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ARTICLE

Assessment of polygenic architecture and risk
prediction based on common variants across
fourteen cancers
Yan Dora Zhang et al.#

Genome-wide association studies (GWAS) have led to the identification of hundreds of

susceptibility loci across cancers, but the impact of further studies remains uncertain. Here

we analyse summary-level data from GWAS of European ancestry across fourteen cancer

sites to estimate the number of common susceptibility variants (polygenicity) and underlying

effect-size distribution. All cancers show a high degree of polygenicity, involving at a mini-

mum of thousands of loci. We project that sample sizes required to explain 80% of GWAS

heritability vary from 60,000 cases for testicular to over 1,000,000 cases for lung cancer.

The maximum relative risk achievable for subjects at the 99th risk percentile of underlying

polygenic risk scores (PRS), compared to average risk, ranges from 12 for testicular to 2.5 for

ovarian cancer. We show that PRS have potential for risk stratification for cancers of breast,

colon and prostate, but less so for others because of modest heritability and lower incidence.

https://doi.org/10.1038/s41467-020-16483-3 OPEN

#A list of authors and their affiliations appears at the end of the paper.
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G
enome-wide association studies (GWASs) have led to the
identification of hundreds of independent cancer sus-
ceptibility loci containing common, low-risk variants1,2.

The number of discoveries varies widely across cancers, largely
driven by available sample size, which reflects, in part, disease
incidence in the general population. However, specific cancers,
e.g., chronic lymphoid leukemia (CLL)3 and testicular cancer4,
are notable for unexpectedly high numbers of genome-wide sig-
nificant discoveries from GWASs of relatively small sample size.
Previous studies have also reported that these two cancers have
high heritability5. Across cancer types, polygenic risk scores
(PRSs) show varying levels of risk stratification depending on the
heritability explained by the identified variants and the disease
incidence rates in the population6–12. Their potential clinical
utility would depend not only on the level of risk stratification but
also on other factors such as the availability of appropriate risk-
reducing interventions for those identified as at high risk.

Estimation of heritability due to additive effects of all single-
nucleotide polymorphisms (SNPs) included in GWAS arrays13,
referred to as GWAS heritability in this article, have shown that
common variants have substantial potential to identify indivi-
duals at different levels of risk for many cancer types14. It
remains, however, unclear how large the sample sizes of GWAS
need to be to reap the full potential of PRS-based risk prediction.
Herein we apply our recently published method15 to estimate the
degree of polygenicity and the effect-size distribution associated
with common variants (minor allele frequency (MAF) > 0.05)
across 14 different cancer types, based on summary-level asso-
ciation statistics from available GWASs16–28 from populations of
European ancestry (Supplementary Table 1). From these inferred
parameters, we then provide projections of the expected number
of common variants to be discovered and predictive performance
of associated PRS as a function of increasing sample size for
future GWASs. Finally, by incorporating age-specific incidence29

from population-based cancer registries, we explore the magni-
tude of absolute risk stratification potentially achievable by PRS.

Results
Cancer polygenicity. We found that cancers are highly polygenic,
like other complex traits15,30,31. Estimates of the number of
susceptibility variants with independent risk associations vary
from ~1000 to 7500 between the 14 cancer sites (Table 1). For
comparability, effect-size distributions are shown in groups of
similarly sized GWASs with similar power for detecting asso-
ciations (Fig. 1). For GWASs with <10,000 cancer cases (group 1),
CLL and testicular cancer are each associated with 2000–2500
variants and characterized by a much larger proportion of var-
iants with larger estimated effect sizes than for the other group 1
cancers, as reflected by wider effect-size distribution with heavier
tails (Fig. 1, Table 1). GWAS heritability estimates indicate that,
in aggregate, common variants explain a high degree of variation
of risk for these two cancers. In contrast, in group 1, esophageal
and oropharyngeal cancers are associated with a larger proportion
of variants with substantially smaller effect sizes, compared with
CLL and testicular cancers in group 1.

For GWASs with 10,000–25,000 cases (group 2), melanoma is
noteworthy because it is associated with a wider effect size
distribution than other group 2 cancers. The estimated number of
susceptibility variants in this group ranges from 1000 to 2000.
GWAS heritability estimates indicate that aggregated common
variants make a relatively small contribution to ovarian and
endometrial cancer susceptibility. Finally, for the 3 GWAS with
>25,000 cases each (group 3), prostate cancer is remarkable for
having more variants with large effect sizes, namely, the
underlying effect-size distribution has a heavier tail, compared

with cancers of the breast and lung (Fig. 1). In this group, all three
cancer types tend to have large numbers of associated variants
(>4500) compared with cancer sites in other groups, but this
pattern could partially be due to the very large sample sizes of
group 3 GWAS15.

For a large majority of the 14 cancer sites, a two-component
normal-mixture model for non-null effects provides a substan-
tially better fit to observed summary statistics than a single
normal distribution; this indicates the presence of a fraction of
variants with distinctly larger effect sizes than the remaining
(Supplementary Figs. 1 and 2). In contrast, a single normal
distribution appears to be adequate for esophageal and orophar-
yngeal cancer, indicating the presence of a large number of
variants with a continuum of small effects, similar to our previous
findings for traits related to mental health and abilities15. Across
all 14 cancers, the predicted number of discoveries and their
associated genetic variance explained for current GWAS sample
sizes match well to those observed empirically (Supplementary
Table 2), indicating good fit of our model to the observed data.

Future GWAS projections. GWAS heritability estimates indicate
that the potential of PRS for risk discrimination in the population
varies widely among cancer types (Table 1). The area under the
curve (AUC) statistics associated with the best achievable PRS
varies from 64% (endometrial and ovarian cancer) to 88% (tes-
ticular cancer) and in the range of 70–80% for most cancers. The
percentage of GWAS heritability explained by known variants
varies widely, depending on study sample size and the underlying
trait genetic architecture (Fig. 2). Known variants explain more
than a quarter of heritability for cancer sites based on very large
sample sizes (e.g., breast and prostate cancer) or for cancer sites
that have susceptibility variants with relatively large effect sizes
(e.g., CLL, melanoma, and testicular cancer). Oropharyngeal
cancer, in contrast, has both a small sample size and small effect
sizes; its percentage heritability currently explained is almost zero.

The sample size needed to identify common variants that could
explain approximately 80% of the total GWAS heritability for the
cancers evaluated is generally very large, requiring
200,000–1,000,000 cancer cases, with a comparable number of
controls (Fig. 2). However, for three sites, namely, testicular
cancer, CLL, and melanoma, the required sample size is smaller,
60,000, 80,000, and 110,000 cases, respectively, due to the large
effect sizes of their associated variants. By quadrupling the sample
sizes of currently published GWASs, the percentage of GWAS
heritability explained would rise to >40% across all cancers,
except for oropharyngeal cancer. Such sample size increases
would also lead to appreciable improvements in PRS discrimi-
natory power across all these sites (Figs. 3 and 4). For cancers that
were found to be the most polygenic and that had small effect
sizes (e.g., cancers of breast, lung, and oropharynx), improvement
would occur at a slower rates as sample sizes increase, and these
sites would require the largest sample sizes to generate PRSs with
discriminatory power close to theoretical limits. Of note, for a
number of cancers, the achievable relative risks for subjects at the
99th percentile of PRS distribution compared with those at
average risk, are comparable to those for monogenic disorders32

(e.g., relative-risk >3–4-fold) (Fig. 4). Across all 14 cancer types,
inclusion of SNPs using more liberal but optimized p value
thresholds (see “Methods”) would improve performance of PRS-
based risk prediction versus using the stringent genome-wide
significance level, but the anticipated gains would be generally
modest (Supplementary Figs. 3 and 4).

Projections of residual lifetime cancer risks for the US non-
Hispanic white population show that the discriminatory power of
PRS built from current or foreseeable studies will depend heavily
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on the underlying cancer incidence in the population (Fig. 5,
Supplementary Figs. 5–7). The potential clinical utility of PRS
depends on the degree of risk stratification and specific
prevention or early detection strategies for a given cancer, should
they exist. For common cancers, such as breast, colorectal, and
prostate, a PRS with even modest discriminatory power
(maximum AUC of approximately 70%, Fig. 3) can provide
substantial stratification of absolute risk in the population. In
contrast, for CLL and testicular cancer, even though its PRS could
achieve a higher AUC (e.g. in the range 80–90%, Fig. 3), the
degree of absolute risk stratification will be modest because of the
infrequency of these cancers. Thus a PRS by itself has the least

impact on risk stratification for cancer sites that are infrequent
or/and that have low heritability. However, it is possible that PRS
could have clinical utility for some of these cancers in the
presence or in combination with other risk factors and
biomarkers. For example, a PRS for lung cancer may provide
larger stratification for absolute risk among smokers than never
smokers because of the higher baseline risk in smokers.

Discussion
Our study is subject to several limitations. We may have under-
estimated the number of underlying common susceptibility loci,

Table 1 Estimated number of independent common susceptibility variants and heritability across 14 cancer sites.

Number of cases

in the analysis

Cancer sitea Total number of

susceptibility

SNPs (SE)

Total

heritability, in

log-OR

scaleb (SE)

Average

heritability

explained per

susceptibility

SNPc (SE), in

10�4

Number of SNPs

associated with

larger variance

component (SE)

% of

heritability

explained by

SNPs with

larger variance

component

AUC

associated

with the best

PRSd (SE)

<10,000 CLL 2025 (1501) 1.62 (0.37) 7.2 (4.4) 52 (15) 41 0.82 (0.03)

<10,000 Esophageal 3641 (2515) 1.24 (0.36) 3.4 (1.9) NAe NA 0.78 (0.03)

<10,000 Testicular 2598 (2088) 2.81 (0.40) 9.2 (6.6) 196 (75) 54 0.88 (0.02)

<10,000 Oropharyngeal 3623 (2060) 0.68 (0.27) 1.9 (0.5) NA NA 0.72 (0.04)

<10,000 Pancreas 1757 (1490) 0.60 (0.16) 3.2 (2.2) 47 (27) 31 0.71 (0.03)

10,000–25,000 Renal 2220 (1555) 0.57 (0.12) 2.4 (1.4) 46 (36) 24 0.70 (0.02)

10,000–25,000 Glioma 2364 (1593) 0.87 (0.11) 2.2 (1.2) 61 (25) 55 0.75 (0.01)

10,000–25,000 Melanoma 1098 (533) 0.65 (0.09) 4.4 (1.6) 106 (58) 52 0.72 (0.01)

10,000–25,000 Colorectal 1484 (696) 0.43 (0.10) 2.9 (0.8) 14 (11) 7 0.68 (0.02)

10,000–25,000 Endometrial 1052 (772) 0.27 (0.07) 2.5 (1.3) 46 (34) 26 0.64 (0.02)

10,000–25,000 Ovarian 1015 (715) 0.24 (0.06) 2.2 (1.1) 49 (31) 36 0.64 (0.02)

>25,000 Lung 6096 (2750) 0.39 (0.06) 0.6 (0.2) 15 (7) 15 0.67 (0.01)

>25,000 Prostate 4530 (1052) 0.77 (0.04) 1.1 (0.2) 276 (99) 51 0.73 (0.01)

>25,000 Breast 7599 (1615) 0.60 (0.03) 0.6 (0.1) 587 (133) 56 0.71 (0.00)

SNP single-nucleotide polymorphism, SE standard errors, CLL chronic lymphocytic leukemia.
aAll results are reported using the best fitted (two- or three-component) normal mixture model for effect-size distributions, with respect to a reference panel of 1.07 million common SNPs included in the

Hapmap3 panel after removal of MHC region.
bTotal heritability is characterized by population variance of the underlying true PRS as h2 ¼ Var

PM
m¼1 βmGm

� �

¼ MπcE β2
� �

, where E β2
� �

denotes per-SNP effect-size of the non-null SNPs in the log-

odds-ratio scale.
cAverage heritability explained per susceptibility SNP excludes SNPs with extremely large effects (see “Methods”).
dArea under the curve (AUC) associated with best PRS is calculated using the formula AUC=Φð

ffiffiffiffiffiffiffiffiffiffi

h2=2
p

Þ where Φð�Þ is the cumulative density function of standard normal distribution.
eNA indicates that a two-component model is favorable compared to three-component model.
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Fig. 1 Estimated effect-size distributions for susceptibility SNPs across 14 cancer sites. Effect-size distribution of susceptibility SNPs is modeled using a

two-component normal mixture model for all sites, except esophageal and oropharyngeal cancers. For these sites, effect sizes are modeled using a single

normal distribution that provided similar fit as the two-component normal mixture model (see Supplementary Figs. 1 and 2). SNPs with extremely large

effects are excluded for effect-size distribution estimation (see “Methods”). Plots are stratified by sample size of the GWAS for comparability. Distributions

with fatter tails imply the underlying traits have relatively greater number of susceptibility SNPs with larger effects. Note here that the effect-size

distribution is plotted on the log scale of odds ratio (x-axis). CLL chronic lymphocytic leukemia.
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especially for those cancers for which current GWAS have small
sample sizes15. Thus the interpretation of comparisons of the
underlying genetic architecture across cancer types with very
different sample sizes requires caution. Nevertheless, the major
patterns are unlikely to be due to differences in sample size. For
example, we estimated oropharyngeal and esophageal cancers to
be two of the most polygenic sites, though the GWAS sample
sizes for these two sites were relatively small. Further, Q–Q plots
of observed and expected p values indicate that the inferred
models for effect-size distributions explain observed GWAS
summary statistics well, regardless of GWAS sample size.

Another important limitation is that we only included data from
subjects of European ancestry, since GWAS data for other
ancestries are currently too small to permit reliable projections
for most cancer sites. In addition, several cancers (e.g., lung,
ovary, glioma, and breast) consist of etiologically heterogeneous
subtypes that were not considered in our analyses due to lack of
adequate sample sizes for appropriate subtypes for most of these
cancer sites. Further studies of ancestry- and subtype-specific
genetic architectures are needed to address these limitations.

In our projections, we assume standard agnostic association
analysis of SNPs without incorporating any external information
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Fig. 2 Projections of percentage of GWAS heritability explained by SNPs as sample size for GWAS increases. Results are shown for projections

including SNPs at the optimized p value threshold (solid curve) and at genome-wide significance (p < 5 ´ 10�8) level (dashed curve). Colored dots

correspond to sample size for the largest published GWAS and those for doubled and quadruped sizes. For oropharyngeal cancer, the projections at the

“current sample size” are based on a sample size of 25K cases and 25K controls. For breast and esophageal cancer, the projections at the “current sample

size” are based on the current largest GWAS sample sizes: 123K cases and 106K controls and 10K cases and 17K controls, respectively. For all other cancer

sites, the projections at the “current sample size” are based on the GWAS sample sizes in Supplementary Table 1. CLL chronic lymphocytic leukemia.
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on population genetics or functional characteristics of SNPs. It is,
however, possible to incorporate various types of external infor-
mation to improve power for discovery of associations33–36 and
genetic risk prediction37. We have evaluated the merit of
future GWAS only in terms of their ability to explain heritability
and improve risk prediction. However, current and future dis-
coveries have other major implications, including provident
insights to biological pathways and mechanisms, potential
gene–environment interactions, and understanding causal rela-
tionships through Mendelian Randomization analyses38. A
number of these cancers are known to have rare high-penetrant
risk variants, but for this study we have focused on estimating
effect-size distribution associated with common variants. Fur-
thermore, heritability analysis indicate that uncommon and rare
variants could explain a substantial fraction of the variation of
complex traits39, and thus it is likely that there are many

unknown uncommon and rare variants associated with these
cancers as well. In the future, characterization of heritability and
effect-size distribution associated with the full spectrum of allele
frequencies will require individual-level sequencing data on a
substantially larger number of cases and controls.

The observed differences in the underlying genetic architecture
of susceptibility across cancers could be due to various factors,
including the effect of negative selection30,40, tissue-specific
genetic regulation of gene expression41, cell of origin42, the
number of biological steps needed to transition from normal to
malignant tissue43, mediation of genetic effects by underlying
environmental exposures44, and the presence of heterogeneous
cancer-specific subtypes21,25,27,28. A number of cancer types,
including those of lung, oropharynx, and esophagus, which were
associated with large numbers of SNPs with small average effect
sizes, have known strong environmental risk factors and distinct
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etiologic subtypes. It is also noteworthy that testicular cancer also
stands out for a large number of discoveries in cross-tissue
expression quantitative trait loci analyses, likely indicating a
stronger association of SNPs on gene expression levels for this
tissue compared to others41.

In conclusion, our comprehensive analysis of 14 cancer sites in
adults of European ancestry reveals that, while all sites have
polygenic influences, there is substantial diversity observed in
their underlying genetic architectures, which reflects important
biology and also influences the utility of polygenic risk prediction
for individual cancers. Our projections for future yields of GWAS
across these cancers provide a roadmap for important returns
from future investment in research, including the potential

clinical utility of polygenic risk prediction for stratification of
absolute risks in the population.

Methods
Description of GWAS studies. We analyzed summary data from GWAS studies
across 14 cancer types. For select cancer sites26,28, we downloaded publicly avail-
able genome-wide summary-level statistics from the latest consortium-based
analyses. For others, we obtained access to data through collaborative efforts with
individual consortia. Details about individual studies, including the number of
cases and controls, are provided in Supplementary Table 1.

Linkage disequilibrium (LD) reference panel selection. We consider a reference
panel with ~1.07 million SNPs included in the HapMap3 and that had MAF > 0.05
in the 1000 Genome European Ancestry sample. Based on known LD among
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estimate of GWAS heritability. Colored dots correspond to sample size for the largest published GWAS and those for doubled and quadruped sizes. y-Axis

is presented in log10 scale. For oropharyngeal cancer, the projections at the “current sample size” are based on a sample size of 25K cases and 25K

controls. For breast and esophageal cancer, the projections at the “current sample size” are based on the current largest GWAS sample sizes: 123K cases

and 106K controls and 10K cases and 17K controls, respectively. For all other cancer sites, the projections at the “current sample size” are based on the

GWAS sample sizes in Supplementary Table 1. CLL chronic lymphocytic leukemia.
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common variants, we expect these set of variants to provide high coverage for all
common variants for European ancestry population and thus loss of information
due to imperfect tagging of causal variants to be fairly minimal.

Quality control for summary GWAS data. Across all cancers, we applied several
filtering steps analogous to those used earlier for estimation of heritability45,46 and
effect-size distribution using summary-level data15. First, we restricted analysis to
SNPs within a set of reference ~1.07 million SNPs included in the HapMap3 and
that had MAF > 0.05 in the 1000 Genome European Ancestry sample. Second, we
excluded SNPs having substantial amounts of missing genotype data: sample sizes
<0.67 times the 90th percentile of the distribution of sample sizes across all SNPs.

Third, we excluded SNPs within the major histocompatibility complex region (i.e.,
SNPs between 26,000,000 and 34,000,000 base pairs on chromosome six), which is
known to have very complex allelic architecture and can have uncharacteristically
large effects on some traits. Fourth, we removed regions that have SNPs with
extremely large effect sizes to reduce possible undue influence of them on esti-
mation of parameters associated with overall effect-size distributions. Using PLINK
--clump, we identify all top SNPs that have associated chi-square statistics >80 (i.e.,
odds ratio (in standardized scale) >2.19) and removed all SNPs that were within 1-
MB distance of or had an estimated squared LD >0.1 with those top SNPs. We
added back the contribution of these top independent SNPs in the final reporting of
the total number of susceptibility SNPs, estimates of total heritability, and various
projections we made as a function of sample size of the GWAS.
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Table 1. CLL chronic lymphocytic leukemia.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16483-3 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3353 | https://doi.org/10.1038/s41467-020-16483-3 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Statistical model. We inferred common variant genetic architecture of the dif-
ferent cancers using GENESIS15, a method we recently developed to characterize
underlying effect-size distributions in terms of the total number of susceptibility
SNPs (polygenicity) and a normal mixture model for the distribution of their
effects. Specifically, it is assumed that standardized effects of common SNPs in an
underlying logistic regression model on the risk of a cancer can be specified in the
mixture distribution in the form βm � 1� πcð Þδ0 þ πcNð0; σ2Þ (two-component

model) or βm � 1� πcð Þδ0 þ πc p1N 0; σ21
� �

þ p2N 0; σ22
� �� �

(three-component

model) where δ0 is the Dirac delta function indicating that a fraction, 1� πc , of the
SNPs have null effects and remaining πc fraction of SNPs have non-null effects.
Under the three-component model, p2 ¼ 1� p1 denotes the proportion of SNPs
allocated to mixture component with larger variance component (assuming σ22 >

σ21) models. Under these models, Mπc characterizes the degree of polygenicity, i.e.,
the number of susceptibility SNPs with independent effects on disease risk. Under

both models, we defined “GWAS heritability” of a disease as h2 ¼ MπcE β2
� �

,

where E β2
� �

denotes the average variance size of the non-null SNPs. We observed

that, under the above model, h2 is also the population variance of the underlying

“true” PRS, defined as PRS ¼
PM

m¼1 βmGm , where Gm denotes the standardized
genotype associated with the mth SNP. Under the two-component model, which
assumes a single normal distribution for the effect of all susceptibility SNPs,

E β2
� �

¼ σ2 . Under the three-component model, which allows mixture of two

normal distributions with distinct variance components and thus can better
accommodate the presence of a group of susceptibility SNPs with much larger
effects than others, we have p1σ

2
1 þ p2σ

2
2 . Under the three-component model, we

use the fraction υ ¼ p2σ
2
2=ðp1σ21 þ p2σ

2
2Þ to characterize the proportion of herit-

ability explained by SNPs associated with the larger variance component para-
meter. As we removed SNPs with extremely large effects (χ2i > 80) and the
associated regions from the analysis, in reporting the final heritability estimates, we
added back the contribution of the independent top SNPs from these excluded

regions as
P

iðβ̂2i � τ2i Þ where β̂i is the estimate of log odds ratio (in standardized
scale) and τi is the corresponding standard error for the ith SNP.

Genetic variance projection. Given the estimated effect-size distribution, we

calculated expected discoveries and genetic variance explained using ED ¼

Mπ̂c
R

β

powα;n βð ÞPH
h¼1 p̂hN 0; σ̂2h

� �

dβ and

EV ¼ Mπ̂c
R

β

β2powα;n βð ÞPH
h¼1 p̂hN 0; σ̂2h

� �

dβ, respectively, at α ¼ 5 ´ 10�8 for a

GWAS of sample size n, where powα;n βð Þ ¼ 1�Φ cα
2
� ffiffiffi

n
p

β
� �

þΦð�cα
2
� ffiffiffi

n
p

βÞ
with Φ �ð Þ the standard normal cumulative density function and cα ¼ Φ�1 1� αð Þ
the αth quantile for the standard normal distribution. Similar to heritability cal-
culations, we added back the contributions of independent top SNPs with very
large effects to the number of expected discoveries and associated variances

explained by the quantities
P

i powα;nðβ̂iÞ and h�2
P

iðβ̂2i � τ2i Þpowα;nðβ̂iÞ. We

observed that for projections involving sample sizes bigger than the current study

powα;n β̂i

� �

for the large effect SNPs will all be very close to 1.0.

Projection for AUC and relative risk at top 1%. As we quantify heritability in
terms of the variability of the underlying “true” PRS, we used the formula12,47,48

AUC ¼ Φð
ffiffiffiffi

h2

2

q

Þ to characterize the best discriminatory power achievable in lim-

iting using common variant PRS. We used the same formula to calculate the AUC
associated with PRSs that could be built using SNPs either reaching genome-wide
significance (p value <5 ´ 10�8) or a weaker but optimized threshold for a GWAS of
given sample size based on the projected variance of the respective PRS. Given
sample size of GWAS and an effect-size distribution for the underlying cancer, an
optimal threshold for SNP selection that will maximize the expected predictive
performance of PRS is calculated using analytic formula we have derived earlier48.
The relative risk for those estimated to be at the 99th percentile or higher of the
distribution of a PRS (compared to the average risk of the population) was cal-

culated using the formula12 expð� h2

2
þΦ�1 0:99ð Þ

ffiffiffiffiffi

h2
p

Þ, where h2 is the population
variance of the PRS.

Absolute risk projection. For each cancer site, we projected the distribution of
residual lifetime risk (up to age 80 years) for non-Hispanic white individuals in the
general US population according to PRSs, which could be built from GWASs of
different sample sizes. For any given age, we first obtain the distribution of residual
lifetime risks based on a model for absolute risks developed using the iCARE tool
that we have described earlier12,29. The iCARE tool uses projected standard
deviations of PRS at different GWAS sample sizes and age-specific cancer incidence
rates available from the US National Cancer Institute-Surveillance, Epidemiology,
and End Results Program (NCI-SEER) (2015) to obtain absolute risk distributions.
In deriving absolute risks, we adjusted for competing risk of mortality due to other
causes using the age-specific mortality rates from the Center for Disease Control
WONDER database (2016). We then weighted the projected residual lifetime risk

distribution at different baseline ages (in 5-year categories) based on the US
population distribution of ages within 30–75 years, as observed in the estimated
2016 US Census. For cancers of the reproductive system, weights were based on the
age distributions among males or females, as appropriate.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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The data that support the findings of this study are available by application from the
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