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Abstract One of themost important problems in probabilis-
tic neural network (PNN) operation is the minimization of its
structure. In this paper, two heuristic approaches of PNN’s
pattern layer reduction are applied. The first method is based
on a k-means clustering procedure. In the second approach,
the candidates for the network’s pattern neurons are selected
on the basis of a support vectormachines algorithm.Modified
models are compared in the classification problems with the
traditional PNN, fourwell-knowncomputational intelligence
algorithms (single decision tree, multilayer perceptron, sup-
port vector machines, k-means algorithm) and PNN trained
by the state-of-the-art procedures. Sevenmedical benchmark
databases are investigated and one authors’ own real ovarian
cancer data set. Comparison is performed on the basis of the
global performance indices which depend on the accuracy,
sensitivity and specificity. These indices are computed using
the standard tenfold cross-validation procedure. On the basis
of the reported results, we show that the algorithm based
on k-means clustering is a better PNN structure reduction
procedure. Furthermore, this algorithm is much less time-
consuming.
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1 Introduction

Probabilistic neural network, along with multilayer percep-
tron, radial basis function neural network or self-organizing
map is one of the most popular models used in data
classification problems. PNNwas proposed bySpecht (1990)
and quickly found many devotees. Its main advantage is that
it can quickly learn from input data. Probabilistic neural
networks have found their implementation in a variety of
classification fields. It was presented in image classification
and recognition (Chtioui et al. 1996, 1998; Ramakrishnan
and Selvan 2007; Wen et al. 2008), earthquake magnitude
prediction (Adeli and Panakkat 2009), multiple partial dis-
charge sources classification (Venkatesh and Gopal 2011),
interval information processing (Kowalski and Kulczycki
2014) or medical diagnosis and prediction (Shan et al. 2002;
Folland et al. 2004; Huang and Liao 2004; Temurtas et al.
2009; Mantzaris et al. 2011).

From its architecture point of view, PNN is a feed-forward
model composed of four layers: an input layer where each
element corresponds to a data feature, a radial basis pattern
layer which consists of asmany neurons as training vectors, a
summation layer having single neuron for every class and an
output layer that provides the prediction for unknown sample.
In the original form, PNN has no weights to be updated;
therefore, the training process for this network seems to be
feasible. The attention only has to be paid to the appropriate
selection and computation of the smoothing parameter for
the radial basis neurons. However, the major drawback of
PNN lies in the requirement of having one neuron in the
pattern layer for each training example (Specht 1992). Thus,
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for large data set classification problems, the structure of this
model is complex.

In this article, we concentrate on the architecture reduc-
tion in the PNN. For this purpose, two alternative approaches
of the structure minimization are applied. The first method
is based on the application of a k-means clustering algo-
rithm to input data in order to determine the optimal number
of centroids as the representation of the pattern layer neu-
rons. The second solution consists in the use of a support
vector machine procedure which, out of the entire training
set, provides the subset of optimal vectors (support vec-
tors) which in turn form the layer of pattern nodes of PNN.
Both techniques are tested on the medical data sets. The
presented study is a generalization of the results published
by the authors in Kusy and Kluska (2013). In that work,
the attention is only paid to computing the prediction error
on 20% cases extracted randomly from each of the inves-
tigated data sets. Such a solution we consider insufficient.
Therefore in this article, the diagnostic accuracy parameters
for optimized PNNs are determined by means of a tenfold
cross-validation method. The obtained results are compared
to the outcomes achieved by the reference classification
algorithms: single decision tree, multilayer perceptron, sup-
port vector machines and k-means clustering procedure and,
additionally, to the performance of the state-of-the-art PNN
training solutions. Furthermore, we propose the global per-
formance index which has the form of weighted sum of
the accuracy, sensitivity and specificity for both binary and
multi-class classification problems. The use of such a mea-
sure is of a particular importance, especially in medical data
classification tasks, as the ones used in this study.

This paper is composed of the following sections. In
Sect. 2, we conduct an overview on various PNN reduc-
tion methods presented up to this date. Section 3 discusses
probabilistic neural network highlighting its basics, struc-
ture and a principle of operations. In Sect. 4, the reduction
in PNN structure by means of k-means clustering and sup-
port vector machines algorithms is outlined. In this section,
the global performance index is also proposed. Section 5
briefly describes the input data used in this research. The
performance of the standard and the modified PNN models
is verified in Sect. 6. In this section, we also compare predic-
tion abilities of reduced PNNs with the results obtained by
the reference classifiers and the state-of-the-art PNNmodels.
Finally, in Sect. 7, the conclusions are presented.

2 Related work

In general, there exist two categories of studies related to the
reduction in PNN construction. The first category includes
the clustering techniques. For example, the work reported in
Burrascano (1991) presents the learning vector quantization

approach for finding representative patterns to be used as neu-
rons in PNN. This method defines a number of examples that
are reference vectors which approximate the probability den-
sity functions of the pattern classes. The reference in Chtioui
et al. (1996) presents the reduction in the size of the training
data for PNN by hierarchical clustering. The idea consists in
applying the reciprocal neighbors technique, which allows
the gathering of examples which are closest to each other. In
Zaknich (1997), the quantizationmethod for PNNstructure is
proposed. The input space is divided into a fixed-size hyper-
grid, andwithin eachhypercube representative cluster centers
are computed. In this way, the number of training vectors in
each hypercube is reduced to one. The work presented in
Chang et al. (2008) introduces an expectation–maximization
method as the training algorithm for PNN. This amounts to
the predefinition of the number of clusters as the input data
set. A global k-means algorithm is used as the solution. In the
contribution (Chandra and Babu 2011), an improved archi-
tecture for PNN is proposed. The network is designed with
an aggregation function based on the f-means of training pat-
terns. Such an architecture reduces the number of layers and
therefore computational complexity.

In the second category of the studies which focus on the
architecture optimization of PNN, the authors utilize non-
clustering methods. For example, the model described in
Traven (1991) is designed so that it can use far fewer nodes
than the training patterns. It is achieved by estimating proba-
bility density functions as a mixture of Gaussian densities
with varying covariance matrices. In the reference Streit and
Luginbuhl (1994), amaximum likelihood algorithm for train-
ing the network is presented as the generalization of Fisher
method for nonlinear discrimination. It is shown that the
proposed PNN requires significantly fewer nodes and inter-
connection weights than the original model. In Mao et al.
(2000), a supervised PNN structure determination algorithm
is introduced. This algorithm consists of two parts and runs in
an iterativeway: smoothingparameter computation bymeans
of genetic algorithm and pattern layer neuron selection. The
important nodes for the layer are chosen by employing an
orthogonal algorithm. The research presented in Berthold
and Diamond (1998) introduces the automatic construction
of PNN by the use of a dynamic decay adjustment algorithm.
The model is dynamically built during training, which auto-
matically optimizes the number of hidden neurons.

It is important to emphasize that there also exists a third
category of articles which are related to the probabilistic
neural network. This category encompasses the papers which
explore the problem of a smoothing parameter selection as
the variable of probability density functions determined for
the hidden neurons of themodel. Four approaches are usually
regarded: single parameter for whole PNN, single parameter
for each class, separate parameter for each variable and sepa-
rate parameter for each variable and class. In the research,
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diverse procedures have been developed to solve these tasks
(Chtioui et al. 1998; Specht 1992; Mao et al. 2000; Georgiou
et al. 2008; Gorunescu et al. 2005; Specht and Romsdahl
1994; Zhong et al. 2007; Kusy and Zajdel 2015).

3 Probabilistic neural network

In this section, the fundamentals of PNNmodel are presented.
Since the principle of operation of this network stems from
Bayesian theory, we start with a short description of a Bayes’
theorem. Then, it is highlighted how PNN forwards the input
signal to succeeding layers to compute its output. The archi-
tecture of the network is also shown.

3.1 Bayesian classifier

Assume we are given an observation x ∈ R
n and the num-

ber of predefined classes (groups) g = 1, 2, . . . ,G. Assume,
furthermore, that the probability of the vector x belonging to
the class g equals pg , the cost (loss) associated with classi-
fying the vector into class g is eg , and that the probability
density functions: y1(x), y2(x), . . . , yG(x), for all classes are
known. Then, according to the Bayes theorem, the vector x
is classified to the class g, if

pgeg yg (x) > pheh yh (x) , (1)

for all classes g not equal to h. The probability density func-
tion yg(x) defines the concentration of the data of class g
around the vector x. If we also accept that pg = ph and
eg = eh , then one can infer that if the probability density
function yg(x) in the neighborhood of x takes a higher value
than yh(x), the vector x belongs to the class g.

Unfortunately, in real data classification problems, data set
distribution is usually unknown. However, some knowledge
on this distribution should be acquired. Therefore, there is a
need todetermine an approximationof the probability density
function yg(x) computed on the basis of given data. In order
to find such an approximation, one often uses the Parzen
method (Parzen 1962). The probability density function for
multiple variables can then be expressed as follows

y (x) = 1

lσ1 . . . σn

l∑

i=1

F

(
xi1 − x1

σ1
, . . . ,

xin − xn
σn

)
, (2)

where σ1, . . . , σn denote standard deviations computed rela-
tive to the mean of n variables x1, . . . , xn , F (·) is the
weighting function which has to be appropriately selected
(Masters 1993) and l is the number of input patterns. The
Gaussian function is a common choice for weighting in (2)
since it is simply well behaved, easily computed and satisfies
the conditions required by Parzen’s method (Masters 1995).

3.2 Network’s structure

From the formula provided in (2), the structure and the ope-
ration of PNN are straightforward. It is enough to consider a
Gaussian function as the activation for the probability den-
sity function and take into account the fact that this function
is computed for the examples of class g. This transforms
Parzen’s definition to the following form

yg (x) = 1

lg (2π)n/2
∏n

j=1
σ j

lg∑

i=1

exp

⎛

⎜⎝−
n∑

j=1

(
x (g)
i j −x j

)2

2σ 2
j

⎞

⎟⎠,

(3)

where lg is the number of examples of class g, σ j denotes

the smoothing parameter associatedwith j th coordinate, x (g)
i j

is the j th element of the i th training vector (i = 1, . . . , lg)
which belongs to the class g, and x j is the j th coordinate
of the vector x. The formula presented in (3) provides one
of g = 1, . . . ,G summation neurons of PNN structure. The
nodes in the preceding layer, called pattern neurons, feed the
component to the sum which is measured over each of the
examples of the gth class. Hence, lg hidden neurons con-
stitute the input for the gth summation neuron. Finally, the
output layer determines the class for the vector x in accor-
dance with the Bayes’ decision rule based on the outputs of
all the summation layer neurons

G∗ (x) = argmax
g

{
yg (x)

}
, (4)

where G∗ (x) denotes the predicted class of the pattern x.
It can be observed that the pattern layer requires
l = l1+· · ·+ lG nodes. The architecture of PNN is illustrated
in Fig. 1.

4 Proposed algorithms

This section introduces two approaches applied for PNN
structure simplification. Both solutions consist in reducing
the number of pattern neurons of the network. The first
method is based upon a k-means procedure. The second idea,
originally hinted in Kluska (2009), truncates the data size by
utilizing the support vectors for PNN training. Moreover, in
this section the global performance indices are proposed as
the indicators for the reductionof the neurons in the network’s
pattern layer.

4.1 Smoothing parameter selection

In our study, we utilize PNN with single σ for each variable
(attribute) and, additionally, for each class. The choice of this

123



202 M. Kusy, J. Kluska

Fig. 1 The architecture of the
probabilistic neural network

variant of smoothing parameter selection is the most general
approach but imposes, in accordance with formula (3), the
inevitability of storing a G × n matrix of σ ’s. Henceforth,
the gth summation neuron yields to the decision layer the
following output signal

yg (x) = 1

lg (2π)n/2
∏n

j=1
σ

(g)
j

lg∑

i=1

exp

⎛

⎜⎝−
n∑

j=1

(
x (g)
i j − x j

)2

2
(
σ

(g)
j

)2

⎞

⎟⎠ ,

(5)

whereσ
(g)
j is the smoothing parameter determined for the j th

coordinate and gth class. Such an approach gives the possi-
bility of emphasizing the similarity of the vectors belonging
to the same class and, simultaneously, improving generaliza-
tion accuracy.

4.2 PNN structure reduction by the use of k-means
clustering

The k-means algorithm is a well-known clustering method
developed independently by several researches (Hartigan and
Wong 1979; Lloyd 1982), which is considered to be one of
the top ten algorithms in data mining (Wu et al. 2008). The
basic idea of this algorithm is to try to discover k clusters,
such that the records within each cluster are similar to each
other and distinct from records in other clusters. The group-
ing process relies on the iterative minimization of the sum
of squared distances computed between input data and the
cluster center. An initial set of clusters is defined, and the
cluster centers are repeatedly updated until no modification
of their coordinate values is obtained. It is worth noticing that
there is the difficulty of “optimal” clustering that stems from
a huge number of ways to partition a set of lg patterns into
k non-empty clusters. Such a number is a Stirling number of
the second kind (Riordan 1958)

S
(
lg, k

) = 1

k!
k∑

i=1

(−1)k−i
(
k

i

)
i lg . (6)

For example, S (30, 10) ∼= 1.7 × 1023. Therefore, the first
approach in PNN structure reduction utilizes the k-means
algorithm in an iterative way. The number of clusters of class
g in sth iteration is computed according to the formula

is,g = round
( s

N
lg

)
, s = 1, . . . , N − 1, (7)

where the function round (x) rounds the real positive number
x to the nearest integer. In this paper, we assume N = 10. It
is important to notice that only is,g pattern layer neurons of
class g are involved in the computation of the signal for the
summation layer neuron defined in (5).

Let us define the reduction ratio R as a quotient of the
number of pattern neurons by the cardinality of the training
data set for the PNN

R (s) = 1

l

G∑

g=1

is,g ∼= s

N
, s = 1, . . . , N − 1. (8)

Then, the optimal ratio in the sense of the stated problem is
R (s∗), where in general

s∗ = argmax
s

J (s) , (9)

where J (s) is a global performance index defined as follows

J (s) =
{

αAcc + βSen + γSpe if G = 2∑G
g=1

(
αgAccg + βgSeng + γgSpeg

)
if G > 2,

(10)
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where Acc, Sen and Spe denote the accuracy, sensitivity and
specificity, respectively, defined as follows

Acc = TP + TN

TP + TN + FP + FN
, (11)

Sen = TP

TP + FN
, (12)

Spe = TN

TN + FP
, (13)

where TP, TN, FP and FN stand for the true-positive, true-
negative, false-positive and false-negative counts, respec-
tively (Altman and Bland 1994). Acc, Sen and Spe are
obtained numerically using a cross-validation procedure by
the sth cluster’s variant. The coefficients α, αg , β, βg , and
γ , γg are nonnegative weights chosen for the accuracy, sen-
sitivity and specificity, respectively. They are all established
by a designer (domain expert). The index “g” indicates the
number of group. For some standardization, we assume that

α + β + γ =
G∑

g=1

(
αg + βg + γg

) = 1 (14)

for g = 1, . . . ,G.
If we consider the accuracy to be the most important per-

formance measure, then:

(a) for G = 2 we take (α, β, γ ) = (1, 0, 0) and the global
performance index equals J = Acc.

(b) for G > 2 we take
(
αg, βg, γg

) = ( 1
G , 0, 0

)
for g =

1, . . . ,G and the global performance index is the average
accuracy computed over partial accuracies separately.

The case when J = Acc or J = 1
G

∑G
g=1Accg will be

called a primary one.
The k-means-based PNN reductionmethod is summarized

in Algorithm 1.

Algorithm 1: PNN structure reduction based on k–
means clustering.

1 for s := 1 to N − 1 do
2 for g := 1 to G do
3 Compute is,g cluster centers for training set
4 end
5 Perform PNN cross validation procedure on cs = ∑G

g=1 is,g
cluster centers

6 Calculate global performance index J (s) as in (9)–(10) for
PNN

7 end

8 Read σ
(1)
1 , . . . , σ

(G)
n for PNN corresponding to s∗ with the

highest value of J (s)

A similar solution is provided in Zaknich (1997) but
that concept is dependent on various quantization levels of
the input space. Here the number of clusters is determined
by (7). The other difference lies in the choice of smooth-
ing parameter. In Zaknich (1997), single σ is used for the
model. In this paper, PNN adopts single σ for each va-
riable and class. It is necessary to note that there exist a
large number of other more sophisticated clustering choices
which could be applied for data reduction in Algorithm 1,
e.g., cluster labeling method for SV clustering (Lee and
Lee 2005), spectral biclustering (Liu et al. 2006), weighted
graph-based clustering (Lee and Lee 2006), parameterless
clustering (Tseng and Kao 2005) or the approach which
allows for large overlaps among clusters of the same class
(Fu and Wang 2003). However, the use of original, basic
clustering method in the present study provides satisfactory
prediction results for reduced PNN; therefore, we decide to
utilize this approach.

4.3 PNN structure reduction by means of support vector
machines

Support vector machines (SVMs) (Vapnik 1995) are one of
the most accurate methods among all well-known classifi-
cation algorithms (Wu et al. 2008). SVMs construct an
optimal classifier for the input vector xi (i = 1, . . . , l) with
associated class label yi = ±1. Two types are usually applied
in data mining problems: the C-SVMmodel and the ν-SVM
model (Schölkopf et al. 2000). Since C-based SVM is used
in this research, only the C-SVM training procedure is high-
lighted. In short, the C-SVM algorithm requires the solution
of the following quadratic programming optimization (QP)
problem

⎧
⎨

⎩
max

α
W (α) =

∑l

i=1
αi − 1

2

∑l

i=1

∑l

j=1
αiα j yi y j K

(
xi , x j

)

0 � αi � C, i = 1, . . . , l,
∑l

i=1
αi yi = 0,

(15)

where αi ’s are the Lagrange multipliers and K (·) is the
kernel function. Once the solution of (15) is obtained in terms
of ααα vector, the optimal classifier is formulated

class (x) = sign

(
l∑

i=1

αi yi K (xi , x) + b

)
. (16)

The input vectors xi , having αi > 0, are called support
vectors (SVs). Thus, the summation in (16) is not actually
performed over all training patterns but over SVs (Kec-
man 2001). SVs constitute a sufficient subset out of given
input data for a sample prediction. The solution of the QP
problem in (15) is subject to constraint with respect to αi ,
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which involves the choice of an unknown C parameter. Fur-
thermore, the result of classification depends on the kernel
function K (·) applied in an optimal classifier (16). There-
fore, an appropriate selection of aforementioned factors is
the significant issue which has to be addressed. It is done in
the following subsections.

Finally, note that although the SVMs described above
are binary classifiers, they are easily combined to handle
multi-class classification problems. The most widely used
approaches combine multiple binary classifiers trained sepa-
rately using either G one-against-all (say, “one” positive,
“rest” negative) or one-against-one schemes (Hsu and Lin
2002).

4.3.1 The meaning of C constraint

The coefficient C in (15) is the parameter which introduces
additional capacity control for the classifier. The adjustment
of C provides a greater or smaller number of support vectors
which, in turn, influences the classification accuracy.

In this research, by setting different values toC constraint,
we are capable of obtaining different sets of support vectors.
Depending on the considered data set and the value of C , the
size of PNN varies.

4.3.2 The use of kernel function

Much study in recent years has been devoted to adopting dif-
ferent kernels for SVM (Chapelle et al. 2002; Schölkopf and
Smola 2002; Tsang et al. 2005; Chu and Wang 2005; Khan-
doker et al. 2009; Zhang et al. 2014). In this contribution, the
Gaussian kernel function is applied with the spread constant
(sc) as the parameter

K (xi , x) = exp

(
−‖xi − x‖2

2 (sc)2

)
. (17)

An appropriate range of the spread constant has to be esti-
mated, which is realized numerically with the assumption of
achieving the highest generalization ability of the classifier.

4.3.3 The proposed approach

For the constraint C and the spread constant sc, the final
sets of values AC and Asc are assumed, respectively. The
grid search method for both C and sc is performed, where
AC = {10−1, 100, 101, 102, 103, 104, 105} and Asc = {1.2,
1.5, 2, 5, 10, 50, 80, 100, 200, 500}.

In general, the optimal values (C∗, sc∗) are defined as
follows

(
C∗, sc∗) = arg max

(C,sc)
Q (C, sc) , (18)

where Q(C, sc) is a global performance index defined as
follows

Q(C, sc) =

⎧
⎪⎨

⎪⎩

αAcc+βSen+γSpe if G=2
G∑

g=1

(
αgAccg+βgSeng+γgSpeg

)
if G>2.

(19)

In contrast to (10), Acc, Sen, Spe, Accg , Seng and Speg
depend on C and sc. The SVM-based PNN reduction
methodology is summarized in Algorithm 2.

Algorithm 2: PNN structure reduction based on SVM
algorithm.

1 foreach sc ∈ Asc and C ∈ AC do
2 Perform SVM classification on whole input data set and

select support vectors SVs
3 Perform PNN cross-validation procedure using SVs as the

input data
4 Calculate global performance index Q(C, sc) as in (18)–(19)

for PNN
5 end

6 Read σ
(1)
1 , . . . , σ

(G)
n for PNN corresponding to C∗ and sc∗ with

the highest value of Q(C, sc)

In order to solve multi-class classification problems by
SVM in Algorithm 2, we utilize “one-against- one” method.
In this approach, for a data set with G classes, G(G − 1)/2
binary classifiers are constructed where each one is trained
using vectors from two classes. The prediction is performed
on the basis of voting strategy by assigning an unknown test
case to the class with the highest vote (Wang and Fu 2005).

5 Input data used to test the models

In this study, we use seven UCI machine learning repository
medical data sets (Bache and Lichman 2013):

• Wisconsin breast cancer (WBC) set with 683 patterns
and 9 features. The data are divided into two groups: 444
benign cases and 239 malignant cases.

• Pima Indians diabetes (PID) set with 768 patterns and
8 features. Two classes of data are considered: samples
tested negative (500 women) and samples tested positive
(268 women).

• Haberman’s survival (HS) set with 306 patterns and 3
features. There are two input classes: patients who sur-
vived 5years or longer (225 records) and patients who
died within 5years (81 records).
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• Cardiotocography (CTG) set with 2126 patterns and 22
features. The classes are coded into three states: normal
(1655 cases), suspect (295 cases) and pathological (176
cases).

• Thyroid (T) set with 7200 patterns and 21 features. Three
classes are regarded: subnormal functioning (166 sam-
ples), hyperfunction (368 samples) and not hypothyroid
(6666 samples).

• Dermatology (D) set with 358 patterns and 34 features.
Six data classes are considered: psoriasis (111 cases),
seborrheic dermatitis (60 cases), lichen planus (71 cases),
chronic dermatitis (48 cases), pityriasis rosea (48 cases)
and pityriasis rubra pilaris (20 cases).

• Diagnostic Wisconsin breast cancer (DWBC) set with
569 patterns and 30 features. Two medical states are
regarded: malignant (212 instances) and benign (357
instances).

Additionally, the research is conducted with the use of an
ovarian cancer (OC) real set of records which represent 199
women after ovarian cancer treatment. There are 17 parame-
ters registered for each case. The 60-month survival threshold
mandates two data groups: 131 cases under and 68 cases over
this threshold, respectively. The data are obtained from the
Clinical Department of Obstetrics and Gynecology of Rze-
szowStateHospital in Poland. The analysis of ovarian cancer
treatment is discussed in Skret et al. (2001).

6 Results and discussion

This section presents the comparison of the prediction ability
measured for the standard PNN model and the networks for
which the number of pattern neurons is reduced by means of
Algorithms 1 and 2. The prediction ability of the examined
classifiers is assessed using the global performance indices
J (s), Q(C, sc) which involve the models’ accuracy, sensi-
tivity and specificity. These indices are determined on the
basis of a tenfold cross-validation procedure. Furthermore,
the obtained results are compared to the prediction ability of
the reference classifiers: single decision tree (SDT), multi-
layer perceptron (MLP), SVM and k-means algorithm, and
to the outcomes for the state-of-the-art PNNs training proce-
dures. At the end of this section, we highlight some aspects
related to time effectiveness of the proposed algorithms.

6.1 Results for the proposed approaches

The left-hand sides of Tables 1, 2, 3, 4, 5, 6, 7 and 8 illustrate
the number of cluster centers (cs) used in PNN structure and
the performancemeasures Acc, Sen, Spe and J computed for
PNN trained according to Algorithm 1 for each of the con-
sidered data sets. In the row with the label “All,” we provide

the results for PNN with all pattern neurons. The right-hand
sides of these tables present the spread constant sc, the num-
bers of support vectors SVs, Acc, Sen, Spe and Q calculated
for PNN using Algorithm 2. For multiclass classification
problems, the average values of the accuracy, sensitivity and
specificity are shown and denoted, respectively: Acc, Sen
and Spe.

In our analysis, we consider two cases:

(a) the primary case when the global performance indices J
and Q are the accuracies or the average accuracy values,

(b) the exemplary case, in which we assume the values of
the weights for the accuracy, sensitivity and specificity
according to the designer knowledge.

For two class classification problems (Tables 1, 2, 3, 7,
8), the weights are α = 0.5, β = 0.3 and γ = 0.2
[see (10)–(14)]. In case of CTG data set classification task
(Table 4), the weights are set as follows: (α1, β1, γ1) =
(0.2, 0.07, 0.03), (α2, β2, γ2) = (0.05, 0.03, 0.02) and
(α3, β3, γ3) = (0.4, 0.15, 0.05). For T database classifi-
cation problem (Table 5), the following weights are used:
(α1, β1, γ1) = (0.2, 0.07, 0.03), (α2, β2, γ2) = (0.4, 0.15,
0.05) and (α3, β3, γ3) = (0.05, 0.03, 0.02). Finally, for D
data set classification task (Table 6),we apply: (αg, βg, γg) =
(0.1, 0.0367, 0.03) for g = 1, . . . , 6. For CTG data set,
indices 1, 2 and 3 are assigned to the classes suspect, normal
and pathological, respectively. In case of T database, indices
1, 2 and 3 correspond to the classes subnormal, hyperfunction
and not hypothyroid, respectively. The following conclusions
can be inferred:

1. In case of Algorithm 1, in seven out of eight data classifi-
cation cases, by reducing the number of pattern neurons
of PNN, we observe a higher value of the global perfor-
mance index J than the one computed with the use of all
pattern neurons of the model. The exception is in T data
set classification task.

2. In five classification tasks, by reducing the number of
pattern neurons of PNN by means of Algorithm 2, we
obtain a higher value of the global performance index Q
than the one determined for full structure network.

3. The most gainful reduction ratio R defined in (8) by opti-
mal s = s∗ can be directly read from Tables 1, 2, 3, 4,
5, 6, 7 and 8 . For example, in DWBC data set classifi-
cation problem, it takes the value of R = 57

569 ≈ 0.1.
Thus, instead of all the original data cases, we can use
their substitutes, but about 10 times smaller in number
and we get a higher value of global performance index.

It needs to be stressed that in majority of classification
tasks, Algorithm 1 applied to the training process of PNN
provides higher values of the global performance index J in
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Table 1 Results for WBC classification task: Algorithm 1—the number of cluster centers (cs ); Algorithm 2—the spread constant and the number
of support vectors for C∗ = 104

Algorithm 1 Algorithm 2

s cs Acc Sen Spe J Time (s) sc SVs Acc Sen Spe Q Time (s)

1 68 0.971 0.958 0.977 0.968 0.94 1.2 65 0.677 0.767 0.500 0.669 0.41

2 137 0.993 1.000 0.988 0.994 2.62 1.5 69 0.681 0.773 0.520 0.676 0.92

3 205 0.966 0.972 0.962 0.967 5.74 2 80 0.750 0.818 0.600 0.740 1.14

4 274 0.975 0.968 0.977 0.973 8.27 5 218 0.954 0.971 0.889 0.946 8.27

5 342 0.976 0.983 0.973 0.978 12.09 10 293 0.966 0.885 0.987 0.946 19.08

6 409 0.976 0.965 0.981 0.974 16.91 50 397 0.982 0.992 0.968 0.982 17.31

7 478 0.981 0.988 0.977 0.982 25.27 80 432 0.969 0.983 0.953 0.970 20.30

8 546 0.985 0.989 0.983 0.986 30.99 100 439 0.982 0.970 0.992 0.980 24.99

9 615 0.985 0.991 0.983 0.986 31.64 200 449 0.982 0.987 0.976 0.982 29.53

All 683 0.987 0.987 0.986 0.987 46.71 500 449 0.984 0.987 0.981 0.984 35.31

Table 2 Results for PID classification task: Algorithm 1—the number of cluster centers (cs ); Algorithm 2—the spread constant and the number of
support vectors for C∗ = 102

Algorithm 1 Algorithm 2

s cs Acc Sen Spe J Time (s) sc SVs Acc Sen Spe Q Time (s)

1 77 0.909 0.852 0.940 0.898 2.07 1.2 374 0.486 0.259 0.709 0.463 2.49

2 154 0.759 0.611 0.840 0.731 4.45 1.5 385 0.525 0.262 0.773 0.496 3.97

3 230 0.800 0.675 0.867 0.776 9.50 2 384 0.521 0.312 0.733 0.501 7.38

4 307 0.801 0.626 0.895 0.767 15.51 5 386 0.588 0.345 0.794 0.556 12.32

5 384 0.794 0.619 0.888 0.760 19.10 10 407 0.636 0.389 0.826 0.600 13.17

6 461 0.757 0.528 0.880 0.713 19.92 50 664 0.738 0.574 0.847 0.711 31.18

7 538 0.797 0.622 0.891 0.763 39.06 80 725 0.774 0.608 0.871 0.744 38.75

8 614 0.764 0.556 0.875 0.724 40.84 100 742 0.784 0.876 0.623 0.779 40.15

9 691 0.769 0.573 0.876 0.732 39.79 200 768 0.778 0.608 0.870 0.745 45.54

All 768 0.778 0.608 0.870 0.745 44.02 500 768 0.778 0.608 0.870 0.745 45.51

Table 3 Results for HS classification task: Algorithm 1—the number of cluster centers (cs ); Algorithm 2—the spread constant and the number of
support vectors for C∗ = 100

Algorithm 1 Algorithm 2

s cs Acc Sen Spe J Time (s) sc SVs Acc Sen Spe Q Time (s)

1 31 0.677 0.250 0.826 0.579 0.11 1.2 170 0.524 0.000 1.000 0.462 0.64

2 61 0.754 0.313 0.911 0.653 0.15 1.5 169 0.550 0.914 0.216 0.592 0.55

3 92 0.761 0.083 1.000 0.605 0.17 2 169 0.538 0.049 0.988 0.481 0.64

4 122 0.778 0.375 0.922 0.686 0.57 5 171 0.549 0.062 0.989 0.491 0.67

5 154 0.747 0.268 0.920 0.638 0.61 10 174 0.528 0.025 0.957 0.463 0.70

6 184 0.761 0.102 1.000 0.611 0.47 50 200 0.600 0.062 0.966 0.512 1.72

7 215 0.744 0.140 0.962 0.606 0.71 80 215 0.637 0.148 0.933 0.550 2.01

8 245 0.735 0.077 0.972 0.585 1.57 100 224 0.687 0.308 0.902 0.616 2.42

9 276 0.768 0.246 0.956 0.649 1.65 200 243 0.695 0.259 0.914 0.608 2.70

All 306 0.761 0.247 0.946 0.644 2.12 500 266 0.741 0.333 0.919 0.654 2.79
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Table 4 Results for CTG classification task: Algorithm 1—the number of cluster centers (cs ); Algorithm 2—the spread constant and the number
of support vectors for C∗ = 103

Algorithm 1 Algorithm 2

s cs Acc Sen Spe J Time (s) sc SVs Acc Sen Spe Q Time (s)

1 214 0.981 0.920 0.979 0.955 9.26 1.2 230 0.925 0.892 0.941 0.941 12.17

2 425 0.980 0.912 0.978 0.952 31.61 1.5 247 0.933 0.897 0.944 0.945 12.78

3 639 0.982 0.916 0.974 0.957 84.11 2 288 0.928 0.886 0.942 0.933 20.92

4 850 0.981 0.920 0.975 0.957 119.93 5 600 0.971 0.941 0.972 0.969 117.65

5 1064 0.984 0.936 0.977 0.965 342.56 10 1069 0.981 0.959 0.981 0.978 215.08

6 1276 0.990 0.968 0.986 0.986 348.41 50 1985 0.991 0.977 0.989 0.989 605.79

7 1489 0.981 0.948 0.980 0.973 330.78 80 2070 0.979 0.917 0.979 0.954 610.80

8 1701 0.985 0.939 0.974 0.968 583.02 100 2084 0.990 0.970 0.986 0.986 777.62

9 1914 0.991 0.976 0.989 0.988 814.52 200 2098 0.992 0.975 0.989 0.988 745.51

All 2126 0.991 0.973 0.989 0.987 887.88 500 2110 0.992 0.978 0.991 0.989 757.76

Table 5 Results for T classification task: Algorithm 1—the number of cluster centers (cs ); Algorithm 2—the spread constant and the number of
support vectors for C∗ = 101

Algorithm 1 Algorithm 2

s cs Acc Sen Spe J Time (s) sc SVs Acc Sen Spe Q Time (s)

1 721 0.963 0.669 0.787 0.825 52.36 1.2 944 0.955 0.921 0.966 0.951 159.35

2 1440 0.985 0.880 0.934 0.944 112.96 1.5 943 0.947 0.913 0.959 0.944 180.56

3 2160 0.989 0.939 0.979 0.974 375.21 2 1009 0.949 0.900 0.957 0.940 202.41

4 2879 0.981 0.881 0.941 0.943 655.14 5 1187 0.954 0.913 0.964 0.948 289.59

5 3600 0.982 0.895 0.957 0.953 1380.51 10 1262 0.959 0.905 0.965 0.949 319.21

6 4321 0.982 0.891 0.950 0.950 1898.36 50 1963 0.977 0.936 0.974 0.964 635.75

7 5040 0.982 0.874 0.939 0.944 2098.01 80 2365 0.980 0.939 0.978 0.968 965.03

8 5760 0.983 0.903 0.951 0.953 2293.61 100 2598 0.981 0.929 0.973 0.964 1128.61

9 6479 0.981 0.894 0.944 0.947 4338.36 200 3449 0.987 0.951 0.977 0.974 1500.32

All 7200 0.994 0.963 0.985 0.985 7543.13 500 5021 0.991 0.960 0.980 0.980 2833.95

Table 6 Results for D classification task: Algorithm 1—the number of cluster centers (cs ); Algorithm 2—the spread constant and the number of
support vectors for C∗ = 103

Algorithm 1 Algorithm 2

s cs Acc Sen Spe J Time (s) sc SVs Acc Sen Spe Q Time (s)

1 36 0.991 0.917 0.995 0.975 0.35 1.2 257 0.999 0.996 0.999 0.998 23.34

2 72 0.999 0.999 0.999 0.999 0.67 1.5 282 0.998 0.991 0.998 0.997 24.24

3 106 0.991 0.967 0.994 0.986 2.82 2 319 0.999 0.997 0.999 0.999 29.96

4 142 0.995 0.985 0.997 0.994 3.23 5 356 0.999 0.997 1.000 0.999 33.31

5 180 0.998 0.993 0.999 0.997 7.11 10 358 0.997 0.990 0.999 0.996 31.86

6 216 0.995 0.978 0.997 0.992 10.34 50 358 0.997 0.990 0.999 0.996 31.90

7 252 0.999 0.996 0.999 0.998 13.64 80 358 0.997 0.990 0.999 0.996 32.28

8 286 0.999 0.996 0.999 0.998 18.08 100 358 0.997 0.990 0.999 0.996 32.10

9 322 0.997 0.990 0.998 0.996 24.99 200 358 0.997 0.990 0.999 0.996 32.13

All 358 0.997 0.990 0.998 0.996 34.88 500 358 0.997 0.990 0.999 0.996 31.79
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Table 7 Results for DWBC classification task: Algorithm 1—the number of cluster centers (cs ); Algorithm 2—the spread constant and the number
of support vectors for C∗ = 10−1

Algorithm 1 Algorithm 2

s cs Acc Sen Spe J Time (s) sc SVs Acc Sen Spe Q Time (s)

1 57 0.999 0.997 0.998 0.998 0.62 1.2 206 0.976 0.980 0.971 0.976 56.48

2 113 0.991 1.000 0.976 0.991 2.67 1.5 211 0.976 0.963 0.990 0.975 62.20

3 171 0.998 0.997 0.997 0.997 7.48 2 226 0.982 1.000 0.965 0.984 74.32

4 228 0.997 0.995 0.994 0.996 15.78 5 335 0.976 0.976 0.976 0.976 107.65

5 285 0.986 0.983 0.991 0.986 22.41 10 442 0.989 0.981 0.996 0.988 132.06

6 341 0.982 0.995 0.961 0.982 30.78 50 568 0.993 0.986 0.997 0.992 183.98

7 398 0.992 0.996 0.986 0.992 50.52 80 569 0.993 0.986 0.997 0.992 189.27

8 456 0.991 0.993 0.988 0.991 92.91 100 569 0.993 0.986 0.997 0.992 189.27

9 512 0.988 0.997 0.974 0.988 104.80 200 569 0.993 0.986 0.997 0.992 189.27

All 569 0.993 0.997 0.986 0.993 181.80 500 569 0.993 0.986 0.997 0.992 189.27

Table 8 Results for OC classification task: Algorithm 1—the number of cluster centers (cs ); Algorithm 2—the spread constant and the number of
support vectors for C∗ = 10−1

Algorithm 1 Algorithm 2

s cs Acc Sen Spe J Time (s) sc SVs Acc Sen Spe Q Time (s)

1 20 0.650 0.143 0.923 0.553 0.16 1.2 155 0.826 0.867 0.793 0.832 5.16

2 40 0.990 1.000 0.985 0.992 0.47 1.5 163 0.883 0.882 0.884 0.883 6.52

3 59 0.966 0.950 0.974 0.963 1.61 2 171 0.859 0.882 0.845 0.863 6.07

4 79 0.975 0.963 0.981 0.973 2.28 5 183 0.853 0.794 0.887 0.842 5.92

5 100 0.990 1.000 0.985 0.992 3.23 10 189 0.867 0.853 0.876 0.865 6.09

6 120 0.933 0.902 0.949 0.927 3.48 50 195 0.892 0.867 0.905 0.887 9.86

7 140 0.914 0.854 0.946 0.902 4.76 80 196 0.857 0.838 0.867 0.853 10.88

8 159 0.906 0.907 0.905 0.906 9.42 100 196 0.857 0.838 0.867 0.853 11.18

9 179 0.916 0.902 0.924 0.913 9.68 200 196 0.857 0.838 0.867 0.853 11.18

All 199 0.864 0.867 0.863 0.865 11.89 500 197 0.878 0.824 0.907 0.868 9.91

Table 9 The quotient of the original PNN training time to the training
time of reduced PNN

Data set Algorithm 1 Algorithm 2

WBC 17.83 �

PID 21.26 1.13

HS 3.72 �

CTG 1.09 1.25

T � �

D 52.06 1.06

DWBC 293.23 1.03

OC 25.29 1.01

comparison with Q obtained by PNN trained by means of
Algorithm 2.

Table 9 contains the quotient of the original PNN training
time to the training time of reduced PNN, only if the Algo-

rithm i (i = 1, 2) provides the highest value of the global
performance index (J or Q, respectively).

The symbol “�” means that the global performance index
of Algorithm i , (i = 1, 2) is lower than the one provided
by original PNN. We observe that in the case of Algorithm
1, this quotient is greater than 1 in seven out of eight data
classification tasks taking the highest value of 293.23
(DWBC problem). However, as it can be seen from Table
9, Algorithm 2 is much more time-consuming in comparison
with Algorithm 1.

6.2 Comparison to reference classifiers

All the reference classifiers utilized in the classification prob-
lems are trained and tested in DTREG software (Sherrod
2015). Below, the short description of the model’s settings is
highlighted.
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SDT is simulated with the entropy to evaluate the quality
of splits in the process of tree construction. The depth of the
tree is set to 10. The pruning algorithm is applied to find the
optimal tree size. We prune the tree with respect to minimum
cross-validation error.

MLP is trained with one or two hidden layers. Linear or
logistic transfer functions are used for activation of the neu-
rons in hidden and output layers. The search for the optimal
number of hidden layer neurons is performed in order tomin-
imize the sum squared error of model. The scaled conjugate
gradient algorithm is MLP’s training algorithm.

SVM algorithm is also applied in this research as the
reference classifier. Multiclass classification tasks are solved
using the one-versus-one approach. In each classification
problem, radial basis kernel function is utilized with experi-
mental grid search for model’s parameters C and sc.

Similarly to SVM, the k-means clustering algorithm is the
reference model applied in this work for comparison pur-
poses. The k-means predictions for the unknown patterns are
determined by using the category of the nearest cluster. In the
experiments, we search for the number of clusters for which
the highest testing accuracy is obtained.

Tables 10, 11, 12 and 13 present the performance mea-
sures Acc, Sen, Spe and J computed for MLP, SDT,
SVM and k-means algorithms in all considered classification
problems.

We can observe that in six out of eight data set classifi-
cation tasks, PNN with the structure reduced by means of
Algorithm1orAlgorithm2yields a higher value of the global
performance index.

6.3 Comparison to state-of-the-art procedures

In this section, the classification accuracy values obtained by
two proposed approaches are compared to the accuracies for
PNNs available in the literature. Table 14 shows the results
for WBC, PID, HS, T, D and DWBC data set classification
tasks.

In this table, for comparison purposes, we also present the
accuracy values provided by PNN with all hidden neurons
in the pattern layer and the ones for the reference classifiers.
The best results are marked with bold. As shown, in each
data classification case, the PNNmodels trained by means of
Algorithm 1 or Algorithm 2 outperform PNNs trained using
state-of-the-art methods (Georgiou et al. 2006; Chang et al.
2008; Georgiou et al. 2008; Saiti et al. 2009; Temurtas et al.
2009; Chandra and Babu 2011; Yeh and Lin 2011; Azar and
El-Said 2013). Our algorithms also perform better than the
reference classifiers in all considered data set classification
problems. Only in for T data classification task, PNN with
all neurons in the pattern layer yields the highest value of the

Table 10 Results for the
reference classifiers in the
classification tasks of WBC and
PID data sets

Classifier WBC PID

Acc Sen Spe J Time (s) Acc Sen Spe J Time (s)

MLP 0.968 0.949 0.977 0.964 3.94 0.769 0.578 0.872 0.732 3.81

SDT 0.950 0.928 0.962 0.946 0.22 0.748 0.608 0.824 0.721 0.39

SVM 0.972 0.979 0.968 0.973 11.33 0.772 0.548 0.892 0.729 291.98

k-means 0.956 0.925 0.973 0.950 335.16 0.691 0.425 0.834 0.640 1.74

Table 11 Results for the
reference classifiers in the
classification tasks of HS and
CTG data sets

Classifier HS CTG

Acc Sen Spe J Time (s) Acc Sen Spe J Time (s)

MLP 0.728 0.161 0.933 0.599 2.78 0.985 0.949 0.980 0.974 77.31

SDT 0.748 0.395 0.875 0.668 0.21 0.991 0.977 0.986 0.990 0.38

SVM 0.742 0.111 0.968 0.598 233.36 0.987 0.951 0.982 0.976 157.32

k-Means 0.686 0.383 0.796 0.617 8.96 0.936 0.842 0.926 0.919 763.34

Table 12 Results for the
reference classifiers in the
classification tasks of T and D
data sets

Classifier T D

Acc Sen Spe J Time (s) Acc Sen Spe J Time (s)

MLP 0.966 0.645 0.806 0.825 146.03 0.988 0.963 0.993 0.984 5.16

SDT 0.990 0.949 0.977 0.977 0.50 0.980 0.914 0.988 0.967 0.38

SVM 0.986 0.868 0.936 0.945 451.57 0.991 0.969 0.994 0.987 12.50

k-Means 0.895 0.634 0.797 0.794 122,040.77 0.966 0.885 0.980 0.951 410.75
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Table 13 Results for the
reference classifiers in the
classification tasks of DWBC
and OC data sets

Classifier DWBC OC

Acc Sen Spe J Time (s) Acc Sen Spe J Time (s)

MLP 0.975 0.957 0.986 0.972 6.81 0.814 0.808 0.817 0.813 2.41

SDT 0.936 0.896 0.961 0.929 0.54 0.758 0.750 0.763 0.757 0.25

SVM 0.975 0.958 0.986 0.972 6.11 0.849 0.808 0.870 0.841 4.97

k-means 0.891 0.778 0.958 0.871 98.17 0.758 0.779 0.748 0.762 0.59

Table 14 The accuracy results in the classification of WBC, PID, HS, T, D and DWBC data sets for the proposed approaches, PNN trained with
total number of pattern neurons, the reference classifiers and the state-of-the-art PNN learning algorithms

Data set Proposed approaches Full PNN Reference classifiers State-of-the-art methods

Algorithm 1 Algorithm 2 MLP SDT SVM k-Means Source Result

WBC 0.993 0.984 0.987 0.968 0.950 0.972 0.956 Georgiou et al. (2008) 0.989

Azar and El-Said (2013) 0.976

PID 0.909 0.784 0.778 0.769 0.748 0.772 0.691 Temurtas et al. (2009) 0.781

Georgiou et al. (2006) 0.753

HS 0.778 0.741 0.761 0.728 0.748 0.742 0.686 Chandra and Babu (2011) 0.743

T 0.989 0.991 0.994 0.966 0.990 0.986 0.895 Yeh and Lin (2011) 0.983

Saiti et al. (2009) 0.968

D 0.999 0.999 0.997 0.988 0.980 0.991 0.966 Chang et al. (2008) 0.935

DWBC 0.999 0.993 0.993 0.975 0.936 0.975 0.891 Chang et al. (2008) 0.954

accuracy. However, our result is worse only by a margin of
0.3%.

In our paper, in both Algorithms 1 and 2, the smooth-
ing parameters are determined experimentally in a way that
the global performance indices achieve maximal value. The
authors of Xu et al. (1994) provided a theorem on the selec-
tion of this parameter for designing Parzenwindow estimator
particularly for probabilistic neural network. It seems advis-
able utilizing this interesting result in future.

7 Conclusions

This article constituted the generalization of the previous
authors’ results in Kusy and Kluska (2013). In the current
study, we conducted more comprehensive analysis on the
problem of PNN structure reduction. Firstly, the prediction
ability of reduced PNN was assessed by means of a tenfold
cross-validation procedure. Such an approach is commonly
used for algorithms testing purposes. Secondly, we proposed
the global performance index, which included the accuracy,
sensitivity and specificity in order to determine the prediction
ability of the considered models. The global performance
index presented in this way is quite flexible since it can
take the form of model’s accuracy or the form of weighted
accuracy, sensitivity and specificity values for each class
separately. The values of particular weights can be estab-
lished by a designer (domain expert) according to his/her
best knowledge. We would like to stress that this is par-

ticularly important especially in medical data classification
problems, as the ones used in this study. Furthermore, the
PNN classifiers with the number of pattern neurons reduced
by means of k-means clustering and SVM procedure were
compared to well-known computational intelligence algo-
rithms: single decision tree, multilayer perceptron, support
vector machines and k-means clustering procedure. In six
classification tasks, we achieved a higher value of the global
performance index for PNN with reduced architecture than
for the considered reference classifiers. Finally, we alsomade
the comparison of the accuracy values of the reduced PNN
models and PNNs trained by state-of-the-art procedures. In
all data classification cases, the accuracies obtained bymeans
of our algorithms took a higher value.
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