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Abstract: The prediction of the binding free energy between a ligand and a protein is an important component in

the virtual screening and lead optimization of ligands for drug discovery. To determine the quality of current binding

free energy estimation programs, we examined FlexX, X-Score, AutoDock, and BLEEP for their performance in

binding free energy prediction in various situations including cocrystallized complex structures, cross docking of

ligands to their non-cocrystallized receptors, docking of thermally unfolded receptor decoys to their ligands, and

complex structures with ‘‘randomized’’ ligand decoys. In no case was there a satisfactory correlation between the ex-

perimental and estimated binding free energies over all the datasets tested. Meanwhile, a strong correlation between

ligand molecular weight-binding affinity correlation and experimental predicted binding affinity correlation was

found. Sometimes the programs also correctly ranked ligands’ binding affinities even though native interactions

between the ligands and their receptors were essentially lost because of receptor deformation or ligand randomiza-

tion, and the programs could not decisively discriminate randomized ligand decoys from their native ligands; this

suggested that the tested programs miss important components for the accurate capture of specific ligand binding

interactions.
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Introduction

The prediction of the binding free energy between a ligand and

its protein target is an important component in the virtual

screening/lead optimization of ligands for drug discovery. Many

scoring functions for binding free energy estimation have been

developed. These can be grouped into three categories: force

field methods,1,2 empirical scoring functions,3–6 and knowledge-

based potentials.7,8 Usually, the quality of binding free energy

prediction has been assessed by Pearson’s correlation coeffi-

cient,9 CC, defined as the covariance between the calculated and

observed binding energies for ligand–receptor complexes divided

by the product of their respective standard deviations. Several

studies on the performance of current binding energy scoring

functions have been reported,10–12 which indicated that the CC

at the state-of-the-art is around 0.511 and is at best 0.710,12 when

the binding energies of native (cocrystallized) complex struc-

tures were estimated. Because native complex structures should

be the easiest cases for binding energy prediction, the current

prediction limit of binding energy scoring functions with a

CC of 0.5–0.7 for native complex structures suggests that addi-

tional improvements might be required for them to be used in

the approaches where the comparison of binding energies are

important.

One of the known problems occurring in rigid receptor dock-

ing is called the ‘‘cross docking’’ problem.10,13,14 Cross docking

refers to the docking of a ligand to a receptor whose structure

has not been determined by cocrystallization with that ligand.

The structure of the binding pocket of the receptor is usually

slightly different when it is cocrystallized with the ligand than

when it is not. This slight change in receptor structure can some-

times cause a dramatic change in the top-scoring ligand confor-

mation compared with when the cocrystallized receptor structure

is used.10,15 A possible cause of the failure of a rigid receptor

approach in cross docking might be the scoring functions’ sensi-

tivity to steric repulsions,11 which produces a large repulsive

energy if ligand atoms slightly intrude into the receptor’s side
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chain positions. However, slight modifications of the locations

of the clashing atoms of ligands and proteins to avoid steric

repulsion are apparently not performed in rigid receptor dock-

ing.10 In this regard, flexible receptor docking has been sug-

gested as a means for the more accurate assessment of binding

free energy.16–21

The problem with flexible receptor docking is that it is compu-

tationally expensive. For example, in a rotamer-based approach to

flexible receptor docking which is considered to be one of the

fastest methods, 96 alternative receptor structures were used to

account for the side chain flexibility of three residues in the pro-

tein tyrosine phosphatase 1B binding pocket.16 In an ingenious

approach, the receptor structure was divided into immobile and

mobile parts, the ligand was docked to each part, and the binding

energy was calculated by combining the partial docking scores.22

However, when we do not know the location of the binding

pocket in a given protein and accordingly do not know which res-

idues should be treated as rigid or mobile, the number of alterna-

tive receptor structures could easily become very large, tremen-

dously increasing the computational cost. Thus, before discarding

rigid docking as a means of estimating binding energy, it must be

certain that there is no way to improve upon it, because the

sequencing of the human as well as other genomes23–28 has

necessitated the formulation of faster and better approaches to

drug development via virtual screening and lead optimization.

Regarding virtual screening and lead optimization on a pro-

teomic scale, the practicality of achieving this goal has been hin-

dered by the fact that there is no general method that can pro-

duce very accurate protein structures without a known structure

of high homology.29 In practice, many proteins will have pre-

dicted structures whose Ca root-mean-square-deviation (RMSD)

from native is in the 3–6 Å range,30 even when the proteins

have homologs of known structure. Thus, for many proteins, vir-

tual screening and lead optimization must be performed with

inaccurately predicted structures. The question is: ‘‘How close is

close enough for relatively accurate binding affinity prediction?’’

As far as we know, this question has not yet been addressed; the

prediction of binding free energy is different from and requires

more elaborate functions than those for binding pose prediction.

Although many studies on the performance of docking/scoring

schemes have been published,10,11,14,31–33 virtually none exam-

ined binding energy prediction performance in cross docking or

predicted receptor structure-based docking. Thus, to address this

issue, we examined several docking/binding affinity scoring pro-

grams. Also, we performed a benchmark on the binding affinity

prediction programs with ligand decoys whose atoms were shuf-

fled while maintaining their chemical composition and heavy

atom covalent bond geometry. To our knowledge, there has

been no study of this kind.

The performance of any algorithm may be assessed in a vari-

ety of ways. Here, we address the following questions: how good

are current docking/scoring algorithms in predicting the binding

affinity for (1) cocrystallized complex structures, (2) crossdocking

datasets, (3) datasets comprised of ligands and the deformed

decoys of their receptors, and (4) datasets comprised of

‘‘randomized’’ ligand decoys. To answer these questions,

we examined four programs on 12 datasets compiled from two

databases.

Materials and Methods

Overview

A summary of the datasets, docking and ranking programs used

in this study is shown in Table 1. Each of the datasets had the

complex structures of the same receptor and a set of its ligands

(CDS sets: CDS1 to CDS12). Four programs were used in this

study. They employed physics-based (AutoDock 3.0.534), knowl-

edge-based (BLEEP35), and empirical (FlexX 2.0.2,8 X-Score

1.2.16) scoring functions. FlexX and AutoDock were used in

docking simulations and for ranking ligand conformations

according to their binding scores. X-Score could only rank

ligand conformations. The performance of BLEEP was assessed

with the data obtained by the authors of BLEEP, extracted from

the Protein Ligand Database v1.3.36 We considered binding

energy predictions in four contexts: (1) native complex struc-

tures, (2) cross docking, (3) deformed receptor structures, and

(4) randomized ligand decoys.

Dataset Compilation

Seven datasets of the one receptor-many ligands type (the

CDSk, k 5 1, 7 sets), each containing the structures of the com-

plexes of the same receptor and a set of its ligands, were pre-

pared from PDBbind database v200537 according to the follow-

ing steps: (1) The complex structures in the database were

grouped into datasets according to the amino acid sequences of

their receptors so that the receptor structures in each dataset had

the exactly same amino acid sequences. (2) In some datasets,

some complex structures had experimentally determined pKi val-
ues and others pKd. Although pKi and pKd values are often

used interchangeably, to ensure as much consistency of binding

affinity data as possible in each dataset, we selected the complex

structures so that all the complex structures in a dataset had pKi
values or all of them had pKd values. Thus, we determined

which between pKi and pKd was the majority in each dataset

and removed the complex structures with the minority binding

constant type. (3) The datasets whose number of complex struc-

Table 1. Summary of Evaluated Datasets and Docking and

Ranking Programs.

Type of study Dataset

Docking

program

Ranking

program

Native complex

structures

CDS1 to CDS7 None AutoDock

FlexX

X-Score

CDS8 to 12 None BLEEP

Cross docking CDS6, CDS7 AutoDock AutoDock

FlexX FlexX

X-Score

Deformed receptor

structures

CDS6, CDS7 AutoDock AutoDock

FlexX FlexX

X-Score

Randomized decoys CDS1 to CDS7 None AutoDock

FlexX

X-Score
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tures was less than 10 were removed. (4) The datasets whose

range of experimentally determined pKd or pKi was less than

3.0 were removed. (5) Only one entry of the duplicated entries

with the same receptor and the same ligand was left.

After applying the above criteria, seven datasets, CDS1 to

CDS7, remained. For CDS6, two subsets, CDS6a and CDS6b,

were made by preserving the Zn atom in the active site (CDS6a)

or removing it (CDS6b). CDS1 to CDS7 are shown in Table 2.

The range of the experimentally determined pKd or pKi values
in each dataset was equal or more than 3.48. When the receptor

structures in each dataset were aligned using the structural align-

ment program TM-align,38 the average Ca RMSD between any

two receptor structures in a dataset was 0.30 Å. Also, the entries

in CDS1 to CDS7, except CDS6b, were combined to make a

larger dataset, CDSa. CDSa’s ranges of molecular weight and

pKd (pKi) were 831 Da and 9.17, respectively. Water was

removed from all the receptor structures. The ligands had

MMFF94 charges39 and these MMFF94 charges were used

throughout this study except in the section of binding affinity

estimation with randomized decoys, where Gasteiger–Marsili

charges were assigned to the native ligands and their decoys.

Another group of datasets (CDS8 to 12) was constructed

from the Protein Ligand Database v1.3,36 applying the same cri-

teria as for CDS1 to 7, except that the minimum number of

complex structures and the minimum pKd or pKi difference for

a dataset was lowered to 7 and 2.3, respectively, so that five

datasets result. These datasets are also shown in Table 2.

Docking and Ranking Programs

FlexX 2.0.28 and AutoDock 3.0.534 were used to generate the

docked conformation of ligands and to rank the conformations

according to their binding scores. X-Score 1.2.16 has ranking

functionality but not docking capability. Thus, in cross docking

Table 2. Datasets Used in This Study.

Dataset Receptor PDB IDs NLa RMWb HETc NCd REEe

CDS1 Carbonic anhydrase II 1bcd, 1g1d, 1g52, 1g53, 1g54, 1ttm, 1xpz,

1xq0, 1if7, 1if8

10 300 Zn 1 4.18

CDS2 Endothiapepsin 1eed, 1epo, 1epp, 1epq, 2er6, 2er9, 3er3, 4er1,

4er2, 5er2, 5er1

11 423 None 1 4.51

CDS3 HIV-1 protease 1g2k, 1g35, 1gno, 1hbv, 1hos, 1hps, 1hpv,

1hpx, 1hsg, 1hvi, 1hvj, 1hvk, 1hvl, 1ohr,

1w5v, 2bpv, 2bpy, 2bqv, 7upj, 1ajv, 1ajx,

1c70, 1hih, 1dif, 1w5w, 1w5y, 1iiq, 1nh0

28 351 None 2 4.29

CDS4 Oligopeptide

binding protein

1b05, 1b0h, 1b1h, 1b2h, 1b32, 1b3f, 1b3g,

1b3h, 1b3l, 1b40, 1b46, 1b4h, 1b4z, 1b51,

1b58, 1b5h, 1b5i, 1b5j, 1b6h, 1b7h, 1b9j,

1jet, 1jeu, 1jev, 1qka, 1qkb, 2olb

27 140 None 1 3.48

CDS5 Ribonuclease a 1jn4, 1o0f, 1o0h, 1o0m, 1o0n, 1w4o, 1w4p,

1w4q, 1z6s, 1afk, 1afl, 1o0o, 1qhc

13 485 None 1 3.48

CDS6a,bf Thermolysin 1qf0, 1qf1, 1qf2, 1tlp, 1tmn, 1z9g, 1zdp, 4tln,

5tln, 1os0

10 394 Zn 1 3.83

CDS7 Beta trypsin 1c5t, 1g36, 1ghz, 1lqe, 1oyq, 1ppc, 1pph, 1tng,

1tnh, 1tni, 1tnj, 1tnk, 1tnl, 1gi1, 1gi4, 1gi6,

1gj6, 1o2j, 1o2n, 1o2o, 1o2p, 1o2q, 1o2r,

1o2s, 1o2t, 1o2u, 1o2v, 1o2w, 1o2x, 1o2z,

1o30, 1o32, 1o35, 1o36, 1o37, 1o39, 1o3b,

1o3d, 1o3e, 1o3h, 1o3i, 1o3j, 1o3l, 1qb1,

1qbn, 1qbo, 1tx7

47 450 None 1 6.47

CDS8 Beta trypsin 1tpp, 1tni, 1tnj, 1tnk, 1tnl, 1yyy, 1zzz 7 350 None 1 5.39

CDS9 Carbonic anhydrase II 1am6, 1bcd, 1bn1, 1bn3, 1bn4, 1bnm, 1bnn,

1bnq, 1bnt, 1bnu, 1bnv, 1cil, 1cim, 1cin,

1bnw

15 328 Zn 1 6.10

CDS10 Endothiapepsin 2er6, 2er7, 2er9, 3er3, 4er4, 5er2, 1epo, 2er0 8 414 None 1 2.62

CDS11 HIV-1 protease 1hpv, 1htf, 1hvi, 1hvj, 1hvk, 1hvl 6 289 None 2 2.36

CDS12 Thrombolysin 1thl, 1tlp, 1tmn, 2tmn, 4tln, 4tmn, 5tln, 5tmn,

6tmn

9 410 Zn 1 6.47

aNumber of ligands.
bThe difference between the maximum and minimum ligand molecular weight.
cHeteroatoms in the binding pockets.
dNumber of chains in the receptors.
eThe difference between the maximum and minimum pKd or pKi.
fCDS6a maintained the Zn atom in the active sites, whereas CDS6b was prepared by removing the Zn atom from

the active sites.
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and decoy docking studies, the docked conformations from

FlexX were used as an input to X-Score to obtain X-Score esti-

mations of binding affinity. Because we obtained binding scores

by BLEEP from the Protein Ligand Database v1.3, we did not

perform actual scoring with BLEEP.

Binding Affinity Estimation with Native X-Ray

Complex Structures

The binding energies of the X-ray complex structures were esti-

mated by FlexX, X-Score, and AutoDock. Each complex struc-

ture of the datasets had two files, one receptor structure file in

pdb format and one ligand structure file in mol2 format. For the

binding energy estimation with X-Score, the files were processed

as follows. The mol2 format files of the ligand structures were

processed with fixmol2 option of X-Score to correct any atom or

bond typing error and the resulting files were used as the input

files for X-Score. The pdb files of the receptor structures were

processed with fixpdb option of X-Score and used as the input

files for X-Score. All default parameters of X-Score were used,

and the binding energies were calculated with the score com-

mand of X-Score. Among X-Score’s three scoring functions,

HMScore showed the best CC over our datasets (data not

shown). However, because the average of the values by X-

Score’s three scoring functions showed similar prediction per-

formance and lower variance over our datasets (data not shown),

we used this average as the predicted binding score throughout

this study.

Binding energy estimation for the X-ray complex structures

with FlexX was performed as follows: Because applying

FlexX’s transformation rule on ligands gave better binding affin-

ity prediction than when it was not applied (data not shown),

this transformation option was applied in every FlexX calcula-

tion. All histidines in the receptors were treated as the neutral

his type. All arginines and lysines were treated as having a 11

charge and all aspartates and glutamates were treated as having

a 21 charge. Only metal ions inside the binding pockets were

included in the binding energy calculation. Cysteines not in di-

sulfide bonds were separately treated as the cysh type. The cen-

ter of mass of the ligand was used as the probe location for each

complex. All residues of a receptor were considered in the bind-

ing score calculation. The binding energy was estimated with

the score fix command.

Binding energy estimation of the X-ray complex structures

with AutoDock was performed as follows. The receptor structure

files were converted to pdbqs format with pmol2q40 and used as

the input files. The ligand structure files were processed with

AutoDockTools41 to produce pdbq format input files. Grids of

length 30.0 Å were placed around the center of ligands with a

spacing of 0.375 Å. The gpf and dpf parameter files were gener-

ated with gpf3gen and dpf3gen provided in the AutoDock pack-

age, respectively. The binding energy evaluation was performed

with epdb command on the native receptor and ligand structures.

Even though we used high resolution X-ray complex structures,

AutoDock produced positive nonbonded energy for close con-

tacts between ligand and receptor atoms. We examined non-

bonded energy of each ligand atom, and ignored it if it was pos-

itive. However, in cross docking and decoy docking studies

described later, this step was not performed, because AutoDock

moved ligands to resolve close contacts during docking simula-

tion. Binding energy estimation for X-ray complex structures

with BLEEP was obtained from the Protein Ligand Database

v1.3.36

The programs’ performance in binding affinity prediction for

a dataset was assessed by calculating CC, the Pearson’s correla-

tion coefficient42 between the experimental binding affinity and

estimated binding score. For CDS1 to 7, PDBbind v2005 pro-

vided pKd or pKi for each complex structure. Because X-Score

gave estimated pKd, its output was directly used to calculate the

CC. Because FlexX and AutoDock provide the estimated bind-

ing free energy in kJ/mol and kcal/mol, respectively, the experi-

mental pKd or pKi was converted to the experimental binding

free energy with the following formula: experimental binding

free energy 5 RT loge(10
2pKd or pKi), where RT 5 0.59 kcal/

mol. For CDS8 to 12, because Protein Ligand Database v1.3

provided both experimental and estimated binding energies in

kJ/mol, these values were compared directly. We also measured

the correlation coefficient between the logarithm of ligand mo-

lecular weight and experimental binding affinity.

Cross Docking Dataset/Evaluation Approach

Dataset

Over the long term, we would like to be able to predict binding

affinity using inaccurate protein models that are generated by

protein structure prediction algorithms such as TASSER.43 Logi-

cally, a binding energy prediction program should be first capa-

ble of predicting binding energy with cocrystallized X-ray com-

plex structures and the X-ray structures of receptors and their

ligands which were not cocrystallized with them; if not, then

predictions on inaccurate models would be expected to be very

unreliable. As explained in Results and Discussion section, only

CDS6a,b and CDS7 showed a satisfactory CC for X-ray com-

plex structures with all of FlexX, X-Score, and AutoDock (Table

3). However, because CDS6a contained zinc in the binding

pockets of the receptor structures and thus could not be used as

it was for crossdocking study, we used its Zn-free version,

CDS6b, for the crossdocking study. CDS6b behaved similarly to

CDS6a in binding affinity estimation with X-ray complex struc-

tures (Table 3). For ease of docking simulation and analysis, we

translated and rotated the receptor structures in CDS6b and

CDS7 so that they all could be superimposed on the receptor

structure of the complex structures 1tlp and 1oyq, respectively.

1tlp and 1oyq were the complex structures with the largest

ligands in the respective datasets. The receptor structures’ mean

Ca RMSD from the receptor structures of 1tlp and 1oyq was

0.16 and 0.24 Å for CDS6b and CDS7, respectively. The ligands

of CDS6b and 7 were also translated and rotated according to

their native receptor structures so that their relative position to

their native receptor structures did not change.

Docking Simulation and Ranking

Docking simulation and ranking with FlexX were performed as

follows: For each receptor structure in CDS7 and CDS6b, all of
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its residues were considered in docking simulation and binding

score calculation. The probe location of a receptor structure was

defined as the center of mass of its native ligand. Amino acid

typing was the same as in the binding score calculation with the

native X-ray complex structures. Base fragments of a ligand

were selected with selbas a command, placed with placebas 3
command, and grown with complex all command. Default values

were used for all the other parameters. Among the generated

ligand conformations, the top scoring conformation was selected

as the ‘‘best scoring’’ conformation of the ligand for the receptor

structure it was docked to. One hundred top scoring ligand con-

formations were also saved for the ranking analysis with X-

Score. Rescoring and ranking of the ligand conformations with

X-Score was performed with the docked ligand conformations

obtained with FlexX and their receptor structure as was done for

the native complexes. The top scoring conformation was

selected as the ‘‘best scoring’’ conformation of the ligand for the

receptor. Because we did an ‘‘all ligands to all receptor struc-

tures’’ type of cross docking, we obtained as many best-scoring

complex structures for a ligand as the number of the receptor

structures in its dataset. We chose the complex with the best

score among them and named it the ‘‘best-of-best scoring’’ com-

plex for the ligand and also called the ligand conformation in

this complex the ‘‘best-of-best scoring’’ conformation of the

ligand.

Docking simulation and ranking with AutoDock were per-

formed as follows: The superimposed receptor and ligand structure

files used for FlexX were converted to pdbqs (with pmol2q) and

pdbq (with AutoDockTools) files, respectively, as described in the

section of Binding Affinity Estimation With Native X-Ray Com-

plex Structures. Grids of length 30.0 Å were placed around the

center of ligands with a spacing of 0.375 Å. The gpf and dpf pa-
rameter files were generated with gpf3gen and dpf3gen provided

in the AutoDock package, respectively. A Lamarckian genetic

algorithm search was performed to find the best scoring conforma-

tion with the following parameters: ga_pop_size 50, ga_num_evals
250,000, ga_num_generations 27,000, ga_elitism 1, ga_mutation_-
rate 0.02, ga_crossover_rate 0.80, ga_window_size 10, set_ga,
la_search_freq 0.06, set_psw1, and ga_run 10. Default values

were used for all the other parameters. ‘‘Best scoring’’ ligand con-

formations and ‘‘best-of-best scoring’’ complex structures and

ligand conformations were obtained in the same way as with dock-

ing and ranking with FlexX.

RMSD From Native of the Crossdocked Ligands

Because the receptor structures in CDS6b and CDS7 were super-

imposable without big deviation, the crossdocked conformation

and the native one of a ligand could be compared straightfor-

wardly with the RMSD between the equivalent atom pairs in the

two conformations (RMSD from native).

Contact Map

We made a two-dimensional matrix for each ligand–receptor

complex. The columns and rows corresponded to the ligand

atoms and the receptor amino acids, respectively. We considered

that there was a contact between a ligand atom and a receptor

residue if the distance between the ligand atom and any of the

atoms of the receptor residue was less than 6 Å. We chose the

rather generous 6 Å as the contact distance cutoff to allow

ligands some freedom to move inside the binding pockets. We

set each element of the matrix (each corresponding to ligand

atom–receptor residue pair) to 1 if there was a contact or 0 if

not, to obtain the contact map for the ligand and the receptor

structure. The change in ligand–receptor contact in two contact

maps was calculated as the percentage of the number of the ele-

ments which were 1 in both contact maps over the number of

the elements which were 1 in the reference contact map. For the

estimation of the change in ligand conformation due to cross

docking, the contact maps from the docked complexes were

compared with those from the native X-ray complex structures,

which were used as the reference contact maps.

Decoy Docking Dataset/Evaluation Approach

Dataset

For the same reason as that for the cross docking, CDS6b and

CDS7 were chosen as the datasets for the decoy docking study.

Again the receptor structures of 1tlp and 1oyq were chosen as

Table 3. Correlation Between Experimental and Predicted Binding

Affinities for the X-Ray Complex Structures in CDS1 to 7.

Dataset

CCa

CCMWc

FlexXb X-Score AutoDock

NL OL NL OL NL OL

CDS1 0.80 0.77 20.04 20.05 0.33 20.42 20.16

CDS2 0.06 20.10 20.08 20.13 20.28 0.15 0.04

CDS3 0.36 0.25 0.42 0.41 0.43 0.44 0.49

CDS4 20.17 0.14 0.15 0.17 20.04 0.06 0.07

CDS5 0.43 0.54 0.48 0.38 0.71 0.50 0.73

CDS6a 0.76 0.79 0.79 0.78 0.85 0.80 0.87

CDS6b 0.79 NDd 0.79 NDd 0.87 NDd 0.87

CDS7 0.74 0.75 0.79 0.77 0.70 0.74 0.71

Avge 0.43 0.45 0.36 0.33 0.39 0.32 0.39

CDSa 0.10 0.14 0.61 0.61 0.40 0.60 0.62

BLEEP

CDS8 0.95 0.77

CDS9 0.89 0.94

CDS10 0.08 0.05

CDS11 0.64 0.63

CDS12 0.76 0.70

NL: native ligands; OL: Open Babel native-like ligands.
aCorrelation coefficient between experimental pKd or pKi and predicted

binding score.
bThe full and ‘‘clashless’’ scores were used for the native and Open Ba-

bel native-like ligands, respectively.
cCorrelation coefficient between the logarithm of ligand molecular

weight and experimental pKd or pKi.
dNot determined.
eAverage of the seven CCs above, excluding CDS6b.
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the reference receptor structures. One hundred decoys were gen-

erated from each of the reference receptor structures for each 1,

2, and 3 6 0.5 Å Ca RMSD from native (decoy RMSD) bin with

our in-house program which employed Monte Carlo sampling

applied to an all atom protein model.44 The receptor residues

were randomly moved and new conformations were accepted or

discarded using the Ca RMSD from native of the ligand-contact-

ing residues (determined as the residues which had atoms within

5.0 Å from the ligand atoms in 1tlp or 1oyq complex structure)

of the new structures as the ‘‘energy’’ and a kT value of 0.1. The

unfolding simulation continued until the atoms of the ligand-con-

tacting residues had been moved on average by 1, 2, or 3 6 0.5 Å

from their original locations. The decoys were briefly energy-

minimized with the program MINIMIZE in TINKER45 until

their Ca RMSD gradient from native reached 1.0 (kcal/mol)/Å.

This minimization changed the Ca RMSD from native of the

decoys and thus the minimized decoys were grouped again into

1, 2, and 3 6 0.5 Å Ca RMSD bins. There were 93, 101, and

97 decoys and 100, 99, and 95 decoys in 1, 2, and 3 6 0.5 Å

Ca RMSD bins for CDS6b and CDS7, respectively.

Docking Simulation and Ranking

Docking simulation with FlexX was performed as follows: All

the residues of the receptor structures of 1tlp and 1oyq were used

in docking simulation. The probe locations for the receptor struc-

tures of 1tlp or 1oyq, defined in cross docking study, often could

not be used in decoy docking study, because the locations often

overlapped with those of decoy receptor atoms. In these cases,

the probe location was randomly translated by a step size of

0.3 Å until it reached a location where the minimum distance

between the probe and the receptor atoms was between 3.5 and

4.5 Å. Docking simulation and ranking of the conformation of the

docked ligands with FlexX were performed as in the crossdocking

study. X-Score ranking of the ligand conformations generated

with FlexX was also done as in cross docking. The docking simu-

lation and ranking with AutoDock was performed as in cross-

docking study except that decoys were used instead of the cross-

docking receptor structures. The ‘‘best scoring’’ conformation of a

ligand for a decoy was the conformation of the ligand that pro-

duced the best score with the decoy. The ‘‘best-of-best scoring’’

complex structure for a ligand in a decoy Ca RMSD from native

bin was the complex structure of the ligand and a decoy in the

given bin that had the best binding score among the complex

structures which had the ligand and the decoys in the bin. The

ligand conformation in this complex structure was termed as the

‘‘best-of-best scoring’’ conformation of the ligand in the bin.

Contact Map

The contact map was obtained with the ‘‘best-of-best scoring’’

complex for each ligand and decoy Ca RMSD bin, as in cross

docking.

Binding Affinity Estimation with Randomized

Ligand Decoys

Each ligand in CDS1 to CDS7 was ‘‘randomized’’ by

‘‘swapping’’ the chemical entities of the ligand atoms according

to the following rules: (1) halogens could be swapped only with

hydrogens, (2) an oxygen in a carboxyl group could be swapped

with a hydrogen, (3) heavy atoms could be swapped with heavy

atoms only when the connectivity among heavy atoms could be

maintained by, if needed, adding and/or deleting hydrogens after

the swap. Because of swapping of heavy atoms, the atomic

charges of decoy atoms needed to be recalculated. We used the

Open Babel46 package for the recalculation of atomic charges,

by first deprotonating the decoys and protonating them with the

Gasteiger–Marsili charge assignment.47 In this procedure, we

found that Open Babel occasionally changed the atom types of

heavy atoms during the protonation; for example, when the two

carbons in CH3��CH2�� were deprotonated and protonated,

Open Babel sometimes changed their atom types from two sp3
carbons to two sp2 carbons, resulting in CH2¼¼CH��. In addi-

tion, the native ligands, which we used and were collected from

the PDBbind database, had MMFF94 charges instead of Gas-

teiger–Marsili charges. Thus, for fair comparison, we also depro-

tonated the native ligands from the PDBbind database with

Open Babel and protonated them with Gasteiger–Marsili charge

assignment. We termed the resulting molecules ‘‘Open Babel

native-like ligands.’’ On average, the Open Babel native-like

ligands had one less hydrogen than the native ligands. The Open

Babel native-like ligands produced correlation coefficients

between experimental binding affinity and predicted binding

score that were very similar to those obtained with the native

ligands from the PDBbind database in CDS1 to CDS7 (see

Table 3). Thus, in the study with randomized decoys, we used

these Open Babel native-like ligands as the ‘‘native ligands,’’

and derived the randomized decoys from these Open Babel

native-like ligands.

The similarity of a decoy to its native ligand was evaluated

by its Tanimoto index48 to the native ligand. The term

‘‘Tanimoto index of a decoy’’ means the ‘‘Tanimoto index of a

decoy with respect to its native ligand as a reference.’’ Because

the Tanimoto index ranges from 0 to 1, we made 10 bins with

an interval of 0.1, and up to 100 ligand decoys with different

Tanimoto indexes were prepared in each Tanimoto index bin for

each ligand. Some ligands could have less than 100 decoys in

certain Tanimoto index bins, due to their chemical composition

and covalent bond geometry. In this case, we obtained as many

decoys as possible by extensive decoy generation with the num-

ber of swaps ranging from 1 to 200. More than 200 swaps did

not produce any new decoy with any native ligand.

Calculation of binding score of a decoy–receptor complex

was performed in the same way as that for the calculation of

binding affinity of a native ligand–receptor complex with the

following difference: Because of heavy atoms swapped with

hydrogens and the hydrogens added by Open Babel, clashes

between a receptor atom and a decoy atom could happen. How-

ever, we did not modify the location of the decoys to avoid the

clashes, because (1) moving the decoys to avoid the clashes

could generate additional breaks in native ligand–receptor con-

tacts and (2) if the programs could capture specific ligand–recep-

tor interactions, it should still give these decoy–receptor com-

plexes worse scores than those for native ligand–receptor com-

plexes. Thus, we ignored a positive van der Waals energy

contribution from these clashes as follows: FlexX had a separate
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score term for these clashes, and thus we ignored this clash

score (dG_clash) and summed the other score terms to obtain a

binding score for a decoy–receptor complex. We termed this

score, which ignored the clashes, the ‘‘clashless’’ FlexX score.

In fact, the clashless score-Open Babel native-like ligand pairs

performed as well as the full score-PDBbind native ligand pairs

(Table 3). Thus, this clashless score was used for both ligand

decoys and native ligands in this study with randomized decoys.

X-Score was not sensitive to this clash, and thus we used X-

Score scores without modification. Ignoring the clashes detected

by AutoDock was performed as with X-ray complex structures.

Evaluation of the CC with decoy–receptor complexes was

performed as follows. In each dataset/ligand/Tanimoto index

bin, we randomly picked a decoy among all the decoys in the

bin (when there was no decoy in the bin, we left the bin empty),

and calculated the CC for each dataset/Tanimoto index bin with

the binding scores of selected decoy–receptor complexes. If less

than 90% of the ligands in a dataset had decoys in a Tanimoto

index bin, we did not calculate the CC for the dataset/Tanimoto

index bin. We repeated this process 10,000 times to obtain the

distribution of CCs in each dataset/Tanimoto index bin, and

compared this distribution with the CC obtained with the Open

Babel native-like ligands that had at least one decoy in the data-

set/Tanimoto index bin.

Results and Discussion

Binding Energy Prediction From the Native Complex

Structures of CDS Datasets

First, we examined the correlation between the experimental and

predicted binding affinities of the X-ray complex structures in

CDS1 to 7 for FlexX, X-Score, and AutoDock and in CDS8 to

12 for BLEEP (Table 3). The CC varied greatly among the data-

sets and only CDS6a,b and CDS7 showed high CCs in all of the

three programs. Although BLEEP performed well in 4 out of the

5 datasets, we could not conclude that BLEEP was better than

the other programs, as we explain later. For the time being, we

will confine our discussion to FlexX, X-Score, and AutoDock.

The variation in the accuracy of binding affinity prediction in

different datasets was also demonstrated by Ferrara et al.10 and

Warren et al.49 Although average of the datasets’ CCs was simi-

lar in all the programs, when the complex structures in CDS1 to

7 were pooled into a bigger dataset (CDSa), only X-Score

showed moderately good binding affinity prediction ability. X-

Score’s better overall performance was expected, because it had

been specifically trained to predict binding affinities. X-Score’s

CC for CDSa was comparable to those reported by Wang et al.

(0.66–0.77).6,12 However, even X-Score failed to accurately rank

binding affinities in datasets other than CDS6a,b and CDS7.

Interestingly, FlexX performed exceptionally well with CDS1

compared with the other programs, while it was almost as good

as random prediction with CDSa.

Regarding the variation of CC in CDS1 to CDS7, a similar

variation of the CC according to receptor family was reported by

Ferrara et al.10 The receptors of CDS6 (thermolysin) and CDS7

(beta trypsin) are members of metalloprotease and serine protease

families, respectively, and Ferrara et al. obtained average CCs of

0.68 and 0.69 for these families with nine binding energy predic-

tion programs. Here, the averages of the CCs obtained by the

three programs were 0.80 and 0.74 for CDS6a and CDS7, respec-

tively. The other CDSs belonged to Ferrara et al.’s low CC cate-

gories and did not produce high CCs in our study, either.

We are interested in elucidating why the programs could

rank binding affinities well in some datasets and not others.

Regarding this, the correlation between the logarithm of ligand

molecular weight and experimental binding energy reported by

Velec et al.50 and Ferrara et al.10 caught our attention. We

examined this correlation, viz. the correlation coefficient with

logarithm of ligand molecular weight (CCMW), in each dataset

(Table 3). While CCMW also varied across the datasets, surpris-

ingly, the value of CCMW was as high as the CCs obtained

with the programs; the mere logarithm of ligand molecular

weight was as good a predictor of ligand binding affinity as the

scoring functions employed by the programs; related to this, it is

notable that Ishchenko and Shakhnovich found a strong correla-

tion of a nonspecific potential and experimental binding affinity

in metalloproteases, serine proteases, and carbonic anhydrase II,

to which our CDS6, CDS7, and CDS1 belong, respectively.51 In

our study, the CC and CCMW were high in CDS6 and CDS7

and low in CDS1, with the exception of a high CC of CDS1 by

FlexX. Thus, the data from the two groups agreed in the cases

of metalloprotease and serine protease but differed in carbonic

anhydrase II. Examining the origin of the difference between the

two sets of results, when we calculated the CCMW of the data-

set for carbonic anhydrase II in the study of Ishchenko and

Shakhnovich, its CCMW was very high (0.95), whereas the

CCMW of our CDS1 is very low (20.16). Thus, it appears that

the study by Ishchenko and Shakhnovich on the correlation

between nonspecific potential and experimental binding affinity

agree with our notion of the relationship between CCMW and

CC. Also, it was noticed that all the four datasets where BLEEP

performed well also had high CCMWs. Thus, we could not

exclude the possibility that BLEEP also captured mainly nonspe-

cific interactions, which could be inferred from high CCMWs.

Because CCMW would have become much lower if the

ligands which could not fit into the binding pockets had been

included in the datasets and also because the molecular weight

of a ligand alone without its geometric information would not

be sufficient to determine whether the ligand will fit into a bind-

ing pocket or not, molecular weight of a ligand alone could not

be used as a predictor of binding affinity. However, this observa-

tion suggests that nonspecific interactions might play a big role

in determining the performance of all the programs examined.

Although the relationship between CCMW and CC had been

implied,10,50 we were interested in examining their strong corre-

lation. When we examined this correlation, it was found that

CCMWs indeed were well correlated with the CCs obtained

with all the four programs (see Fig. 1). BLEEP’s CCMW-CC

correlation data obtained with different datasets nicely fit with

those from the other three programs. The correlation coefficient

between CCMWs and CCs was 0.91 when one outlier (FlexX’s

CC for CDS1) was excluded, again suggesting the major role of

nonspecific interactions in determining the performance of the

programs’ scoring functions.
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To further examine the role of nonspecific interactions, we

analyzed the correlation between experimental binding affinity

and the programs’ individual score components (Table 4). In

CDSa, the FlexX-Lipo, X-Score-vdW, X-Score-HP, and Auto-

Dock-NB were correlated with the experimental binding affinity

better than the other score components in the respective pro-

grams. These score components are mostly related to nonspecific

interactions such as van der Waals and hydrophobic interactions.

While there was no individual score component which had a

consistently high or consistently low correlation with experimen-

tal binding affinity in all of our datasets, it was notable that, in

some datasets, the CCs by individual score components were

higher than those provided by the corresponding full scoring

function (Table 4). For example, the CCs by X-Score-vdW and

AutoDock-NB were higher than those using the full scoring

function in 4 out of 7 datasets. However, X-Score-vdW and

AutoDock-NB score still failed to correctly rank ligands accord-

ing to their binding affinity in all the datasets except in CDS6a,b

and CDS7. It was also noted that X-Score-HB and AutoDock-

EL produced significantly higher CCs than those by X-Score-

vdW and AutoDock-NB in CDS1 and CDS2, where the full

scores of X-Score and AutoDock failed to produce high CCs.

Although FlexX did not have a van der Waals interaction score

component, for FlexX in some datasets the CCs by one or two

score components were significantly higher than those by the

other score components.

Fahmy and Wagner52 suggested that van der Waals interac-

tions alone would be sufficient for correctly scoring of ligand–

protein binding affinity. Although the results with CDSa in Ta-

ble 4 appears to support this suggestion, the result with CDS1 to

CDS7 in Table 4 clearly shows that, at least in several of our

datasets, non-van der Waals scoring components performed bet-

ter than van der Waals scoring components. This discrepancy

between the results with CDSa and that with CDS1 to CDS7

might have come from two sources, the fairly high CCMW of

CDSa (Table 3) and that the tested programs were trained not

with datasets of low CCMWs but with those that are more simi-

lar to CDSa.6,8,29

We further note that one possible explanation for the fairly

high CCMW of the whole PDBbind was that the most frequent

Figure 1. Correlation between CC (correlation coefficient between

experimental pKd or pKi and predicted binding score) and CCMW

(correlation coefficient between the logarithm of ligand molecular

weight and experimental pKd or pKi). The binding scores of the

native X-ray complex structures in CDS datasets were calculated

with FlexX, X-Score, and AutoDock. Binding scores by BLEEP and

corresponding experimental pKds or pKis were obtained from the

Protein Ligand Database. CDS1 was omitted from FlexX results

because it was a significant outlier. The correlation coefficient

between CC and CCMW was 0.93, 0.95, 0.85, and 0.97 for FlexX,

X-Score, AutoDock, and BLEEP, respectively.

Table 4. Correlation Coefficients Between Experimental pKd or pKi and Binding Score Components.

FlexX X-Score AutoDock

Match Lipo Ambig Full vdW HB HP Full NB EL Full

CDS1 0.81 0.22 0.04 0.80 20.26 0.78 0.19 20.04 0.19 0.49 0.33

CDS2 0.11 0.00 0.23 0.06 20.04 0.22 20.17 20.08 20.27 20.06 20.28

CDS3 0.24 0.56 0.55 0.36 0.44 0.17 0.41 0.42 0.45 0.12 0.43

CDS4 20.21 0.16 0.14 20.17 0.06 20.18 0.28 0.15 0.08 20.43 20.04

CDS5 0.61 0.51 0.63 0.43 0.56 0.68 20.21 0.48 0.53 0.71 0.71

CDS6a 0.79 0.70 0.84 0.76 0.84 0.66 0.69 0.79 0.84 0.56 0.85

CDS6b 0.85 0.70 0.85 0.79 0.84 0.67 0.63 0.79 0.86 0.35 0.87

CDS7 0.54 0.70 0.78 0.74 0.72 0.73 0.48 0.79 0.71 0.40 0.70

CDSa 0.12 0.57 0.36 0.10 0.54 0.01 0.62 0.61 0.51 0.19 0.40

The binding score components meant the following according to the developers6,8,34; Match: ionic, hydrogen bond,

and aromatic interaction score; Lipo: lipophilic contact score; Ambig: hydrophilic–lipophilic contact score; vdW: van

der Waals interaction score; HB: hydrogen bond score; HP: hydrophobic interaction score; NB: van der Waals inter-

action and hydrogen bond score; EL: electrostatic interaction score. The ‘‘Full’’ columns show the CCs obtained

with the full scores of FlexX, X-Score, and AutoDock and native complex structures that are shown in Table 3.
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route to find a better binder might be to add additional (and

attractive) mass to good binders.

Based on these results, the binding affinity prediction per-

formance of FlexX, X-Score, and AutoDock was largely depend-

ent on how well experimental binding affinities were correlated

with nonspecific van der Waals and hydrophobic interaction

scores between ligands and receptors. Considering the agreement

between the CCMW-CC correlation by BLEEP and that by the

other three programs (see Fig. 1), we could not exclude the pos-

sibility that BLEEP also had the same limitation. Thus, the pro-

grams might have been missing other important aspects of

ligand–receptor interactions, whose absence leads to the incon-

sistency in the binding affinity prediction performance of the

programs observed with our datasets.

Binding Energy Prediction with Cross Docking

CDS6b and CDS7

All of the receptor structures of CDS6b (CDS7) were docked

to all of the ligands of CDS6b (CDS7) using the rigid receptor-

flexible ligand docking capabilities of FlexX and AutoDock,

and the resulting docked conformations of the ligands were

ranked with FlexX, AutoDock, and X-Score as described in

Material and Methods section. The CC between the binding

scores of the ‘‘best-of-best scoring’’ ligands and their experi-

mental binding affinities was high: 0.62, 0.83, and 0.63 for

(docking program/ranking program) FlexX/FlexX, FlexX/X-

Score, and AutoDock/AutoDock, respectively, in CDS6b and

0.83, 0.81, and 0.67 for FlexX/FlexX, FlexX/X-Score, and

AutoDock/AutoDock, respectively, in CDS7. Moreover, the CC

between the binding scores of the ‘‘best scoring’’ ligands

docked to each receptor and the experimental binding affinities

of the native conformations of the ligands complexed with their

native receptor structures was also high (see Fig. 2); the aver-

age CC over the receptor structures was 0.57, 0.79, and 0.62

for FlexX/FlexX, FlexX/X-Score, and AutoDock/AutoDock,

respectively, for CDS6b and 0.82, 0.83, and 0.66 for FlexX/

FlexX, FlexX/X-Score, and AutoDock/AutoDock, respectively,

for CDS7. Thus, except CDS6b with FlexX, slight changes in

receptor structure did not seem to have disturbed the CC of

CDS6b and CDS7 significantly. Rather, CC increased with

cross docking/ranking with FlexX/X-Score in CDS6b and

FlexX/FlexX and FlexX/X-Score in CDS7, relative to those

from X-ray complex structures.

Meanwhile, the best-of-best scoring conformation of a ligand

(the top scoring ligand conformation among the ligand confor-

mations docked to all the receptor structures) was significantly

different from its native conformation in the X-ray complex

structure (see Fig. 3) and the native contacts between the ligands

and the receptor structures were found to have been lost for

many ligands because of cross docking (see Fig. 4). Thus, even

though the crossdocked structures lost significant parts of the

native contacts between the ligands and the receptor structures,

the correlation coefficient between experimental binding affinity

and predicted binding score was not abolished and rather slightly

increased with certain programs. Thus, although as reported by

others10,15 cross docking often produced significant changes in

ligand conformations and ligand–receptor binding interactions,

CDS6b and CDS7 with their high native CCs could endure that

distortion and still produced fairly high CCs.

We analyzed the correlation between individual score com-

ponents and experimental binding affinity (see Fig. 5). The

most noticeable feature was that nonspecific interaction terms,

such as van der Waals interaction term in X-Score and non-

bonded term in AutoDock, correlated with experimental bind-

ing affinity better than the other score components in the pro-

grams, whereas all of FlexX’s score components similarly cor-

related with experimental binding affinity. This indicated that

nonspecific interaction played a more important role in binding

affinity prediction of X-Score and AutoDock than other score

components.

Figure 2. Distribution of the correlation coefficient between experi-

mental pKi and predicted binding score from cross docking. The

ligands of CDS7 (A) and CDS6b (B) were docked to the receptor

structures in CDS7 and CDS6b, respectively, then the ‘‘best scor-

ing’’ conformations of the ligands for each receptor structure were

pooled, and the CC was calculated with these best scores and the

experimental pKis. This calculation of CC was repeated for each re-

ceptor, the CCs were pooled, and their distribution was plotted.

Box boundaries represent the 25th and 75th percentiles, and

whiskers the 10th and 90th percentiles. Bars in the boxes represent

median values.
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Binding Energy Prediction From Docking Deformed

Receptor Structures From CDS6b and CDS7

to Their Ligands

Originally, we were interested in the estimation of the binding

affinities of ligands for predicted receptor structures. However,

because the tested programs did not perform well even with X-

ray complex structures it was apparent that we could not study

this. Thus, we instead further examined whether the high CCs

observed with CDS6b and CDS7 were caused mainly by the

capture of nonspecific interactions. As described in Material and

Methods section, we deformed the receptor structures of the

complex structures 1tlp and 1oyq of CDS6b and CDS7, respec-

tively, to generate deformed decoys with the binding site resi-

dues’ Ca RMSD from native of 1, 2, and 3 6 0.5 Å and docked

the ligands of the respective datasets to the deformed decoys.

Our purpose was to break native ligand–receptor contacts and to

examine if the high CCs of CDS6b and CDS7 could still be

maintained.

As shown in Figure 6, all the programs could rank binding

affinities with deformed decoys as correctly as with native re-

ceptor structures, even when the decoys had the Ca RMSD from

native of 3 6 0.5 Å. However, as shown in Figure 7, the native

contacts between the ligands and their native receptor structures

were rapidly lost with the deformation of the receptor structures;

the ligands that were docked to the areas completely out of their

original binding pockets were also observed. These results indi-

cated that the good binding affinity ranking performance of the

Figure 4. Percentage of intact native ligand–receptor contacts in

‘‘best-of-best scoring’’ crossdocking complexes. The ligands of

CDS7 (A) and CDS6b (B) were docked to the receptor structures in

CDS7 and CDS6b, respectively. The ‘‘best-of-best scoring’’ complex

was obtained for each ligand, and the contact maps of the best-of-

best scoring complexes were obtained and compared with the con-

tact maps from the native X-ray complex structures containing the

same ligands, to obtain the percentages of intact native ligand–re-

ceptor contacts. Box boundaries represent the 25th and 75th percen-

tiles, and whiskers the 10th and 90th percentiles. Dots represent out-

liers outside of the 5th and 95th percentiles.

Figure 3. The distribution of RMSD from native (ligand conforma-

tions in the X-ray complex structures) of the ‘‘best-of-best scoring’’

conformations of the ligands of CDS7 (A) and CDS6b (B), cross

docked to the receptor structures of CDS7 and CDS6b, respectively.

Box boundaries represent the 25th and 75th percentiles, and

whiskers the 10th and 90th percentiles. Bars in the boxes represent

median values.
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programs with the decoy structures was not based on their accu-

rate retrieval of the native interactions present in the native X-

ray complex structures, but probably resulted from mainly non-

specific interactions.

Binding Affinity Estimation with Randomized

Ligand Decoys

We further investigate the idea that nonspecific interactions gov-

ern the binding affinity prediction performance of the tested pro-

grams by examining these programs’ performance with the

‘‘randomized’’ decoys that were prepared as described in Mate-

rial and Methods section.

First, we examined if the programs could discriminate the

randomized decoys from their native ligands as follows: For

each native ligand, we collected its decoys whose predicted

binding affinities were below that of the native ligand plus one

kT (2.5 kJ/mol). We termed these decoys ‘‘IN’’ decoys. Then,

the percentage of the IN decoys for a native ligand in each

decoy Tanimoto index bin over all the IN decoys for the native

ligand was calculated. The distribution of these percentages

across the whole native ligands is plotted for each decoy Tani-

moto index bin in Figure 8. For an ideal binding affinity predic-

Figure 6. Correlation between experimental pKi and predicted bind-

ing score from decoy receptor structure docking. The ligands of

CDS7 (A) and CDS6b (B) were docked to the deformed decoys of

the receptor structures of the complex structures 1oyq of CDS7 and

1tlp of CDS6b, respectively. For each ligand, the ‘‘best-of-best scor-

ing’’ complex was chosen in each decoy Ca RMSD from native bin

and the binding affinity estimate from this complex was used to cal-

culate CC. The legend indicates docking/ranking programs used.

Decoy RMSD of 0 Å means native receptor structures.

Figure 5. The distribution of the correlation coefficients between

score components and experimental pKis. The ligands of CDS7 (A)

and CDS6b (B) were cross docked to the receptor structures of

CDS7 and CDS6b, respectively, with FlexX (for Match, Lipo,

Ambig, vdW, HB, and HP columns) or AutoDock (for NB and EL

columns) and their docked conformations ranked with FlexX (for

Match, Lipo, and Ambig columns), X-Score (for vdW, HB, and HP

columns), or AutoDock (for NB and EL columns) as described in

Material and Methods section. The best scoring conformations of

the ligands for each receptor structure were collected and the corre-

lation coefficient between score components and experimental pKi
was calculated for each receptor and its best-scoring ligand confor-

mations. The correlation coefficients from all the receptor structures

were pooled to obtain the shown distribution. The binding score

components meant the following according to the developers6,8,34;

Match: ionic, hydrogen bond, and aromatic interaction score of

FlexX; Lipo: lipophilic contact score of FlexX; Ambig: hydrophilic–

lipophilic contact score of FlexX; vdW: van der Waals interaction

score of X-Score; HB: hydrogen bond score of X-Score; HP: hydro-

phobic interaction score of X-Score; NB: van der Waals interaction

and hydrogen bond score of AutoDock; EL: electrostatic interaction

score of AutoDock.

11Assessment of Programs for Ligand Binding Affinity Prediction

Journal of Computational Chemistry DOI 10.1002/jcc



tion program, the percentage of IN decoys should be the highest

in the highest decoy Tanimoto index bin and decrease as the

decoy Tanimoto index is reduced. However, with all the three

programs, the percentage of IN decoys peaked in the decoy

Tanimoto index bin of 0.3–0.4, and its distribution was far from

that of an ideal binding affinity scoring function; with the decoy

Tanimoto index of 0.6 as the criterion of a decoy’s being native-

like, there were more ‘‘non-native-like’’ IN decoys than ‘‘native-

like’’ IN decoys.

Secondly, if a program could capture specific interaction

between ligand and receptor atoms, it would give worse scores

to decoys which are more dissimilar to their native ligand. Thus,

Figure 8. Percentage of IN decoys. Randomized decoys were prepared

and their binding affinities were calculated as described in Material and

Methods section. For each native ligand, decoys whose predicted bind-

ing affinities were below that of the native ligand plus one kT (2.5 kJ/

mol) were collected (‘‘IN’’ decoys). The percentage of the IN decoys

for a native ligand in a decoy Tanimoto index bin over all the IN decoys

for the native ligand was calculated. The distribution of these percen-

tages across the whole native ligands is plotted for each decoy Tani-

moto index bin. Box boundaries represent the 25th and 75th percentiles,

and whiskers the 5th and 95th percentiles. The bar in a box represents

the average of the percentages in each decoy Tanimoto index bin.

Figure 7. Percentage of intact native ligand–receptor contacts in the

‘‘best-of-best scoring’’ complex structures. The ligands of CDS7 (A)

and CDS6b (B) were docked to the decoy receptor structures. The

best-of-best scoring complex structure was obtained for each ligand

in each decoy Ca RMSD from native bin. The contact map for the

best-of-best scoring complex structure was compared with that of its

native X-ray counterpart to obtain the percentage of intact native

ligand–receptor contacts, as described in Material and Methods sec-

tion. The percentages were collected for each decoy Ca RMSD

from native bin and plotted. The symbols and bars represent the

mean values and standard deviations, respectively.
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we examined the correlation coefficient, CCTS, between the

Tanimoto indexes of the decoys of a native ligand and their

binding scores (see Fig. 9). A perfect CCTS would be 21, and

with a CCTS of 20.6 as the criterion for good correlation, all

the three programs produced CCTS worse than 20.6 with the

majority of the native ligands; the percentage of the native

ligands having the CCTS of less than 20.6 was 17.8, 7.5, and

1.5% by FlexX, X-Score, and AutoDock, respectively.

Lastly, we examined if the CC changed by using decoy–re-

ceptor complexes instead of native ligand–receptor ones. Figure

10 shows the distribution of CC over 10,000 test datasets com-

posed of randomized decoy–receptor complexes in each dataset/

Tanimoto index bin. We examined CDS3, CDS5, CDS6a, and

CDS7 for which most programs produced CCs of more than 0.4.

With the criterion of 0.1 for the difference between the CC from

native ligand–receptor complexes and the top 25th percentile of

the CCs from decoy–receptor complexes, only FlexX for CDS7

could discriminate decoy–receptor complexes from native

ligand–receptor ones. All the other program/dataset combinations

could not discriminate native complexes from decoy–receptor

ones.

Conclusion

We examined four programs, FlexX, X-Score, AutoDock, and

BLEEP, for their ability to accurately predict ligand–receptor

binding affinity for 12 datasets and found that none of the pro-

grams performed well in predicting binding affinities for all of

the datasets.

One interesting observation is that CC, the binding affinity

prediction performance of the programs, is very highly corre-

Figure 10. Distribution of CC over 10,000 test datasets composed

of randomized ligand decoy–receptor complexes in each decoy Tani-

moto index bin. Generation of the randomized ligand decoys, esti-

mation of the binding affinities of the decoy–receptor complexes

and calculation of the CC in each decoy Tanimoto index bin were

performed as described in Material and Methods section. Box boun-

daries represent the 25th and 75th percentiles, and whiskers the 5th

and 95th percentiles. The bar in a box represents the average of the

CCs in each Tanimoto index bin. A box between decoy Tanimoto

index 0.1 and 0.2 represents the distribution of CCs obtained in the

Tanimoto index bin 0.1–0.2, and so on. Lines represent the CCs

obtained with the Open Babel native-like ligands that had at least

one decoy in the decoy Tanimoto index bin. Gray, white, and black

boxes represent the CCs obtained with FlexX, X-Score, and Auto-

Dock, respectively. Dashed, dotted, and solid lines represent the

CCs obtained with FlexX, X-Score, and AutoDock, respectively.

Figure 9. Histogram of CCTS, the correlation coefficient between

the Tanimoto indexes of the randomized decoys of a native ligand

and their binding scores. Generation of the randomized decoys and

evaluation of the binding scores of the decoy–receptor complexes

were performed as described in Material and Methods section. For

each native ligand, all the Tanimoto index-binding score pairs were

collected from its decoy–receptor complexes and CCTS was calcu-

lated with these pairs. A histogram was plotted with the CCTSs of

all the native ligands.
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lated with CCMW, the correlation between the logarithm of

ligand molecular weight and experimental binding affinity (see

Fig. 1). This result suggests that the programs might not be cor-

rectly capturing specific interactions in ligand binding, as exem-

plified by the finding that even though native contacts were

greatly lost in decoy–ligand docking, CC was still maintained at

high levels for CDS6b and CDS7 datasets (Figs. 6 and 7). Also,

in general, FlexX, X-Score, and AutoDock could not decisively

discriminate native ligands from their ‘‘randomized’’ ligand

decoys, which were generated by ‘‘shuffling’’ the locations of

the atoms of each of the native ligands while maintaining its

chemical composition and heavy atom covalent bond geometry

(see Figs. 8–10). Thus, the tested programs do not capture the

specific interactions between ligand and receptor atoms.

Because FlexX performed the best with randomized ligand

decoys, X-Score with X-ray complex structures, and AutoDock

with preserving native ligand conformation and native ligand–re-

ceptor contacts in cross docking, we could not conclude which

program was the best one.

Considering the ‘‘high CCMW to high CC’’ correlation and

our results with deformed receptor decoys and randomized

ligand decoys, we surmise that these programs will perform well

in binding energy prediction on the datasets which have high

correlation between the molecular weights of binding ligands

and their experimental binding affinities, due to higher contribu-

tion of nonspecific interaction to binding affinity, and vice versa.

There are many success stories and good benchmarks about

docking and ranking programs in virtual screening and the pre-

diction of the binding conformations of ligands.12,22,49,53 How-

ever, the prediction of the binding affinities of ligand–receptor

complex structures appears to be a more difficult task than the

prediction of the binding conformations of ligands.10,49 The

reports of the lack of correlation between experimental and

predicted binding energies for many ligand–receptor complex

structures and prediction programs,10,49 the similar result by us

(Table 3) and our finding of the role of nonspecific interactions

in the binding affinity prediction performance of the examined

programs (see Figs. 1, 6–8, and 10) clearly suggest that

improvement of the ranking/scoring functions for ligand binding

affinity prediction may come from a more complete and accurate

capture of specific interactions in ligand binding.

Also, because the programs examined in this study could not

consistently predict ligand binding affinities even with X-ray

complex structures, the question of whether rigid-receptor dock-

ing is suitable for ligand binding affinity prediction or not could

not be answered in this study and is still an open question. The

question of ‘‘how close to native structures is close enough for

predicted protein structures for relatively accurate binding affin-

ity prediction’’ also could not be answered in this study, because

the binding scores (by the tested programs) of the ligands in

CDS6a,b and CDS7 appeared to be governed by nonspecific

interaction terms and thus neither changing receptor structures

nor ‘‘randomizing’’ ligands could significantly affect the binding

affinity ranking of the ligands. To answer this question, we need

the dataset that has a low CCMW and high CCs by binding af-

finity prediction programs.

In summary, we found that (1) there is a strong correlation

between CCMW (ligand molecular weight-binding affinity corre-

lation of a dataset) and CC (predicted and experimental binding

affinities correlation of the dataset) and thus binding affinity pre-

diction programs performed well only with the datasets having

high CCMWs; (2) for the datasets having high CCMWs, loss of

native ligand–receptor contacts did not significantly perturb cor-

rect ranking of ligands according to their binding affinities; and

(3) in general, the tested programs could not decisively distin-

guish native ligands from their randomized decoys. We suggest

that it is critical to train and test ligand–protein binding affinity

prediction programs with datasets of low correlation between

ligand molecular weight and experimental binding affinity, pos-

sibly through low correlation among ligand structures.
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