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Abstract This paper presents novel approach to the

task of control performance assessment. Proposed

approach does not require any a priori knowledge on

process model and uses control error time series data

using nonlinear dynamical fractal persistence mea-

sures. Notion of the rescaled range R/S plots with esti-

mation of Hurst exponent is applied. Crossover phe-

nomenon is observed in data being investigated and dis-

cussed. Paper starts with industrial engineering ratio-

nale. Review of the control error histogram is followed

by statistical analysis of probabilistic distribution func-

tions (PDFs). Lévy α-stable PDF parameters seem to

be best fitted. They directly lead to the fractal analysis

using Hurst exponents and R/S plot crossover points.

The evaluation aims at performance of the general-

ized predictive control (GPC) and discusses freshly

introduced loop performance quality sensitivity against

design parameters of the GPC controller.
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1 Introduction

Presented work combines observations from different

contexts: CPA [24], model predictive control (MPC)

[6], non-Gaussian statistics [19] and fractal nonlinear

analysis [36]. The main research interests focus on the

subject of control quality for SISO loop using predic-

tive controller (GPC).

Predictive MPC algorithms gain popularity in indus-

trial process control. Although they are more compli-

cated and require specific knowledge, they allow to

address issues that are unattained by PID loops. It may

coordinate multivariate installations that are subject to

delays and technology constraints. Real processes are

mostly non-stationary, time-varying complex systems.

Application of MPC may significantly improve control

quality. It is compensated with more extensive tuning

effort due to the larger number of parameters. Addi-

tionally, system sensitivity to unmodeled dynamics or

internal model misfit increases. It may unexpectedly

level down accomplishments. Improper or inexistent

maintenance may significantly deteriorate any positive

results [39].

Thus, loop quality and control system performance

plays crucial role in achieving operational. Improperly

selected philosophy of regulation or poor tuning affects

or even may fully destroy overall process performance.

Control performance monitoring and diagnostic tools

are inevitable elements properly designed I&C infras-

tructure. This subject is even more important in case of

advanced process control (APC) solutions.
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MPC approach consists of many algorithms being

variants of backbone predictive philosophy [28]. It

uses embedded model supporting controller with pre-

dictions and optimization algorithm to choose opti-

mal scenario. Control evaluation is repeated each step

(sampling period). GPC algorithm is one of them. It

was introduced in 1987 [9]. Although the algorithm

is well established and there are a lot of variants and

reported successful implementations, its design, tuning

and maintenance are still challenging.

Reviews show that a large number of industrial

loops perform poorly with 60% featuring bad tun-

ing and more (85%) facing wrong design [25]. The

need for control quality assessment is strong. CPA is

closely connected with life cycle of control system. It

uses specific indexes allowing measuring and bench-

marking. There are several methods to evaluate and

further interpret results. Data analysis may be per-

formed with several different approaches starting from

time trends, through statistical, minimum variance, fre-

quency domain, orthogonal functions, wavelets, frac-

tals, entropy and many others.

Historically, each control engineer used his own

approach to quantify loop quality. They gathered

unique knowledge based on personal experience, and

it was rarely shared. Increasing quantity of applica-

tions accompanied with still limited number of experts

forced the need for knowledge sharing. First reported

loop performance assessment was applied to paper

machine in 1967 [2]. The research continued gain-

ing increased interest in 1989 with minimum variance

(MinVar) index [21]. CPA interest grew up fast starting

from that moment. Actually research covers almost all

aspects of control, i.e., MIMO structures [51], nonlin-

ear processes [23], large-scale systems [30], predictive

systems [18,34].

Moreover, there are developed new methodolo-

gies using frequency domain [35], wavelets [29], per-

sistence measures [33], orthonormal functions [25],

entropy [50]. It is interesting to notice that soft comput-

ing or artificial intelligence approach is rare. Scientific

research is accompanied with industrial methods and

commercial software packages.

Most methods assumes Gaussian properties. Nor-

mal probabilistic distribution function (PDF) approach

is the most popular. But there are a lot of other func-

tions offering interesting interpretations. It also appears

that properties of many industrial examples are not so

unambiguous. Extension of Gaussian approach opens

new opportunities. It seems that fat-tail properties exist

in the control error data [15]. Stable distributions may

address real issues. Lévy α-stable PDF seems to be one

possible alternative. It is described by several parame-

ters reflecting distribution position, stability, scale and

skewness factors. There exist relations between fat-tail

properties and a phenomenon of fractality [36].

Thus, there is only single step to apply fractal analy-

sis. Approach was first proposed by Mandelbrot in 70’s

[27]. Self-similarity is the underlying concept behind

fractals meaning invariance against changes in scale

or size [36]. Two other main distinctive properties are

Hausdorff dimension larger then topological one and

simple recursive definition.

Fractal time series analysis started to be developed in

the world of economy. In economy there exists effec-

tiveness hypothesis assuming that if prices reflect all

publicly available information, new prices are only

caused by new information. Thus, the prices should

hold properties of the Brownian motion. It assumes

that future is independent on past and the present. How-

ever, practice does not reflect it. Information is neither

complete nor a priori known. We do not react immedi-

ately and simultaneously. Thus, we obtain rather frac-

tional Brownian motion. Research shows that simi-

lar behavior and results are observed in many differ-

ent areas. Fractal methods have found several applica-

tions in meteorology, seismology, biology, medicine,

telecommunication, networking, etc. Analysis of con-

trol engineering time series originating from real

complex industrial systems reveals similar properties

[15,17].

Unfortunately, there are only a few reported applica-

tions in control engineering. Authors in [41] address the

subject of using Hurst exponent in the assessment of PI

and PID controller. In [10] scaling exponent is used to

assess Kalman filter performance. In the recent works

authors [11] perform diagnosis of MIMO control loops

with Hurts exponent evaluated through detrended fluc-

tuation analysis (DFA) algorithm using Mahalanobis

distance. The same approach is applied also to the dis-

turbed univariate and multivariate systems with distur-

bances [12]. Methodology investigated in the paper per-

forms comprehensive approach to the fractal methodol-

ogy analyzing different persistence measures (not only

single Hurst exponent).

Research considering performance assessment for

predictive control strategies was conducted for sev-

eral years. First works used knowledge-based system
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applied to the DMC-like predictive controller [34].

Further works continued in various directions. Model-

based approaches [3,7,42] are accompanied with min-

imum variance methods [47,48] that also require some

process knowledge. Statistical approach through corre-

lation analysis of optimal and working controller was

proposed in [3], while prediction error benchmarking

was used in [49]. Different aspect of economic, not

dynamic, controller performance was addressed in [1].

Comprehensive review of various approaches is pre-

sented in [18].

We see that some of the previous methods use data-

driven approach with covariance analysis. And most of

them considers GPC structures. Algorithm proposed

in this paper does not require any knowledge on con-

troller neither embedded model and is purely based on

historical data without any assumptions on its charac-

ter. Thus, it may be commonly applied in industrial

cases. In fact, it may be used to other control strategies.

PID loop assessment is considered in [14].

SISO linear case is considered in paper. Such a selec-

tion is intentional. Its applicability has been already

observed and effectively used in real industrial cases

[17] with nonlinear complex process witnessing strong

and unknown disturbances. Simple case enables clear

and direct analysis of the investigated phenomena. The

goal is to identify method potential and weaknesses.

First works have shown approach applicability with

simulated PID controllers. This work forms natural

next step that (if successful) may be followed by fur-

ther, in-depth (nonlinear, MIMO, complex) research. It

is rather expected that nonlinear cases will be more

suitable for fractal approach as it is just nonlinear.

Research conducted on real industrial data confirms

such a premise. In fact, there is no much difference in

approach extension toward MIMO structures. The sys-

tem uses control error; thus, it may monitor and assess

independently all the channels (CVs—controlled vari-

ables).

Paper starts with the presentation of GPC algorithm

(Sect. 2) and standard CPA approaches (Sect. 3). It

is followed by introduction to stable distributions and

their connections with fractal and persistence proper-

ties. Main part of the paper consists of simulation sce-

narios including varying GPC configuration (Sect. 4).

Paper concludes with Sect. 5 consisting of observations

and open issues requiring further attention.

2 Generalized predictive control

2.1 Predictive task formulation

Let assume that process input (MV—manipulated vari-

able) is u and the output (CV—controlled variable)

y. Classical PID algorithm calculates only value of

manipulated variable at current sampling moment k,

i.e., u(k). In contrast, MPC algorithms [6] calculate

a whole set of future controls for each consecutive

moment k.

△u(k) = [△u(k|k) △u(k + 1|k)

. . . △u(k + Nu − 1|k)]T (1)

Number of decision variables is defined by control hori-

zon length Nu and increments by:

△u(k + p|k)

=

{

u(k|k) − u(k − 1) if p = 0

u(k + p|k) − u(k + p − 1|k) if p ≥ 1

We assume △u(k + p|k) = 0 for p ≥ Nu, i.e.,

u(k + p|k) = u(k + Nu − 1|k) for p ≥ Nu. Future

increments in MV (1) are calculated from optimiza-

tion, in which predicted control quality is maximized

and constraints regarded. Typically, quality is defined

as predicted control errors over prediction horizon

N ≥ Nu, i.e., differences between setpoint ysp(k+ p|k)

and predicted process output ŷ(k + p|k) for p =

1, . . . , N .

Constraints are imposed on the range of MV defined

by umin, umax, constraints on MV rate of change MV

by △umin,△umax and constraints limiting the range of

predicted CV are ymin, ymax. MPC optimization may

be expressed in a vector–matrix notation

min
△u(k)

{

∥

∥ ysp(k) − ŷ(k)
∥

∥

2
+ ‖△u(k)‖2

�

}

subject to

umin ≤ J△u(k) + u(k − 1) ≤ umax − △umax

≤ △u(k) ≤ △umax ymin ≤ ŷ(k)△u(k) ≤ ymax (2)

where the norms are defined as ‖x‖2 = xTx and

‖x‖2
A = xT Ax, the setpoint trajectory vector is defined

as ysp(k) =
[

ysp(k + 1|k) . . . ysp(k + N |k)
]T

, and the
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predicted trajectory vector ŷ(k) =
[

ŷ(k + 1|k) . . .

ŷ(k + N |k)
]T

and the output constraint vectors ymin =
[

ymin . . . ymin
]T

, ymax =
[

ymax . . . ymax
]T

are of

length N . The input constraint vectors umin

=
[

umin . . . umin
]T

, umax =
[

umax . . . umax
]T

,△umax

=
[

△umax . . . △umax
]T

and the vector u(k − 1) =

[u(k − 1) . . . u(k − 1)]T are of length Nu, matrices

� = diag(λ, . . . , λ) and J are of size Nu × Nu.

Optimization (2) is solved online. Future control

increments (1) are calculated, but only first element

of the sequence is applied to the process, i.e., u(k) =

△u(k|k) + u(k − 1). At next moment k + 1, predic-

tion is shifted one step forward and the procedure is

repeated. Second part of the minimized cost function

is a penalty term (weight λ > 0), which is used to calm

down trajectories (the bigger the value of λ, the slower

the trajectories) and obtain good numerical properties.

2.2 GPC implementation issues

In all MPC algorithms dynamic model of the controlled

process is used to predict the future values of the output

variable, ŷ(k + p|k), over the prediction horizon, i.e.,

for p = 1, . . . , N . In the GPC algorithm process model

has the form of a discrete difference equation

A(q−1)y(k) = B(q−1)u(k − 1) + C(q−1)
ǫ(k)

△
(3)

with polynomials in the backward shift operator (q−1)

A(q−1) = 1 + a1q−1 + · · · + a1
nA

q−n
A1 (4)

B(q−1) = b1q−1 + · · · + bnBq−nB (5)

C(q−1) = 1 + c1q−1 + · · · + cnCq−nC (6)

Vector of white noises with zero mean is ǫ(k), and

△ = 1−q−1 means backward difference operator (1/△

is integration). Model (3) may be called autoregressive

integrated moving average with exogenous input (ARI-

MAX) or controlled autoregressive integrated moving

average (CARIMA) [44]. Assuming that the process is

affected by integrated white noise, i.e., C(q−1) = 1,

model (3) becomes

A(q−1)y(k) = B(q−1)u(k − 1) +
ǫ(k)

△
(7)

Above model is usually applied in practical imple-

mentations of the GPC algorithm. Assumption that

C(q−1) = 1 makes it possible to easily derive predic-

tion equations in comparison with the general case of

C(q−1) �= 1, i.e., when the integrated noise is colored.

Model (7) is used to derive the prediction equation [9]

ŷ(k) = G△u(k) + y0(k) (8)

where dynamic matrix G (calculated once) of dimen-

sionality N × Nu consists of step response coeffi-

cients of model (7) and the free trajectory vector

y0(k) =
[

y0(k + 1|k) . . . y0(k + N |k)
]T

(calculated

at each sampling instant k) is obtained from

y0(k) = F yPG(k) + GPG△uPG(k). (9)

The vectors yPG(k) = [y(k) . . . y(k − nA)]T and

uPG(k) = [△u(k − 1) . . . △u(k − nB)]T are of length

nA + 1 and nB, respectively, and the matrices F and

GPG of size N × (nA + 1) and N × nB are calculated

from the model Eq. (7) solving Diophantine equations

[44]. From Eqs. (8) and (9), GPC prediction equation

is derived

ŷ(k) = G△u(k) + F yPG(k) + GPG△uPG(k) (10)

It is necessary to notify that according to the GPC pre-

diction Eq. (10) the future predictions of the controlled

variable form linear functions of the calculated decision

vector △u(k), and the free trajectory depends only on

the past. Using Eq. (10), from the general MPC opti-

mization problem (2), one obtains the GPC quadratic

optimization task

min
△u(k)

{

∥

∥ ysp(k) − G△u(k) − F yPG(k) − GPG△uPG(k)
∥

∥

2

+‖△u(k)‖2
�

}

subject to

umin ≤ J△u(k) + u(k − 1) ≤ umax

− △umax ≤ △u(k) ≤ △umax

ymin ≤ G△u(k) + F yPG(k) + GPG△uPG(k)△u(k) ≤ ymax

(11)

In the GPC quadratic optimization problem (11), which

is solved online at each sampling instant k to calculate

the vector of the increments of the future values of

the manipulated variable, i.e., the vector △u(k), the

minimized cost function is quadratic in terms of △u(k)

and all the constraints are linear in terms of △u(k). That

is why it may be solved online very efficiently using

the available solvers, e.g., the active set or interior point

algorithms. It is important to emphasize that due to the

quadratic nature of the GPC optimization problem, the

global solution is found at all sampling instants k.
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3 Control loop quality measures

Control performance assessment methods that are used

in the analysis are described in the following para-

graphs.

3.1 Time-domain CPA methods

Time-domain approach is straightforward and is com-

monly used. It may be based on data gathered from

specific test experiment data (like step test) or from nor-

mal operation time trends. Step test measures are very

informative [40] (area index, output index, R-index,

idle index), but they have limited applicability. Indus-

try is not eager to allow dedicated experiments disturb-

ing normal operation, because of lost profits and safety

issues. On the other hand, integral indexes based on

data from normal operation are widely used. Three of

them will be evaluated and compared further:

– Mean square error (MSE):

MSE =
1

N

N
∑

i=1

(

y∗
i − yi

)2
, (12)

where N -number of samples, y∗-setpoint (refer-

ence signal), y-process output.

– Integral of absolute error (IAE):

IAE =
1

N

N
∑

i=1

∣

∣y∗
i − yi

∣

∣ , (13)

– And amplitude index (AMP):

AMP = max
(

y∗
i − yi

)

− min
(

y∗
i − yi

)

. (14)

MSE and IAE are frequently used alternately. However,

they focus on different aspects. It was shown [37] that

tuning minimizing MSE punishes large setpoint devi-

ations and generates aggressive control, while IAE has

closest relationship to economic considerations [38].

Both of them will be considered in this work.

3.2 Statistical indexes

Statistical factors of Gaussian normal distribution

deliver number of KPIs. Mean value xo and standard

deviation σ are commonly used. They are frequently

followed by higher-order statistics [8]. Their meaning

and importance are unquestionable, and the majority

Fig. 1 Histogram fitted with Cauchy PDF

Fig. 2 Histogram fitted with Lévy PDF

of researchers and practitioners use them. However,

we have to remember that they are valid, while signal

properties are Gaussian.

It was shown [13] that only small amount (≈6%) of

industrial loops holds normal properties. Majority of

them have fat-tail characteristics. Mostly Lévy α-stable

distribution is the best fitted (>60%) (see Fig. 2), with

the rest covered by Cauchy distribution (see Fig. 1).

Lévy α-stable distribution forms feasible alternative for

control error fitting. It has more degrees of freedom (15)

as it is parametrized by four parameters.

ϕα,β,δ,γ (t) = eiδt−|γ t |α(1−iβl(t)), (15)

where

l(t) =

{

sgn(t)tg
(

πα
2

)

for α �= 1

−sgn(t) 2
π

ln |t | for α = 1
,

0 < α ≤ 2 stability index, |β| ≤ 1 skewness, δ ∈ R

location and γ > 0 scale factor.
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Stability parameter α is responsible for long tails.

Location δ keeps information about function position,

but it should not be considered identical to the mean

value. Additionally, we have two more shaping parame-

ters. β informs about distribution skewness, while scale

factor γ has the meaning very similar to γ parameter

of Cauchy PDF. There might be different combinations

of them. For instance α = 2 reflects independent real-

izations. For α = 2, β = 0, γ = 1 and δ = 1 we get

exact normal distribution equation.

Lévy distribution has another advantage. Stability

parameter α responsible for tails is connected with

fractal properties. This aspect will be closely dis-

cussed later; however, at that moment we decide to

use α-stable factors as potential measure. In considered

case, α-stable fitting uses Koutrouvelis [26] regression

approach.

3.3 Nonlinear (fractal) analysis

There are several factors to verify fractal hypothesis.

One is to calculate value of the Hurst exponent H mea-

suring persistence. Hurst exponent is defined as the

asymptotic property of the rescaled range R/S factor
(

R

S

)

n

= cnH , n → ∞ (16)

where S—standard deviations in time slot n, c—

positive constant, n—number of observations, H—

Hurst exponent. H is calculated using logarithms

ln E(R/S)n = ln c + H ln n (17)

plotted in double logarithmic scale E(R/S)n from n

estimating H as the line slope. Meaning of H value is

as follows:

– H = 0.5 means that all observations are statis-

tically independent and process is stochastically

uncorrelated.

– 0 < H < 0.5 means anti-persistent time series.

Decrease in the past suggests increase in the future

and opposite.

– 0.5 < H ≤ 1 means persistent process, i.e.,

data increase or decrease in the past implies

increase/decrease in future, respectively.

– For higher values, i.e., H > 1 processes are said to

have no dependency in time domain.

R/S plot is the basic approach to estimate H . It

enables to evaluate not only single scaling exponent,

but also reveals additional features of multiple scales

and crossover points. Apart from above Hurst expo-

nent evaluation method, there are other algorithms, as

in historical order. Selected ones (among many oth-

ers) are used: periodogram [20], boxed or modified

periodogram method [22], aggregated variance method

[5], detrended fluctuation analysis (Peng) [31], absolute

value method [43] and differential variance [45].

Finally, there exists hypothesis that Hurst exponent

may be equivalent to the inverse of α parameter of

the Lévy α-stable distribution characteristics equation

[32]. There exist several assumptions on data proper-

ties limiting validity of this result. The comparison and

sensitivities of chosen methods are not the direct goal

for this paper, but some such aspects will be addressed.

4 Simulations

4.1 Simulation example

The following continuous-time dynamic system is

used:

G(s) =
K

(T1s + 1)(T2s + 1)
e−T0s (18)

with parameters: K = 2, T0 = 4, T1 = 3, T2 =

10. During GPC algorithm simulations constraints

imposed on the range of MV are taken into account,

umin = −1, umax = 1, as well as change rate limits of

MV △umin = −0.05,△umax = 0.05. It has been deter-

mined that control horizon should be Nu = 3, predic-

tion horizon should be N = 25 and penalty term λ =

0.5 [its value is found experimentally, and it leads to

no problems with online solution of the quadratic opti-

mization GPC task (11)]. For tuning of the GPC algo-

rithm no plant–model mismatch is assumed, i.e., the

model is perfect. Simulation loop diagram is sketched

in Fig. 3.

Simulation control loop is also exposed to distur-

bances. Disturbance z(t) with α-stable properties is

Fig. 3 Closed-loop simulation environment
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added before the process, while Gaussian noise d(t)

is added at the process output. In order to investigate

how disturbances which affect the process and model-

ing inaccuracy result in deterioration of control quality,

four scenarios are run:

(Sc1) Seven real process gains are applied: 0.4, 0.8,

1.2, 2.0, 2.8, 3.2 and 3.6.

(Sc2) GPC applied prediction horizon length different

from the tuned one N = 25. Altogether seven

values are considered: 5, 10, 15, 20, 25, 30 and

35.

(Sc3) Real process delay value differs from that of the

model used for GPC design, T0 = 8. Nine dif-

ferent process delays are used: 4, 5, 6, 7, 8, 9,

10, 11 and 12.

(Sc4) Real value of time constant, T2 being different

from the tuning value T2 = 10. Seven values are

checked: 0.5, 1, 5, 10, 15, 20 and 40.

In addition to above experiments, three different sce-

narios of disturbances are considered:

1. Process is not exposed to any disturbance.

2. Control loop is affected by additive input distur-

bances in the form of random values with normal

distribution and amplitude of 0.008.

3. Control loop is affected by additive input distur-

bances in the form of random values. It has a α-

stable distribution with amplitude of 0.04.

Additionally, nominal GPC loop was simulated with

different noise characteristics, i.e., no disturbances,

three levels of normal noise (small, medium and large)

and stability factors α = 1.5, 1.75, 2 of stable distri-

bution. Those scenarios are used to answer questions

and check the following hypotheses:

(H0) Are the measures independent on disturbance

characteristics? Can we evaluate loop quality

despite disturbances?

(H1) Does setpoint impact results of loop quality

assessment?

(H2) Can we identify whether GPC model gain is

appropriate?

(H3) Can we estimate whether GPC horizon is set

properly?

(H4) Can we confirm whether GPC model delay is

appropriate?

(H5) Can we say assess GPC model dynamics?

Simulation scheme, especially applied SISO model,

is simple. However, this decision was intentional. Sim-

ple model enables disclosure of the possible relations.

On the other hand, this model embeds several common

features of real process, i.e., different scales in dynam-

ics and significant delays. Complexity and detection

difficulties are imposed by selected fat-tail disturbances

that may easily and often shadow any detection possi-

bility.

4.2 Results

The main goal is to investigate behavior of fractal mea-

sures. However, its analysis without any references

would not be comparable. At first all the indexes are

simply correlated against each other to see if there is

any consistency. This analysis is done on all available

data (see Table 1).

Analysis of correlation data enables to formulate ini-

tial observations. We see that crossover point (cross)

is rather uncorrelated with other measures. It seems

that this factor carries on other information. Also short-

history Hurst exponent for two memory scales R/S plot

is not correlated. In fractal domain H calculated as

1/α is not in line with other Hurst estimates or CPA

indexes. We may also notice that Hurst exponents cal-

culated from R/S plot are not strongly correlated with

other H measures. Those measures are intercorrelated,

and additionally, it seems that they may reflect similar

behavior as AMP and integral indexes IAE and MSE.

We see that statistical scale factors of non-Gaussian

functions are closely coupled. Lévy stability parameter

α seems to keep similar information. Thus, for further

analysis only two statistical factors of α-stable distri-

bution are used, i.e., stability and scale factor.

4.2.1 H0: impact of disturbances

Ability to detect and identify controller tuning good-

ness despite any disturbances should be one of the main

features of perfect loop quality assessment. From that

perspective of controller the measure value should be

invariant. We consider 13 scenarios of different distur-

bances (see Table 2).

Analysis starts with comparison of undisturbed

value with mean and variance of disturbed values for

any measure. Six different simulations are considered:

optimal GPC model with horizons equal to 12 and 25,

internal model with too small gain K = 1.6 for both

horizons. Analogously, two simulations are run with

too large gain K = 2.4 for both horizons.
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Table 1 Correlation table (H RS : single memory scale Hurst exponent, n(cross): crossover, H (short): short-history exponent for two

scales, H (long): long-history exponent for two scales)

σ Lα Lβ Lγ Lδ n(cross) H (short) H (long) H RS

σ 1

Lα 0.104 1

Lβ −0.517 −0.375 1

Lγ 0.348 0.891 −0.547 1

Lδ −0.182 −0.050 0.461 −0.056 1

n(cross) −0.574 −0.412 0.191 −0.583 −0.214 1

H (short) 0.621 0.108 −0.258 0.304 −0.134 −0.747 1

H (long) 0.452 0.727 −0.493 0.890 −0.144 −0.748 0.616 1

H RS 0.535 0.558 −0.483 0.747 −0.221 −0.755 0.818 0.947 1

1/α −0.038 −0.664 −0.009 −0.400 −0.028 0.390 −0.146 −0.367 −0.286

AbsVal −0.173 0.228 −0.047 0.263 0.019 −0.345 0.191 0.319 0.288

AggVar 0.002 0.262 −0.130 0.341 −0.004 −0.494 0.364 0.443 0.437

DiffVar −0.172 0.279 −0.061 0.314 0.057 −0.370 0.185 0.357 0.311

Per 0.035 −0.300 0.138 −0.369 −0.003 0.430 −0.210 −0.402 −0.344

BoxPer 0.022 −0.360 0.136 −0.415 −0.036 0.459 −0.149 −0.421 −0.321

Peng 0.076 −0.356 0.126 −0.411 −0.056 0.445 −0.183 −0.435 −0.354

AMP 0.220 −0.348 0.104 −0.373 −0.047 0.308 −0.088 −0.360 −0.282

IAE 0.242 −0.297 0.043 −0.313 −0.056 0.304 −0.080 −0.319 −0.244

ISE 0.262 −0.350 0.058 −0.361 −0.061 0.299 −0.058 −0.348 −0.259

1/α AbsVal AggVar DiffVar Per BoxPer Peng AMP IAE

1/α 1

AbsVal −0.228 1

AggVar −0.264 0.978 1

DiffVar −0.252 0.995 0.974 1

Per 0.257 −0.979 −0.977 −0.975 1

BoxPer 0.313 −0.944 −0.944 −0.944 0.984 1

Peng 0.301 −0.972 −0.971 −0.977 0.990 0.987 1

AMP 0.245 −0.976 −0.934 −0.983 0.962 0.933 0.963 1

IAE 0.249 −0.989 −0.948 −0.991 0.973 0.950 0.975 0.992 1

ISE 0.264 −0.977 −0.932 −0.984 0.962 0.941 0.969 0.995 0.997

Bold values describe only correlation equal to 1

Stability factor α is sketched in Fig. 4 and scaling

γ in Fig. 5. Very clear separation is visible with worse

tuning for both parameters. Unfortunately, GPC regu-

lation with optimal model is not well detected.

Next fractal measures are presented. For all cases

rescaled range R/S plots are prepared. It has been

noticed that all of them witness crossover behavior.

R/S plot for the best GPC controller (ideal model)

with no disturbances is presented in Fig. 6 as an

example.

We clearly see two persistence scales separated with

single crossover point. Short-memory Hurst exponent

is close to the value of uncorrelated process H (short) =

0.544, while long-memory Hurst exponent (starting

after crossover point n(cross) = 504 s) is definitely anti-

persistent with H (long) = 0.157. Comparison of plots

confirms the same pattern for all considered scenarios.

Above results are very interesting. Short-memory

exponent H (short) is close to 0.5, i.e., independent

stochastic process of Brownian motion. It would con-
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Table 2 Scenarios for disturbance invariance investigation

DistScen z(t) d(t)

D0 – –

D1 α = 2.00, Ampl=average –

D2 α = 1.50, Ampl=average –

D4 α = 1.75, Ampl=average –

D5 α = 2.00, Ampl= large –

D6 α = 1.50, Ampl= large –

D7 α = 1.75, Ampl= large –

D8 – α = 2.00, Ampl=average

D9 – α = 1.50, Ampl=average

D10 – α = 1.75, Ampl=average

D11 – α = 2.00, Ampl= large

D12 – α = 1.50, Ampl= large

D13 – α = 1.75, Ampl= large

Fig. 4 Disturbance impact on factor α of α-stable distribution

Fig. 5 Disturbance impact on factor γ of α-stable distribution

firm hypothesis proposed in [40] that H = 0.5 is con-

nected with well-fitted controller. It is also suggested

that persistent properties reflect sluggish performance,

Fig. 6 R/S plot for an ideal case

while anti-persistent ones indicate aggressive tuning

often characterized by oscillations.

It is needed to explain strong anti-persistent behavior

of long-memory H (long) exponent. Control error con-

stitutes of two elements: short-term transient period

(probably associated with H (short)) and long-term

steady-state operation (reflected in H (long)). As GPC

controller uses ideal model, H (short) is relatively close

to 0.5. On the other hand, strong anti-persistent H (long)

is reflected in semi-flat line of the steady-state control

error once system stays on setpoint.

Discussion prepares hypotheses for further analysis.

As R/S plot is characterized by two persistence scales

separated with single crossover point, the evaluation of

single Hurst indexes with other then R/S plot algorithms

is not justified. Thus, only parameters of two memory

scales R/S plot will be further taken into consideration,

i.e., n(cross), H (short) and H (long).

Crossover phenomenon impact is presented in Fig. 7.

We may see that crossover seems to be relatively inde-

pendent of noise and is worth to be considered in further

evaluations.

Both Hurst exponents H (short) and H (long) are

sketched on two following plots (Figs. 8, 9). Both

present similar properties despite loop disturbances.

One may notice from those plots’ behavior similar to

the one from non-Gaussian statistics. There is more

clear distinction between GPC model fitting for worse

controller, rather than for the ideal one.

The analysis presented in that paragraph evaluated

potential robustness of the considered loop quality mea-

sures against disturbances embedded into the close

loop. It seems that the parameters are mostly able to
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Fig. 7 Disturbance impact on crossover point

Fig. 8 Disturbance impact on short-memory Hurst exponent

Fig. 9 Disturbance impact on long-memory Hurst exponent

detect controller misfitting despite disturbances. How-

ever, there are parameters that are screened by noise

with unreliable results, like AMP.

On the other hand, in the group of fractal indexes

it has been shown that R/S plot features distinctive

crossover behavior. Thus, all single memory Hurst

indexes are of no use and their estimation is not useful.

Following indexes are further used:

– statistical indexes: Gauss standard deviation σ

together with α and γ of α-stable PDF,

– integral indexes of IAE and MSE,

– fractal measures originating from R/S plot: n(cross),

H (short) and H (long).

4.2.2 H1: effect of setpoint shape

During evaluation of above results there has been for-

mulated hypothesis that results may be biased by the

shape of setpoint. At first setpoint is in the form of

rectangular wave with varying amplitude. Second set

of the same experiments is run to exclude that effect

with setpoint filtered by first-order inertia. It is to verify

hypothesis that setpoint shape may affect results, espe-

cially through length of transient period in relation to

steady-state time. Minimum, maximum, average and

standard deviations of the measure error �η for each

index are calculated. Results are presented in Table 3.

We see good robust behavior of scale factor γ . We

also observe that stability parameter α has the largest

standard deviation (variability). The reason for that may

originate from multi-persistent nature of the R’S plot

with two distinct scales. Short-memory Hurst exponent

H (short) is the most robust one from the perspective of

robustness. Its value is practically invariant against set-

point shape. It is in clear contrary to the long-memory

exponent H (long). It somehow confirms hypothesis that

long-memory effect is connected with steady state. It is

reflected in long-memory Hurst exponent, as setpoint

shape affects steady-state operation. Crossover posi-

tion is indecisive, and it remains for further evaluations,

while H (long) is excluded.

We main formulated some working hypothesis that

detailed analysis of R/S plot may new indications on

loop behavior, like for instance about steady-state oper-

Table 3 Statistical properties of the measure errors

Min Max Mean SD

α Lévy −39.16 28.40 −3.25 9.47

γ Lévy −10.64 7.62 1.65 3.47

n(cross) −17.86 14.29 −1.82 5.37

H (short) −1.55 3.71 0.40 1.01

H (long) −19.60 8.43 −5.58 3.95
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ation. While H (short) holds information about transient

period properties, H (long) supplements us with steady-

state information.

4.2.3 H2: impact of model gain

Experiments to verify hypothesis H2 are organized

as follows. We check whether selected measures can

detect proper selection of the GPC embedded model

gain. Thus, nine different gain values are tested: 0.4,

0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2 and 3.6. For each one

three different disturbance scenarios are tested: no dis-

turbances, Gaussian noise added before the process and

α-stable disturbance after the controller.

As we know the real value of the model gain is

2.0. Thus, the plots should be able detect that value

with minimum index value. It is very clearly seen that

all but α curves indicate that point. Stability param-

eter (Fig. 11) fails in this task. Scale factor is exact

in detection (Fig. 10). Fractal parameters originating

from R/S plot, i.e., crossover point (Fig. 12) and Hurst

exponent H (short) (Fig. 13), also have similar ability.

Crossover indicates exact point, while H (short) detect

slightly overestimated value of K = 2.4.

Fig. 10 Dependence of Lévy’s γ on GPC model gain

Fig. 11 Dependence of Lévy’s α on GPC model gain

Fig. 12 Dependence of R/S crossover n(cross) on GPC model

gain

Fig. 13 Dependence of Hurst exponent H (short) on GPC model

gain

Fig. 14 Dependence of γ of Lévy distribution on GPC model

delay

4.2.4 H3: impact of model delay

Similar analysis is used to verify whether selected mea-

sures can detect selection of the GPC controller model

delay. Thus, nine different delay values are tested: 4,

5, 6, 7, 8, 9, 10, 11 and 12. For each of the delays

three disturbance scenarios are tested: no disturbances,

Gaussian noise added before the process and α-stable

disturbance inputted after the controller.

Real value of the model delay is 8.0. Thus, plots

should somehow enable finding out of this value.
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Fig. 15 Dependence of α of Lévy distribution on GPC model

delay

Fig. 16 Dependence of R/S crossover n(cross) on GPC model

delay

Unfortunately, in that case detection is not straightfor-

ward. It works only in one case, i.e., when there are no

disturbances in the loop. It is especially visible for both

stable PDF γ (Figs. 14, 15) indexes. Curve for undis-

turbed loop is in compliance with our expectation. First

the index diminishes up to ideal value and then starts

to rise in linear way. We may clearly find out optimal

value of the delay and additionally see that increase

in the model delay constantly degrades control. How-

ever, simultaneously relations for disturbed loops are

just flat. The measures are independent on model delay.

It seems that loop disturbances screen effect of model

delay misfit.

The curves for fractal measures, i.e., crossover point

(Fig. 16) and Hurst exponent H (short) (Fig. 17), are

indecisive. First of all they show something only for

undisturbed loop. Disturbances shadow delay misfit.

They both also degrade with overestimated delay.

Thus, they detect to large delay. But they fail to change

their value for underestimated model delay. Conclud-

ing, we see that appropriate model delay value is hardly

detected. Strange behavior is observed in presence of

disturbances. All the curves flatten and show nothing.

Fig. 17 Dependence of Hurst exponent H (short) on GPC model

delay

Fig. 18 Dependence of γ of Lévy distribution on GPC model

time constant T2

Fig. 19 Dependence of α of Lévy distribution on GPC model

time constant T2

4.2.5 H4: impact of model dynamics

Next the same methodology is applied to verifica-

tion whether selected measures can detect proper GPC

embedded model dynamics. Seven different values for

time constant T2 are tested: 0.5, 1, 5, 10, 15, 20 and 40.

Three different disturbance scenarios are tested, i.e., no

disturbances, Gaussian noise added before the process

and α-stable disturbance inputted after the controller

for each time constant.
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Fig. 20 Dependence of R/S crossover n(cross) on GPC model

time constant T2

Fig. 21 Dependence of Hurst exponent H (short) on GPC model

time constant T2

Real value of the model delay is 10. Thus, the plots

should be able to detect that value. Observing the plots

we notice two different curve types. First, for stable

PDF γ (Fig. 18) we see clear ability to show the right

value, while α (Fig. 19) totally fails.

We see that too small values of dynamics do not

deteriorate control quality significantly (in sense of the

measure considered). In contrary, for too high values

of T2 indexes rapidly increase suggesting fast degrada-

tion of control quality. This behavior is interpreted that

underestimated dynamics is not so dangerous for GPC

control as a too slow ones.

There is also observed that detection is better for

disturbed loops, than for undisturbed ones. This is in

contrary to previous scenario (H3: impact of model

delay). It seems that more excited trends (due to the

disturbances) enable better exposure of dynamics mis-

fit effect.

Curves for parameters originating from R/S plot,

crossover point (Fig. 20) and Hurst exponent H (short)

(Fig. 21) have different properties. Both of them are

monotonic. Crossover point decreases, while Hurst

exponent has positive slope. They keep the same shape

despite loop disturbances.

This effect requires discussion. Some explanations

may be proposed for the Hurst exponent. As it was

already cited [40], Hurst exponent value shows differ-

ent kinds of tunings. It changes from anti-persistent

H < 0.5 oscillatory behavior, through neutral Brown-

ian motion with independent stochastic process (H =

0.5) up to persistent properties (H > 0.5) reflecting

sluggish tuning. From that perspective limiting (min or

max) index values does not have to reflect anything. We

see that for model gain impact all the H (short) values

are larger than 0.5, and thus, minimal value is the clos-

est to independent stochastic process H (short) ≈ 0.54.

For model delay impact analysis we had similar values

for H (short) > 0.5 with similar minimum of close to

independent stochastic process H (short) ≈ 0.54.

Following above, optimal value of the Hurst expo-

nent should not be extremum necessarily. It should lie

at the crossing with Hurst exponent optimum value. Its

first estimate is 0.5, but other research shows that it

does not have to be exactly that value. Thus, lack of

extremum does not mean wrong detection. Hurst index

is more reach in information showing not only whether

control is good or bad, it also give us indication what

kind of wrong tuning we are witnessing (sluggish or

aggressive). Hypothetically, it might be possible that

similar effect is observed on the crossover curve but

this hypothesis requires further investigation.

4.2.6 H5: impact of GPC controller horizon

Finally, similar analysis is used to verify whether

selected measures can detect proper selection of the

GPC controller horizon. Thus, seven different horizon

values are tested: 10, 12, 15, 20, 25, 30 and 35. For

each of the horizons three different disturbance scenar-

ios are tested: no disturbances, Gaussian noise added

before the process and α-stable disturbance inputted

after the controller.

In this case different kind of results is expected. The-

oretical speculations about predictive controller clearly

say that the horizon should not be too short against

process delay and dominant time constant. We should

not loose dynamics. However, there is nothing wrong

about overestimated horizon length. It will only result

in larger calculation effort without deterioration of con-

trol quality.

123



786 P. D. Domański, M. Ławryńczuk

Fig. 22 Dependence of γ of Lévy distribution on GPC controller

horizon

Fig. 23 Dependence of α of Lévy distribution on GPC controller

horizon

As we look at figures of γ (Fig. 22) and α (Fig. 23),

we explicitly see expected behavior. First, the mea-

sure curve rapidly decreases up to value of ∼20 and

after that saturates. It means that there is no reason

to increase further GPC horizon. We are unable to

improve control performance behind this value. Addi-

tionally, it is detected despite loop disturbances. Proper

horizon value is identified despite minor differences for

stability index.

Crossover point (Fig. 24) impact analysis does not

give us any explicitly clear indication. We see measure

value saturation for horizon > 20 and tendency for

lower values for smaller horizon lengths. These obser-

vations are independent on loop disturbances.

Less clear detection is for short-memory exponent

H (short) (Fig. 25). First of all its values vary in a very

narrow range (0.54 ÷ 0.58). Despite shape disruption

for the shortest horizon considered (horizon = 10) the

shape gives indication. This unexplained behavior for

short horizon is not so disturbing for crossover point as

it varies in relatively wider range. This effect disturbs

proper detection with Hurst exponent. This scenario

closes simulation analysis.

Fig. 24 Dependence of R/S plot crossover n(cross) on GPC con-

troller horizon

Fig. 25 Dependence of Hurst exponent H (short) on GPC con-

troller horizon

4.3 Method application scheme

Applicability of the proposed methods and measures

may help to extend current schemes, allowing for more

degrees of freedom. We may imagine two possible sce-

narios:

1. the tuning (implementation) of the MPC controller,

2. monitoring of the already working MPC algorithm.

The methodology differs in each of the above scenarios.

The proposed measures show ability to reflect misfit-

ting in the parameters of the MPC embedded model.

But the measures itself do not show direction of the

required change. We can investigate it through several

tests evaluating the trends of the indexes. Moreover,

the changes in measures do not show the source of the

results. It is difficult to distinguish between the gain

or dynamics misfit. The one possible method of their

use is described below. We select three measures for

observation: α-stable PDF scaling γ , stability factor α

and short-memory Hurst exponent H (short).
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4.3.1 MPC tuning

The tuning of the MPC controller is not an easy task.

The embedded model and the prediction horizon are

among the most important settings.

1. At first the process model is identified, most often

during the process of process parametric tests and

a separate identification. This model allows MPC

operation; however, its fine tuning is most probably

required.

2. Next, the horizon should be set. As we are changing

only one MPC parameter in a time, we can try to

lower the horizon length and observe the accord-

ing changes in the scaling γ . We select the short-

est horizon length, when the scaling value stops to

diminish.

3. Model delay is not well reflected by the measures

in case of high disturbance ratio. If the disturbances

are significant, we have to use other methods or rely

on the initially identified value. In case of minor

disturbance impact, it can be tuned with the aid of

scaling γ .

4. Tuning of the model gain should be done next. We

select the gain for the minimum value of the scaling

factor γ .

5. We perform the fine tuning of the model dynamics

(time constants) in the same way as for the model

gain.

6. The above steps are using scaling factor γ only

intentionally. During the whole process the stability

α is observed. It is responsible for the fat tails, and

its desired value is α = 2. We use it to distinguish

between tunings of the very similar performance

(from the perspective of scaling) to select the one

with stability closest to 2.

7. Finally, the Hurst exponent should be discussed.

Actually it is not actively used during the pro-

cess. But it should be measured continuously and

matched with the obtained control qualities, both

good, sluggish and aggressive. This relation is used

to determine what value of the Hurst exponent

relates to the best case tuning.

8. Hurst exponent is then used for further process

monitoring. We may distinguish between selected

“good” operation and undesirable sluggish or

aggressive one through observation of its fluctu-

ations.

4.3.2 MPC assessment

During the monitoring of the already operating loop we

are facing the situation, when the process fluctuates. It

is the most probably associated with the non-stationary

variations in the process dynamic characteristics. This

causes misfitting in the MPC embedded model.

We need to observe time trends scaling factor γ and

short-memory Hurst exponent for that purpose. Lasting

increase in scaling may indicate the effect of process

dynamic fluctuations and MPC embedded model mis-

fit. Simultaneously observing direction of changes in

Hurst exponent we may determine, in which direction

these changes go, i.e., sluggish or aggressive. It is worth

to perform online monitoring activity. This subject is

discussed in details in [16].

Following the observations of the online monitoring,

the appropriate tuning initiative may be started using

the schemes proposed in the description of the MPC

tuning.

5 Conclusions and further research issues

This paper presents results of the research on alternative

CPA measures applied to control quality assessment for

SISO loop with GPC controller. Analysis is based on

simulations, even though the subject has appeared and

grown up in real, industrial cases. All considered mea-

sures have been calculated using control error variable

as it is the best loop signal available for analysis. First,

its optimal value is zero, so any nonzero mean value at

once indicates steady-state error. Any skewness clearly

suggests asymmetric control, possibly due to the pro-

cess nonlinearities or constraints. Finally, it should not

be subject to any external trends, like for instance pro-

cess output variable. Thus, no detrending is required.

Investigation starts with comparison of three CPA

measures’ groups: statistical ones (both Gaussian and

non-Gaussian), integral indexes based on time trends

and fractal persistence measures using Hurst exponent.

The goal is to find indexes invariant to loop exter-

nal environment (disturbances, setpoint, etc.). Analy-

sis enables selection of four promising indexes: two

parameters of α-stable distribution (stability and scale

factor), n(cross)—crossover point of the R/S plot for the

control error and H (short)—short-memory Hurst expo-

nent.
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The approach to the estimation of Hurst exponent is

general. It does not assumes whether we face single or

multiple persistence scales. It may work in case of any

loop performance, like oscillation. Its deficiency lies

in fact that it is not automatic. Close visual inspection

of rescaled range plots is required, at least at the early

stage of assessment. However, in opinion of authors,

it is advantage as such review may disclose aspects

otherwise omitted.

Next, they are used to verify ability to detect tuning

quality of the GPC controller: impact of model gain,

effect of model delay, influence of model dynamics

and impact of GPC controller horizon. Comparison of

results shows that:

1. Gaussian standard deviation is biased by the char-

acter of setpoint signal. The same effect happens

with stability parameter α. In contrary scale factor

of the α-stable distribution seems to be robust as

control error histogram is strongly fat-tailed.

2. Fractal analysis through rescaled range R/S plot and

Hurst exponents show that it has crossover prop-

erties with two strict Hurst exponents: short and

long memory. Analysis suggests that crossover and

short-scale Hurst exponent are invariant and infor-

mative. It is proposed that short-range exponent is

responsible for transient period performance (con-

troller tuning), while long-range one informs about

steady-state stabilization.

3. It is not suggested to calculate single Hurst expo-

nent without review od R/S plot.

4. Lévy’s γ is able to detect model gain, dynamics

misfit and GPC horizon length. It only has problems

with model delay. In that case any loop disturbance

screens detection.

5. Short-range Hurst exponent behaves in different

way. We are not searching for its minimum, nor

maximum value. Its best value is expected to be at

values ∼0.5 with smaller values informing about

control loop aggressiveness and higher ones detect-

ing sluggish tuning. Thus, Hurst exponent is more

informative. It not only says whether control is bet-

ter or worse, but indicates the reason. We may also

have another degree of freedom. Value 0.5 does not

have to be optimal. It depends on control require-

ments. If we allow overshoot, it may be shifted

down and in opposite case biased up.

6. Crossover behavior and its detection ability are still

open and undecided. It seems to be good indicator,

independent on external loop influences. However,

its optimal value does not have to be at extremum. It

may also hold information about reasons for wrong

tuning. As for Hurst exponent the best value may

be estimated as uncorrelated stochastic process, it

is not evident what value is the best for crossover

point.

7. Detection ability fails with model delay misfit. It

works only in case of no disturbances.

8. Stability factor of Lévy distribution is altered by

two memory scales in R/S plot and needs more

investigation

Above analysis addresses the subject of performance

monitoring of a closed-loop dynamic system. The

approach originates from process industry needs, when

some complex system is controlled. The paper shows

that application of chaos-based methods brings bene-

fits. It would be extremely interesting to see whether

such persistence and fractal measures may be used to

evaluate quality of a control for chaotic systems, like

[46].

Analysis reveals open subject that requires closer

insight. Delay misfit detection is probably the most

important one. It is the only parameter of the GPC

controller, for which approximation misfit is hardly

detected. Potential hypothesis that it may be caused my

disturbance shadowing effect requires attention. Next,

statistical properties of the control error signal should

be investigated. It would be worth to confront such a

simulation analysis with industrial process time trends.

Last open issues are associated with fractal properties.

– Crossover phenomenon requires closer attention.

Further research will focus on its origins and mean-

ing. It will be analyzed how process complexity

affects the number of crossover points and their

position, as complex dynamics frequently causes

multiple scaling exponents in the same range of

scales [4].

– Finally, the paper did not addressed eventual multi-

fractal properties of the control error time series.

The authors assumed mono-fractal behavior. The

data will be analyzed to see, whether multi-fractal

properties exist in control time trends data.

Above results and observations are accomplished

with simple linear SISO case. It is worth to investigate

more complex scenarios, like nonlinear, MIMO and
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systems with significant delays cases to verify method

applicability and effectiveness.

Open Access This article is distributed under the terms of

the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted use, distribution, and reproduction in any medium,

provided you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license, and

indicate if changes were made.

References

1. Agarwal, N., Huang, B., Tamayo, E.C.: Assessing model

prediction control (MPC) performance. 2. Bayesian

approach for constraint tuning. Ind. Eng. Chem. Res. 46(24),

8112–8119 (2007)

2. Astrom, K.J.: Computer control of a paper machine-an appli-

cation of linear stochastic control theory. IBM J. 11, 389–405

(1967)

3. Badwe, A.S., Gudi, R.D., Patwardhan, R.S., Shah, S.L.,

Patwardhan, S.C.: Detection of model-plant mismatch in

{MPC} applications. J. Process Control 19(8), 1305–1313

(2009)

4. Bardet, J.M., Bertrand, P.: Identification of the multiscale

fractional brownian motion with biomechanical applica-

tions. J. Time Ser. Anal. 28(1), 1–52 (2007)

5. Beran, J.: Statistics for Long-Memory Processes, 1st edn.

CRC Press, Boca Raton (1994)

6. Camacho, E.F., Bordons, C.: Model Predictive Control.

Springer, London (1999)

7. Carelli, A.C., da Souza Jr., M.B.: {GPC} controller per-

formance monitoring and diagnosis applied to a diesel

hydrotreating reactor. IFAC Proc. Vol. 42(11), 976–981

(2009)

8. Choudhury, M.A.A.S., Shoukat, A., Shah, S.L., Thorn-

hill, N.F.: Diagnosis of poor control-loop performance

using higher-order statistics. Automatica 40(10), 1719–

1728 (2004)

9. Clarke, W., Mohtadi, C., Tuffs, P.S.: Generalized predictive

control—i. the basic algorithm. Automatica 23(2), 137–148

(1987)

10. Das, L., Srinivasan, B., Rengaswamy, R.: Data driven

approach for performance assessment of linear and nonlin-

ear kalman filters. In: 2014 American Control Conference,

pp. 4127–4132 (2014)

11. Das, L., Srinivasan, B., Rengaswamy, R.: Multivariate con-

trol loop performance assessment with Hurst exponent and

Mahalanobis distance. IEEE Trans. Control Syst. Technol.

24(3), 1067–1074 (2016)

12. Das, L., Srinivasan, B., Rengaswamy, R.: A novel frame-

work for integrating data mining with control loop perfor-

mance assessment. AIChE J. 62(1), 146–165 (2016)
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