, a few studies on microplastic pollution in 
riverine sediments from Indian rivers exist (Sarkar et al. 
2019; Amrutha and Warrier 2020; Patel et al. 2020; Ram 
and Kumar 2020; Chauhan et al. 2021; Singh et al. 2021; 
and Tsering et al. 2021, Table 1). Besides, there is little 
knowledge on the behaviour of MPs with sedimentary and 
organic properties in these river systems. Addressing this 
issue is essential as river systems in India experience high 
rainfall during the southwest monsoon season, leading to 
floods in the river catchment. Excessive flooding can transfer 
many materials (including plastics of different sizes) into the 
Arabian Sea. The impact of microplastic pollution is wide-
spread and has threatened even heritage sites (Kutralam-
Muniasamy et al. 2021; Khaleel et al. 2022). For example, 
the water and sediment samples from the Hashilan Wetland 
(a national heritage site in northwestern Iran) contain many 
MPs (Abbasi 2021), mainly concentrated near roads, agri-
cultural farms, and tourist places. The beach sediments of 
Cartagena (a world heritage site in the Colombian Carib-
bean) were found to be heavily polluted with microplastics 
and showed higher levels of trace elemental concentrations 
(Acosta-Coley et al. 2019).

Therefore, this study aimed to quantify and characterise 
the spatiotemporal distribution of microplastics in the sedi-
ment samples of the River Sharavathi, a pristine waterway 
originating in the Western Ghats, one of the world’s heritage 
sites. The Western Ghats (WG) is one of the essential physi-
ographic features in southwest India. It is a 1600 km long 
linear mountain chain with dense forests and an aerial cov-
erage of more than 140,000 sq. km (Mudbhatkal and Amai 
2018). Due to its dense vegetation, the WG plays host to 
several exotic species of flora and fauna (Ghate et al. 2004; 
Chandran et al. 2010). The rivers originating in the high-
land regions of the Western Ghats are an essential source of 
fresh water for the population living on the Western Ghats’ 
windward side, which receives copious rainfall during the 
southwest monsoon season (June to September) every year. 
The WG is one of the 35 hotspots of biodiversity recognised 
by UNESCO due to its richness and finds itself on the World 
Heritage List (Ramachandra et al. 2018). According to the 
IUCN’s Red Data List, more than 300 globally threatened 
species are found in the WG, and they are classified as vul-
nerable, endangered, and critically endangered. Recent stud-
ies have shown that the ecosystem of the WG is undergoing 
a drastic change due to rampant anthropogenic activities 
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in the region (Bhat et al. 2014; Boominathan et al. 2014). 
The Sharavathi river basin is known for its rich biodiversity, 
encompassing various species of flora and fauna, including 
endemic and endangered species. Therefore, microplastic 
investigation in the sediments of this river is accompanied 
by risk assessment. This will help in understanding the threat 
they pose to organisms thriving in such pristine ecosystems. 
In addition, we have measured the sedimentary properties 
(sand, silt, clay, total organic carbon, and total inorganic 
carbon) and discussed their relationship with microplastics 
data.

Materials and methods

Study area

The River Sharavathi originates at Ambutheertha, in the 
Theerthahalli Taluk of Karnataka, India (Fig. 1). The river 
basin falls under two districts of Karnataka, namely Shimoga 
and Uttara (North) Kannada, and the river travels nearly 
128 km before meeting the Arabian Sea at Honnavar. This 
river basin covers an area of approximately 2784  km2. The 
river flows mainly through the forest area of the Western 
Ghats (Sahyadris) in the upstream region. The downstream 
part of the river is not affected much by anthropogenic activ-
ities compared to the other west-flowing rivers of Karnataka. 
However, places of importance, such as the Jog Falls and the 
Linganamakki Reservoir, are located on the river’s profile. 
Located in the Western Ghats, the river catchment receives 

copious rainfall between June and September (southwest 
monsoon); the annual mean precipitation in the basin ranges 
from 1200 to 5000 mm (Karthick and Ramachandra 2006). 
The river is recognised as a hot speck in the biodiversity 
hotspot, and the presence of many endangered ecosystems 
and life forms in the basin makes the river ecologically sig-
nificant (Ramachandra et al. 2012).

Sample collection and extraction of microplastics

Surface sediments (0–2 cm depth) were collected from the 
shorelines of the River Sharavathi and some of its tribu-
taries during the pre-monsoon (PRM; n = 14; April 2019) 
and post-monsoon (POM; n = 9; January 2020) seasons. 
The 14 sampling sites were selected during PRM in such 
a manner that the entire river catchment was covered. Dur-
ing POM, due to the effects of monsoon 2019, some of the 
sites were not accessible, so we could collect only nine 
samples. Replicate sediment samples (from an approximate 
distance of 2 m) from each of the 14 and 9 stations were 
collected using a stainless steel spoon and carefully homog-
enised and packed in an aluminium container. The average 
weight of the sediments accumulated was around 1.5 kg, 
covering an area of 15–20  cm2. The samples were safely 
transported to the laboratory. Microplastics were extracted 
from the sediments using a modified version of the National 
Oceanic and Atmospheric Administration (NOAA) protocol 
(Masura et al. 2015). Around 400 g of the wet sediment 
sample was transferred into a 1-L beaker and oven-dried 
at 90 °C overnight (Masura et al. 2015; Rodrigues et al. 

Fig. 1  River Sharavathi basin 
with the sampling locations
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2018). The dry weight of the sediments was noted and later 
treated with 300 mL of sodium hexametaphosphate solu-
tion (5.5 g/L; Amrutha and Warrier 2020). The beakers 
were kept on the rotary shaker for an hour at 250 rpm to 
disaggregate the samples. The samples were wet-sieved by 
passing them through sieves (Haver standard test sieve) of 
5 mm and 0.3 mm mesh sizes using double-distilled water 
(Masura et al. 2015). The plastic materials observed in the 
5-mm sieve were kept separately. The particles in the 0.3-
mm sieve were transferred to a 1-L beaker, and 300 mL of 
zinc chloride solution (933.3 g/L) was added for primary 
density separation (Rodrigues et al., 2018). Later, the float-
ing particles were sieved through a 0.3-mm mesh and then 
transferred to a 500-mL beaker and oven-dried at 75 °C for 
24 h. Organic matter in the sediments was digested using 
the wet peroxide oxidation (WPO) method (Masura et al. 
2015). In this technique, 20 mL of a 0.05 M Fe(II) solution 
was added to the sample along with 20 mL of hydrogen per-
oxide  (H2O2; 30%). The process was continued until all the 
organic matter was digested. The remaining particles were 
again treated with 300 mL of zinc chloride solution for the 
secondary density separation and kept overnight. The float-
ing particles were passed through 1 mm and 0.3 mm sieves 
the next day.

Visual identification of microplastics and polymer 
composition

The particles in the two sieves were transferred into different 
watch glasses, dried, and visually identified with the help of a 
stereo zoom microscope (Nikon) at a magnification of 40 × . 
During visual identification, we followed the visual criteria 
methods mentioned in Hidalgo-Ruz et al. (2012) to ensure 
we did not pick up non-plastic materials. The particles with 
no distinguishing features of plastic were not treated as plas-
tic. Moreover, the suspected particles with unclear features 
were tested for chemical composition along with frequently 
occurring MPs. The recovered MPs were transferred into pre-
weighed glass vials and then weighed. The MPs were mor-
phologically classified into fibres, fragments, films, foams, and 
pellets. To determine the chemical composition of the poly-
mers, frequently occurring and suspected MPs (PRM = 24, 
POM = 8) were analysed with the help of a Fourier transform 
infrared (FTIR) spectrometer affixed with an attenuated total 
reflectance (ATR) unit (Sarkar et al. 2019). Around 65% of 
the MPs used for ATR-FTIR analysis were in the 1–5 mm size 
range, and 35% were 0.3–1 mm. The frequently occurring MPs 
were classified into different groups based on their similarities, 
and proportionate samples from each group were subjected to 
FTIR analysis. The identification of the polymer composition 
of MPs was made with the help of Shimadzu IRSpirit FTIR 
with a QATR-S Single Reflection ATR Accessory. Percent 
transmission was recorded at a range of 3500–500  cm−1 with 

a resolution of 4  cm−1. Around twenty-five scans were per-
formed for each sample. Chloroform was used to clean the 
ATR crystal each time before scanning. The chemical com-
position of polymer particles was identified by comparing 
the data with reference spectra (Xu et al. 2019). Open Specy 
(Cowger et al. 2020), an open-source spectra identification 
tool, was used to recognise the IR spectra (Pearson’s correla-
tion coefficient > 0.8).

Particle size analysis

Particle size analysis was performed using pipette analysis 
(Carver 1971). Each sediment sample (5 g) was treated with 
20 mL of 30%  H2O2, followed by 15 mL of glacial acetic 
acid (10%) to remove the organic and carbonate contents, 
respectively. After adding 15 mL of sodium hexametaphos-
phate (Calgon) solution, the sample was wet-sieved to sepa-
rate the sand fraction (> 63 microns) using an ASTM mesh 
number 230. The silt and clay fraction (< 63 microns) was 
transferred into a 1000-mL measuring cylinder. The silt and 
clay fractions were pipetted from depths of 10 and 5 cm, 
respectively, at different time intervals according to Stokes’ 
law. The three fractions were oven-dried, and their percent-
ages were calculated using their dry weights.

Estimation of total organic and inorganic carbon 
(TOC and TIC)

Total organic carbon (TOC) and total inorganic carbon 
(TIC) were calculated by the loss-on-ignition (LOI) method 
(Dean 1974). First, the samples were taken in pre-weighed 
ceramic crucibles and oven-dried for 24 h at 105 °C. Next, 
the samples were allowed to cool in a desiccator to room 
temperature. Later, the samples were heated in a muffle fur-
nace to 550 °C and 950 °C for about four and 2 h, respec-
tively. Following each step, the dry weights  (DW105,  DW550, 
and  DW950) of the sediments were noted. The percentage of 
loss-on-ignition of sediment samples (initial weight IW) at 
550 °C  (LOI550) and 950 °C  (LOI950) and TOC and TIC were 
obtained using the equations given by Dean (1974, 1999):

Data analysis

Statistical analysis of the entire dataset was carried out on 
SPSS 23.0 software (SPSS Inc., Chicago, IL, USA). The 
difference in various parameters between the two seasons 

LOI550 = 100 (DW105 − DW550)∕IW

LOI950 = 100 (DW550 − DW950)∕IW

TOC = LOI550∕2; TIC = 0.273LOI950

32305Environmental Science and Pollution Research (2023) 30:32301–32319
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was analysed using an independent t test. In addition, 
Pearson’s correlation coefficient analysis was performed 
in Microsoft Excel 2016 to check for any correlation 
between the properties of MPs and organic and inorganic 
carbon concentrations. A significance value of p < 0.05 
was considered statistically significant. The remaining 
figures were drawn in multiple items of graphical soft-
ware (Sigmaplot version 12.0, Microsoft Excel 2016, and 
ArcMap version 10.3).

Risk assessment analysis

Pollution Load Index (PLI), Polymer Hazard Index 
(PHI), and Potential Ecological Risk Index (PERI) are a 
few indices that can be used to study the degree of micro-
plastic contamination in the ecosystem and to evaluate 
their environmental harm to flora and fauna. According 
to Tomlinson et al. (1980), the PLI is used to assess the 
degree of environmental pollution. This study used PLI 
to gain information on the intensity of microplastic pol-
lution in the sediments of the River Sharavathi. The PLI 
value at each sampling station is related to the microplas-
tic pieces’ concentration factors  (CFi). The equation used 
to derive PLI scores was:

CFi is the ratio of the MP concentration at each sampling 
station (Ci) to the background values of the MP concentration 
(Co). The lowest value obtained from the sediments collected 
during the pre-monsoon from a sampling site closer to the 
source region is considered the background value.

The index PHI is the product of the percentage of specific 
polymer types obtained at each sampling site (Pn) and the haz-
ard scores of polymer types (Sn; Lithner et al. 2011; Ranjani 
et al. 2021). The total risk of microplastic pollution in the study 
area can be categorised into different hazard levels depending 
on the PHI scores. The formula PHI = ΣPn × Sn was used to cal-
culate the PHI of microplastics present in the sediments of the 
River Sharavathi. Another important indicator of ecological risk 
is the Potential Ecological Risk Index (PERI), which is used to 
evaluate the environmental impact of various pollutants in dif-
ferent environments (Peng et al. 2018). The following equations 
were used to derive the PERI scores:

CFi = Ci∕Co

PLI =
√

CFi

Ci
f
=

Ci

Ci
n

Ti
r
=

n
∑

n=1

Pn

Ci
∗ Sn

Ci is the concentration of contaminant ‘i’ (MP), and Ci
n
 

is the abundance of non-contaminated samples (= the least 
abundance of MPs found in the sediments). The coefficient 
of toxicity ( Ti

r
 ) is indicative of the level of toxicity and bio-

logical sensitivity. The coefficient is the sum of the percent-
ages of specific polymers in all the samples (Pn/Ci) multi-
plied by the hazard values of plastic polymers (Sn) (Ranjani 
et al. 2021; Peng et al. 2018).

Quality analysis and quality control

Standard protocols as outlined in the department labora-
tory were followed for this work. We adopted the neces-
sary precautions to avoid contamination of the samples. No 
plastic accessories or items of equipment were used during 
sampling or processing. Only glass and steel apparatus were 
used, which helped control the quality. The laboratory where 
the samples were analysed was very clean, and the supply 
of outside air was minimal. Most of the processing has been 
done within the fume hood and laminar flow chamber. The 
workbench inside the laboratory was thoroughly cleaned 
with ethanol on all days. During the analysis, nitrile gloves 
and cotton aprons were worn. Milli-Q water was used to 
prepare solutions, and double-distilled water was used to 
clean all the lab apparatus and sieves. The sieves were pre-
examined to ensure that no particles were attached to them. 
All the solutions were pre-filtered before analysis. Alumin-
ium foil and watch glasses were used to cover the apparatus’s 
items to avoid contamination due to airborne particles. Two 
blank samples (double-distilled water) were also checked 
for the presence of microplastics. We could not collect blank 
samples in the field.

Results and discussion

Abundance, size, categories, and colour data 
of microplastics in the sediments of River Sharavathi

The two procedural blanks (double-distilled water) showed 
the presence of four fibres in the size range of 0.3–1 mm. 
These have been corrected from the raw data. As the pro-
cessing was carried out under the fume hood, the possibili-
ties of airborne contamination were negligible. During the 
pre-monsoon, the station SS13 (Hosadmane) recorded the 
highest abundance of MPs (57.5 pieces/kg), and the station 
SS1 (Achakanya) showed a minor abundance (2.5 pieces/
kg; Fig. 2a). Station SS1 is close to the source region of 
the river, and SS13 lies near the downstream section. The 
mean (± standard deviation) numerical abundance of MPs 
obtained from the catchment is 14.82 (± 13.10) pieces/kg. 

Ei
r
= Ti

r
× Ci

f
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The higher quantity at SS13 can be attributed to the low 
flow rate (obstruction due to a small mid-channel bar) and 
increased residence time of MPs (Wang et al. 2021). Slower 
flow velocities allow the MPs to settle out of suspension and 
reach the sediment (Watkins et al. 2019). The presence of 
channel bars makes it a favourable site for the entrapment of 
MPs (Skalska et al. 2020), which explains the lesser quantity 
(10.0 pieces/kg) of MPs found at the following station, SS14, 
a location closer to the river mouth. The least abundance at 
SS1, the sampling site near the source, with a lower popula-
tion (Population Census 2011), indicates a lesser intensity 
of anthropogenic activities in the region, which influences 
the distribution of MPs. The other locations with more 
MPs are stations SS3 (Tottadikoppe) and SS6 (Linganam-
akki). Wastewater and wastes entering the river catchment 
from the Haridravathi region due to agricultural activities 
(Rajinikanth and Ramachandra 2001) can be a reason for 
the relatively higher MPs at SS3. The microplastic pollu-
tion at station SS6 may be due to the ferry near the Linga-
namakki Reservoir. Furthermore, the sampling point SS6 
is located upstream of the reservoir, where the abundance 

of MPs is generally higher than that in its downstream por-
tion (Watkins et al. 2019). The locations SS5 (Tonikale) and 
SS7 (Valagere) have a higher population density (Population 
Census 2011) when compared to the other locations with 
less microplastic pollution; therefore, comparatively higher 
MPs were observed in these two stations (Liu et al. 2021). 
The location SS10 (near Jog Falls) is a tourist destination 
that attracts many visitors annually (Market Research Divi-
sion, Department of Tourism, Government of India 2003). 
Tourists use the water of the Jog Falls for different activities 
like bathing and washing clothes, which can be an essential 
reason for the increased number of MPs in this region.

The post-monsoon data shows that the station SS11 (Ger-
soppa Ferry; 15 pieces/kg) showed a greater abundance of 
MPs (Fig. 2b). Apart from SS11, a relatively higher con-
centration of MPs was obtained from Linganamakki (SS6), 
Besinekere (SS14), and the estuary region (SSEST; Fig. 2b). 
The mean (± standard deviation) microplastic abundance is 
6.39 (± 5.17) pieces/kg. No MPs were obtained in the sedi-
ments from stations SS2 (Sidyapura) and SS10 (Jog Falls; 
Fig. 2b). Statistically, there was no significant difference in 

Fig. 2  Microplastics data for sediment samples from the River Shara-
vathi and its tributaries collected during April 2019 (pre-monsoon) 
and January 2020 (post-monsoon) show the total abundance (a 

and b), percent abundance of the two size fractions (0.3–1 mm and 
1–5 mm) (c and d), and percent abundance of different categories of 
microplastics (e and f), n.d. = not detected
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the abundance of MPs between the two seasons. But, out 
of the eight samples collected during the two seasons, two 
sampling sites showed a slight increase in MP concentration 
during post-monsoon, while others showed a decrease in 
the microplastic abundance during post-monsoon (except 
Besinekere-SS14, where the values were the same for both 
the seasons). In general, the abundance of MPs was slightly 
lower during the post-monsoon compared to the pre-mon-
soon. One of the reasons for this is the heavy rainfall dur-
ing July and August 2019, which might have entrained the 
MPs present in the sediments and flushed them to the coast 
of the Arabian Sea. With the decrease in water flow veloc-
ity during pre-monsoon, plastic particles may settle along 
with sediment particles (He et al. 2020). Apart from the 
higher number of MPs, the station SS11 showed a slight 
increase in their concentration compared to pre-monsoon. 
This results from factors like increased anthropogenic activi-
ties during the POM at the site. We did not observe a pro-
gressive increase or decrease of MPs from the source to 
the sink regions of the river catchment. The distribution of 
different-sized plastic materials in an area results from the 
combined effect of natural (hydrodynamic conditions, mor-
phology, precipitation, sediment properties, and vegetation) 
and anthropogenic processes active in a river basin (Liu et al. 
2021; Gerolin et al. 2020). The influence of tributaries in the 
transport of MPs into the main river can be another reason 
for the absence of a clear pattern (Kiss et al. 2021).

The percentage distribution of the two size ranges var-
ied for each sampling site. The size distribution shows that 
0.3–1 mm (57.83%) sized particles were higher than the 
1–5 mm (42.17%) size range (Fig. 2c), which resonates with 
previous studies (Isobe et al. 2017; Amrutha and Warrier 

2020). This is also the case in post-monsoon samples, where 
the smaller fraction (69.57%) is more abundant than the 
larger (30.43%; Fig. 2d). The MPs in the size range of 1 to 
5 mm decreased significantly following the monsoon season 
of 2019. The smaller-sized particles pose a great danger to 
aquatic life because of their larger surface area, which helps 
them absorb harmful pollutants (Devriese et al. 2017). The 
difference in the minimum mesh size can result in a consid-
erable difference in the estimation of microplastic concen-
tration. In this study, we used a mesh size of 0.3 mm (Mas-
ura et al. 2015); a higher number of MPs might have been 
obtained if we had used sieves of less than 0.3 mm. Frag-
mentation of plastic materials deposited in the sediments 
by various physical actions, such as abrasion with coarser 
clastic materials, is essential for forming smaller MPs. The 
fragmentation rate mainly depends on several factors, such 
as the polymer type, residence time, and sediment grain size 
and shape (Chamas et al. 2020; van Wijnen et al. 2019).

Categorization of the MPs showed that the fragments 
were the most abundant type (54.22%), followed by fibres 
(30.12%) and films (13.25%; Figs. 2e and 3). In the post-
monsoon season, fragments (52.17%) predominated the sam-
ples, followed by films (34.78%) and fibres (8.70%; Fig. 2f). 
The turbulent conditions caused by the monsoon can result 
in the formation of smaller MPs, especially fibres suspended 
in the water column from the sediments and carried away 
(Bagaev et al. 2017). Foams were the least abundant cat-
egory (PRM = 2.41%; POM = 4.35%), and pellets were not 
detected in any of the samples in both seasons (Fig. 2e and 
f). The fragments obtained from the samples are mainly 
derived from the degradation of plastic products like pack-
ing bags, including sacks, carry bags, and food containers 

Fig. 3  Microphotographs of the fragments found in this study. Scale bar is in millimetre
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(Zhang et al. 2015; Amrutha and Warrier 2020). The usage 
of sacks in constructing bunds across the river and in fencing 
was observed during the fieldwork. The fibres (Supplemen-
tary Fig. S1) are mainly attributed to synthetic textiles and 
garments; washing them will release many fibres (Browne 
et al. 2011) into the water bodies. In addition, ropes and fish-
ing nets can also produce fibres (Andrady 2011). Films and 
foams are mainly broken pieces of polythene bags and pack-
aging materials, formed as by-products of the fragmentation 
of these materials. Pellets mostly reach the rivers through 
cosmetics, personal care products like facial cleansers, and 
automobile industries (Mani et al. 2015), which were absent 
in the sediments. This implies the absence of these industries 
near the River Sharavathi and a smaller population that uses 
these commodities. A large number of secondary MPs show 
that mismanaged plastic waste is the main cause of pollution. 
This brings attention to the need for regulations and better 
management of plastic debris.

In the colour characterization, transparent (24.53%) and 
white (23.58%) MPs were the most abundant, followed by 
green (15.09%), brown (11.32%), and other coloured ones 
(< 10%; Supplementary Fig. S2). The primary sources of 
white and transparent MPs are mainly degraded carry bags 
made of plastic and other packing materials (Amrutha and 
Warrier 2020). Another source of these colours is that the 
weathering of MPs in the environment can lead to the loss 
of their original colour and cause them to become white or 
transparent (Xu et al. 2018). The coloured MPs are mainly 
the degraded parts of domestic plastic products like synthetic 
fabrics, packaging, and covers (Zhang et al. 2015; Wang 
et al. 2017). According to literature, white-coloured MPs 
are easily mistaken as prey by aquatic organisms and get 
ingested by them; also, green-coloured MPs, when entered 
into deep sea, will be mistaken as prey by organisms because 
of their bioluminescence (Crawford and Quinn 2017). The 
quantity of black-coloured particles decreased significantly 
post-monsoon.

Besides being a sink for MPs, rivers can carry these mate-
rials to the coastal environment and seas/oceans (Horton 
et al. 2017; Amrutha and Warrier 2020). Many studies have 
reported plastic pollution along the Karnataka coast, south-
west India, including two beaches near the study area, Honna-
var (Sridhar et al. 2009) and Kasarkod (Maharana et al. 2020). 
The results obtained in this study indicate that even though 
MPs were found in the sediments of the River Sharavathi, 
their quantity was less. The majority of the river flows through 
forest regions, and this is the main reason for the low level of 
microplastic pollution as plastic concentration decreases away 
from urban areas (Wang et al. 2017). According to Sridhar 
et al. (2009), most of the plastic debris accumulated in Hon-
navar is of local origin. In general, data on MPs from the river 
system in India is sparse. Only a few studies have reported the 
presence of microplastics in the riverine sediments (Table 1). 

Even though the sampling method, pre-treatment, and analysis 
vary among these studies, we have compared our data with 
other works using the same units of measurement adopted 
in this study. The numerical abundance obtained from the 
River Sharavathi during the pre-monsoon and post-monsoon 
seasons is 14.82 (± 13.10) pieces/kg and 6.39 (± 5.17) pieces/
kg, respectively. The abundance is less than that of the rivers 
Netravathi (Amrutha and Warrier 2020), Ganges (Sarkar et al. 
2019; Singh et al. 2021), Indus, and Brahmaputra (Tsering 
et al. 2021; Table 1). The difference in the concentration can 
be due to several reasons, including the sampling sites cho-
sen, the seasons in which the samples were collected, and the 
size of the mesh used during sieving for extracting the MPs, 
population distribution, hydrodynamic parameters in the riv-
ers, and improper disposal of plastic waste in the catchment.

Polymer composition of microplastics

The main polymers found in the sediment samples were 
polyethylene (PE; PRM = 80.72% and POM = 69.57%), 
polyethylene terephthalate (PET; PRM = 12.05% and 
POM = 13.04%), and polypropylene (PP; PRM = 1.20% 
and POM = 8.70%; Fig. 4). The polymer composition of 
a few microplastic particles was not identified (PRM = 5 
and POM = 2). Only a minor amount of PP was obtained 
from the samples. Maharana et al. (2020) reported that PE 
and PP are the dominant polymer types present along the 
western coast of India. Polyethylene is a widely used poly-
mer, mainly for packing purposes and covers. Hence, their 
presence is explainable. The presence of sack-derived fibres 
(found to be PE) derived from sacks used to construct bunds 
was observed in most samples. Polyethylene terephthalate is 
mainly derived from clothes, blankets, bottles, etc. (Coppock 
et al. 2017). The majority of the fibres obtained from sam-
ples are identified as PET. Generally, high-density polymers 
like PET sink and get deposited in sediments (Waldschläger 
et al. 2022). In contrast, polymers like PE and PP are less 
dense, due to which they float on the water’s surface or 
remain suspended in the upper portion of the water column 
(Yang et al. 2021). The presence of low-density polymers in 
the sediments can be due to the enhancement of their den-
sity by the accumulation or adsorption of pollutants or the 
growth of biofilms on microplastic surfaces (He et al. 2021).

The role of 2019 rainfall in the distribution 
of microplastics

In general, the abundance of MPs was slightly lower dur-
ing the post-monsoon compared to the pre-monsoon. One of 
the reasons for this is that the regions (Uttara Kannada and 
Shivamogga) experienced extremely high southwest mon-
soonal rainfall during July–August 2019 compared to the 
average rainfall data (Fig. 5; Supplementary Figs. S3 and S4; 
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Karnataka State Natural Disaster Monitoring Centre 2020). 
The cumulative rainfall record also substantiates this between 
2015 and 2019 for the River Sharavathi basin. In 2019, the 
region received 20.5% more rainfall compared to the mon-
soon season of 2018 (Fig. 5; Karnataka Power Corporation 
Limited). Heavy rain can affect the distribution of MPs in the 
aquatic system. The increase in rainfall intensity can increase 
the erosion effect of surface runoff on land and, therefore, 
deliver plastic materials from the ground to water bodies, 
including rivers. Episodes of heavy rainfall, storm surge, or 
flood events can increase the plastic concentration mobilised 
by rivers at varying rates (Gündoğdu et al. 2018). Therefore, 
the intensity of the rainfall obtained in an area is an essential 
factor affecting the fate of MPs in the water and sediments 
in a river catchment. High flow velocity during the monsoon 
would have increased the entrainment capacity of the River 
Sharavathi, which mobilised the deposits (including MPs) 
on the riverbed. Remobilization results in more MPs being 
released from the sediments into the water column or surface 
water (Ockelford et al. 2020; Warrier et al. 2022). Hence, 

Fig. 4  a A dough plot showing the abundance of major polymers found in this study. b to d FTIR-ATR spectral curves of selected microplastics 
from the River Sharavathi

Fig. 5  A bar diagram comparing the cumulative rainfall data received 
in the River Sharavathi basin between 2015 and 2019 (data obtained 
from Karnataka Power Corporation Limited; http:// karna takap ower. 
com) and the abundance of microplastics obtained in the study during 
April 2019 (pre-monsoon) and January 2020 (post-monsoon). Com-
pared to 2018, the basin got more than 20.5% more rain in 2019
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along with the microplastic input from terrestrial sources 
through surface runoff, the entrained MPs generated from the 
vertical exchange of sediments will be flushed out from the 
river to the sea or ocean due to excess rainfall. The increased 
flow rate and increased volume of water in the monsoon might 
have transported all these MPs from the river catchment to the 
Arabian Sea (Gündoğdu et al. 2018; Veerasingam et al. 2016). 
The residence times for MPs will be shorter due to the high 
energy conditions, making these materials flow towards the 
coast or sea (Hitchcock 2020). A recent study along the River 
Ganges stated that a higher amount of microplastic discharge 
to the Bay of Bengal occurred during the post-monsoon sea-
son (Napper et al. 2021).

Relationship between sediment textural properties 
and characteristics of microplastics

Studying the particle size distribution and its relationship 
with MPs may help understand the influence of sediment 
processes on the abundance of MPs in the sedimentary 
environment. Besides microplastics, other organic and 
inorganic pollutants are known to vary with respect to sedi-
ment grain size (Sun et al. 2021). Particle size, TOC, and 
TIC data obtained for all the stations are shown in Sup-
plementary Table S1. The dominant particle size found in 
the River Sharavathi sediments during the pre-monsoon 
season was sand (40.72% ± 24.36%), followed by clay 
(36.55% ± 19.31%), and silt (22.73% ± 10.59%). During 
the post-monsoon season, the sediment particle size was 
predominated by clay (42.26% ± 19.65%), whereas sand 
(29.57% ± 10.43%) and silt (28.17% ± 13.35%) showed 
near-similar distributions. The average TOC and TIC con-
tent during the pre-monsoon season were 0.64% ± 0.5% 

and 0.09% ± 0.04%, respectively. During the post-mon-
soon, the average values for the two variables decreased 
(TOC = 0.40% ± 0.18%, TIC = 0.07% ± 0.03%; Supplemen-
tary Table S1). The difference in the dataset between the two 
seasons is mainly attributed to the strong monsoonal rainfall 
in the river basin during July–August 2019 (Fig. 5 and Sup-
plementary Figures S3 and S4), leading to an increase in 
the hydrodynamic conditions of the River Sharavathi and 
making it more turbulent.

Tables 2 and 3 show the relationship between microplas-
tics’ characteristics and the particle size data of the River 
Sharavathi during the pre-monsoon (n = 14) and post-mon-
soon (n = 9). The abundance of MPs and sand content are neg-
atively correlated (r =  − 0.26, p = 0.37, n = 14; Table 2) during 
the pre-monsoon season. The concentration of MPs exhibited 
an insignificant positive relationship with both silt (r = 0.40, 
p = 0.16), and clay fractions (r = 0.11, p = 0.71; Table 2). The 
abundance of microplastics showed an insignificant positive 
correlation with TOC during pre-monsoon (r = 0.20, p = 0.50; 
Table 2) and post-monsoon (r = 0.01, p = 0.98; Table 2). 
Microplastic abundance showed a positive (r = 0.36, p = 0.20) 
and negative (r =  − 0.03, p = 0.95) correlation with TIC before 
and after the monsoon, respectively (Tables 2 and 3). Previ-
ous studies have reported that the abundance of microplas-
tics is negatively and positively correlated with sand and silt 
fractions, respectively (Goswami et al. 2021; Liu et al. 2021; 
Corcoran et al. 2020). A few studies have also documented 
a greater abundance of MPs in fine-grained sediments (Har-
ris 2020). Interestingly, the relationship between MP abun-
dance and particle sizes (sand, silt, and clay) weakens sub-
stantially during the post-monsoon season. A statistically 
weak correlation is seen between the MP concentration and 
sand (r = 0.01, p = 0.98, n = 9) (Table 3), and an insignificant 

Table 2  Correlation coefficient matrix for microplastics, sedimentology, organic, inorganic carbon, and risk assessment indices for sediments of 
River Sharavathi (pre-monsoon, n = 14)

MP 

abundance

0.3 

to 1 

mm

1 to 

5 

mm Foam Film Fibre Fragment Sand Silt Clay TOC TIC PLI PHI PERI
1

0

-1

MP 

abundance 1.00

0.3 to 1 

mm 0.34 1.00

1 to 5 mm -0.34 -1.00 1.00

Foam -0.15 0.07 -0.07 1.00

Film -0.21 0.38 -0.38 -0.28 1.00

Fibre -0.31 -0.39 0.39 -0.13 -0.18 1.00

Fragment 0.47 0.08 -0.08 0.05 -0.44 -0.77 1.00

Sand -0.26 -0.31 0.31 0.42 -0.27 -0.16 0.22 1.00

Silt 0.40 0.13 -0.13 -0.55 -0.08 -0.04 0.23 -0.64 1.00

Clay 0.11 0.32 -0.32 -0.23 0.38 0.22 -0.40 -0.91 0.27 1.00

TOC 0.20 0.54 -0.54 -0.17 0.47 -0.30 0.00 -0.55 0.40 0.48 1.00

TIC 0.36 0.57 -0.57 -0.23 0.47 0.04 -0.29 -0.65 0.30 0.66 0.58 1.00

PLI 0.95 0.44 -0.44 -0.12 -0.19 -0.39 0.51 -0.24 0.34 0.12 0.12 0.32 1.00

PHI 0.28 0.60 -0.60 0.04 0.23 -0.87 0.63 0.13 0.11 -0.22 0.36 0.21 0.38 1.00

PERI 0.28 0.60 -0.60 0.04 0.23 -0.87 0.63 0.13 0.11 -0.22 0.36 0.21 0.38 1.00 1.00
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negative correlation with silt (r =  − 0.20, p = 0.61) and clay 
fractions (r =  − 0.13, p = 0.74; Table 3). The weakening of 
the relationship is possibly due to the re-entrainment of sedi-
mentary MPs due to extremely high rainfall in the region dur-
ing July–August 2019 (Supplementary Figures S1–S3). Once 
the particles are re-entrained, they become buoyant and float 
until the river enters the Arabian Sea. They may finally sink 
and deposit with the marine sediments or be ingested by the 
marine organisms.

In summary, we observed an indifferent relationship 
between sediment particle size data and the abundance 
of MPs. The absence of a significant relationship can 
be attributed to various reasons. First, the difference in 
the physical processes acting on MPs and their transport 
mode can affect their behaviour in the sediments (Harris 
2020). According to Peng et al. (2017), the complex-
ity of hydrological conditions can be the reason for the 
lack of a relationship between particle size data and MP 
distribution. The physical properties of microplastics, 
including their size and density, can influence the rela-
tionship between the variables (Harris 2020). In addi-
tion, correlations between these variables would exist 
when MPs are large and dense enough to be transported 
by bedload and are available to be hydraulically sorted 
along with sediment grains (Harris 2020). Low-density 
microplastics with a larger surface area will only set-
tle in the sediments due to specific processes, includ-
ing ingestion, accumulation of pollutants, or biofouling 
(Falahudin et al. 2020). The transport of such particles is 
influenced by the mechanisms mentioned earlier rather 
than sedimentation processes. Here, microplastic parti-
cles and sediments are transported to the exact location 
by different processes, and therefore, it is not expected 
to find a relationship between them.

Risk assessment of microplastics in sediments 
of River Sharavathi

The ubiquitous distribution of microplastics is a severe 
ecological problem, and it is associated with various harm-
ful effects. Therefore, it is crucial to assess the risk posed 
by these hazardous materials, which will give a clear 
picture of the dangers they pose to the biota and their 
ecosystems located in heritage sites (Zhang et al. 2020; 
Adam et al. 2019). This will also help policymakers take 
the necessary steps to regulate plastic waste (Mitrano and 
Wohlleben 2020). In the present study, the PLI value of 
sediments ranges from 1 to 4.80 during PRM and from 
0 to 2.45 during POM. The PLI scores for all the sam-
ples lie below 5, indicating that these samples belong to 
hazard level I (minor risk category), comparable to the 
average PLI scores reported for the Indian coast (5.58; 
Ranjani et al. 2021). The PLI is dependent on microplas-
tic abundance and independent of chemical composition 
(Pan et al. 2020). This is evidenced by a highly positive 
correlation between PLI and MP abundance during both 
seasons (PRM: r = 0.98, p < 0.0001, n = 14; POM: r = 0.96, 
p < 0.0001, n = 9; Table 2). An increase in the PLI values 
(which is reflective of a higher MP abundance) points to 
significant anthropogenic activities in the region. Even 
though most of our study area lay in the densely forested 
Western Ghats, the region has witnessed a rise in human 
population and associated construction activities in the 
past decade (Ramachandra et al. 2012). According to Ran-
jani et al. (2021), sediments along the western coast of 
India are moderately polluted (hazard level II), derived 
from the PLI scores for selected regions (Maharashtra: 
15.5; Karnataka:11.4; and Kerala (Vembanad Lake): 
10.45). Furthermore, PLI scores of sediments from the 

Table 3  Correlation coefficient matrix for microplastics, sedimentology, organic, inorganic carbon, and risk assessment indices for sediments of 
River Sharavathi (post-monsoon, n = 9)

MP 

abundance

0.3-1 

mm

1-5

mm Foam Film Fibre Fragment Sand Silt Clay TOC TIC PLI PHI PERI

1

0

-1

MP 

abundance 1.00

0.3-1 mm 0.39 1.00

1-5 mm 0.63 -0.11 1.00

Foam 0.26 0.40 -0.30 1.00

Film 0.04 0.39 0.12 -0.07 1.00

Fibre -0.18 0.38 -0.22 -0.15 -0.33 1.00

Fragment 0.82 0.08 0.62 0.20 -0.38 -0.19 1.00

Sand 0.01 -0.56 0.06 -0.04 -0.12 -0.35 -0.08 1.00

Silt -0.20 -0.24 -0.54 0.05 -0.15 -0.36 -0.11 0.36 1.00

Clay 0.13 0.46 0.33 -0.01 0.17 0.43 0.12 -0.77 -0.87 1.00

TOC 0.10 0.70 -0.50 0.22 -0.12 0.55 0.02 -0.45 0.16 0.13 1.00

TIC -0.03 0.36 -0.43 0.05 -0.05 0.18 0.00 -0.03 0.65 -0.42 0.64 1.00

PLI 0.93 0.60 0.53 0.35 0.11 -0.04 0.76 -0.14 -0.29 0.27 0.30 0.12 1.00

PHI 0.89 0.26 0.62 0.31 -0.03 -0.25 0.82 0.16 -0.22 0.07 0.05 0.00 0.91 1.00

PERI 0.94 0.19 0.61 0.25 -0.15 -0.23 0.88 0.20 -0.12 -0.02 0.06 -0.01 0.88 0.96 1.00
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eastern coast of India were reported to be less than 10 
(hazard level I). Interestingly, the values of PLI obtained 
in the present study are lower than those documented from 
coastal Karnataka (Ranjani et al. 2021). The lower values 
may be attributed to the lower population density along the 
river's stretch than along the coastal stretch. The coastal 
regions are a hub for various anthropogenic activities 
(tourism, urbanisation, etc.), and, hence it is natural to 
obtain a higher PLI value.

Based on the PHI values, Ranjani et al. (2021) found 
that the sediments in the coastal regions showed a serious 
microplastic pollution trend. The overall risk of microplas-
tic pollution in India ranges from hazard level IV to V. 
The coastal areas of Karnataka have PHI values ranging 
from 100 to 1000, falling into hazard level IV. The present 
study’s PHI values vary between 400 and 1100 (pre-mon-
soon) and 0 to 1100 (post-monsoon; Fig. 6a and b). The 
risk of microplastic pollution can be classified as hazard 

Fig. 6  Polymer hazard 
index (PHI) along the River 
Sharavathi during a April 2019 
(pre-monsoon), and b January 
2020 (post-monsoon)
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level III to V (high to hazardous risk category). The higher 
PHI value is mainly due to an increased abundance of 
polyethylene; whose hazard score is more significant (11; 
Xu et al. 2018). Even in the absence of polymers such as 
polyvinyl chloride, polyamide, and polystyrene with high 
hazard scores, the risk factor is higher in the study area.

The PERI scores (300 to 600) for sediments (continental 
and marine) along the Indian coast show the potential for 
high ecological risk, with an average PERI score of 303.2 
for Karnataka (Ranjani et al. 2021). The present study’s 

PERI value ranges from 160 to 440 and 40 to 2240 during 
the PRM and POM (Fig. 7). In summary, the results indi-
cate the significance of assessing chemical toxicity along 
with the microplastic concentration data. Risk assessment 
helps understand the extent of microplastic pollution in the 
region and its potential harm to human health (Xu et al. 
2018). Even though the MP abundance is low, microplas-
tic pollution in the study area poses a significant threat 
to the ecosystem, as shown by the risk factors (PHI and 
PERI). Besides, the risk contributed by 0.3–1-mm-sized 

Fig. 7  Potential ecological risk 
index (PERI) along the River 
Sharavathi during a April 2019 
(pre-monsoon), and b January 
2020 (post-monsoon)
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microplastics is more significant as it offers a solidly posi-
tive relationship with the three indices and TOC % during 
the pre-monsoon (Table 2). However, the ties decrease dur-
ing the post-monsoon season (Table 2), which could be due 
to the flushing out of microplastics during the extremely 
strong southwest monsoonal experienced by the region 
from June to September 2019.

Implications of this study

The River Sharavathi is one of the pristine rivers originating 
in the Western Ghats region and hosts diverse organisms. Pre-
vious studies have shown the impacts of anthropogenic activi-
ties (hydroelectric projects) on the diversity of fish species 
like finfish (Bhat et al. 2014) and bivalve clams (Boominathan 
et al. 2014) in the estuarine region of the River Sharavathi. 
In this study, microplastics have been found in the sediments 
collected during the two seasons. Furthermore, a positive 
correlation is observed between films and TOC (r = 0.47, 
p = 0.07) and TIC (r = 0.47, p = 0.07) percentages during the 
pre-monsoon (Table 2). Similarly, a positive relationship is 
observed between TOC and fibres during the post-monsoon 
(r = 0.55, p = 0.09). Fibres are also positively correlated with 
clay fraction (r = 0.43, p = 0.21). The positive relationship 
indicates that the organic matter in the clay fraction is mostly 
adsorbed on the fibrous MPs. An earlier study by Maes et al. 
(2017) also observed a higher abundance of small-sized MPs 
in regions with high TOC. Many MPs were observed in estua-
rine areas whose sediments were organic-rich. The similari-
ties in densities of MPs and sediment grains and the resulting 
sedimentation processes can explain this correlation (Maes 
et al. 2017). Therefore, areas with high total organic carbon 
content can be MP hotspots. Maes et al. (2017) inferred that, 
compared to benthic organisms in areas with larger sediment 
particle size and lower TOC, organisms burrowing and feed-
ing in mud-rich environments are more susceptible to risks 
due to higher concentrations of microplastics. They also con-
cluded that fine mud areas could be considered an essential 
hotspot for microplastics. In addition, particle size and organic 
matter can influence the metal bioavailability of organisms 
ingesting sediments. Furthermore, the increased surface area 
to volume ratio of MPs favours the accumulation of pollutants 
(Kazmiruk et al. 2018). Therefore, understanding the hotspots 
plays a vital role in regulating plastic pollution and its impact 
on the ecosystem. The evaluation of the three indices sug-
gests that the usage of plastic materials in the catchment of 
the River Sharavathi has gradually increased over the years. 
As there is no proper solid waste management practise from 
source to sink in the region, the larger plastic pieces disin-
tegrate into microplastics that remain in the sediments for a 
long time. Hence, MP researchers must focus on other pristine 

rivers in India and other countries to see any significant uptake 
of microplastics by flora and fauna in these aquatic systems.

Conclusions

We studied the sediments of the River Sharavathi, a pristine 
river in the Western Ghats, a heritage site in southern India, 
to check the presence of MPs of various sizes and categories 
during the pre-monsoon and post-monsoon seasons. Besides, 
we analysed the textural properties and total organic and 
inorganic carbon of these sediments and explored their rela-
tionship with microplastics. The microplastic contamination 
in the sediments of the River Sharavathi is relatively low in 
concentration, with their abundance ranging from 2.5 to 57.5 
pieces/kg (mean ± SD = 14.82 ± 3.10) during the pre-mon-
soon and 0 to 15 pieces/kg (mean ± SD = 6.39 ± 5.70) during 
the post-monsoon. The substantial dip in MPs’ abundance 
during the post-monsoon season is due to the extremely high 
rainfall in the river basin during July–August 2019, mainly 
due to MPs’ entrainment from the sediment and their sub-
sequent transfer to the coastal region or the Arabian Sea. 
Smaller particles (0.3–1 mm) were more abundant than 
the more significant fractions (1–5 mm) in the sediments, 
mainly due to the breakdown of plastic materials deposited 
in the sediments by various physical actions. During both 
seasons, fragments predominated in the sediment samples. 
The main polymers were polyethylene and polyethylene 
terephthalate, with a minor concentration of polypropylene. 
Transparent and white-coloured MPs were the most abun-
dant in the sediments.

No significant relationship was observed between the 
textural properties of sediments and microplastics, which 
may be due to the different behavioural properties of sedi-
ments and microplastics and particle shape and density. A 
good relationship was observed between small-sized MPs 
and organic and inorganic carbon. Larger (1–5 mm) and 
smaller (0.3–1 mm) MPs are negatively and positively cor-
related with TOC % and TIC %, respectively. The PLI, PHI, 
and PERI indices suggest different contamination levels 
in the river basin, and the district administration can use 
the data to mitigate plastic pollution. The study observed 
that microplastic distribution in the sediments of the river 
catchment is influenced by population distribution and 
their activities (land use and land cover), geomorphologi-
cal features, hydrodynamic parameters, and processes such 
as precipitation, surface runoff, and sedimentation.

The study provides a baseline for the spatial distribution 
of microplastics which will be helpful in understanding 
the hotspot of microplastic pollution in the River Shara-
vathi catchment. The data can be used by policymakers to 
take initiatives to minimise pollution. In order to curb the 
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global problem of marine plastic pollution, the movement 
of plastic materials from the rivers to the marine environ-
ment should be checked. In addition to the five Rs—refuse, 
reduce, reuse, recycle, and recover—more initiatives must 
be taken to establish advanced waste management tech-
niques. Also, new initiatives should be taken to restrict 
the flow of plastic waste from aquatic systems such as 
rivers and lakes to seas and oceans. One such example is 
the employment of trash booms to collect floating plas-
tic materials from the rivers before they enter the marine 
system (Plastic Fischer 2022). As the area is recognised 
as a biodiversity hotspot, along with the concentration 
data, we tried to find out the risk posed by microplastics 
obtained from the catchment. Knowledge of these factors 
can be used by policymakers and environmental managers 
to investigate the issue and take regulatory action.
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